Skip to main content
Log in

Abstract

Open answer set programming (OASP) solves the lack of modularity in closed world answer set programming by allowing for the grounding of logic programs with an arbitrary non-empty countable superset of the program’s constants. However, OASP is, in general, undecidable: the undecidable domino problem can be reduced to it. In order to regain decidability, we restrict the shape of logic programs, yielding conceptual logic programs (CoLPs). CoLPs are logic programs with unary and binary predicates (possibly inverted) where rules have a tree shape. Decidability of satisfiability checking of predicates w.r.t. CoLPs is shown by a reduction to non-emptiness checking of two-way alternating tree automata. We illustrate the expressiveness of CoLPs by simulating the description logic \(\mathcal{SHIQ}\). CoLPs thus integrate, in one unifying framework, the best of both the logic programming paradigm (a flexible rule-based representation and nonmonotonicity by means of negation as failure) and the description logics paradigm (decidable open domain reasoning).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic progamming. Technical Report, Arizona State University, Phoenix, Arizona (2002)

  2. Andréka, H., Németi, I., Van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27(3), 217–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, UK (2003)

    MATH  Google Scholar 

  4. Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Proc of Tableaux 2000, vol. 1847 of LNAI, pp. 1–18. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  5. Bechhofer, S., Goble, C., Horrocks, I.: DAML+OIL is not Enough. In: Proc of SWWS’01, pp. 151–159. CEUR, Stanford, California (2001)

    Google Scholar 

  6. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.:(OWL) Web Ontology Language Reference, Stanford University, California (2004)

    Google Scholar 

  7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 34–43 (May 2001)

  8. Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156, 75–111 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives of Mathematical Logic. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  10. Bry, F., Schaffert, S.: An entailment relation for reasoning on the web. In: Proc of RuleML, LNCS, pp. 17–34. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  11. Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Proc of the 2002 Description Logic Workshops (DL’02). Toulouse, France (2002)

    Google Scholar 

  12. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  13. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog and description logics. J. Intell. Syst. 10, 227–252 (1998)

    Article  Google Scholar 

  14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs: implemenation and experiments. In: Proc. of LPAR 2004, 3452 in LNAI, pp. 511–527. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  15. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with DLs for the semantic web. In: Proc. of KR 2004, pp. 141–151. Morgan Kaufmann, San Mateo, California (2004)

    Google Scholar 

  16. Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., Klein, M.: OIL in a Nutshell. In: Proc. of EKAW 2000, LNAI. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  17. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.: OIL: An ontology infrastructure for the semantic web. IEEE Intell. Syst. 16(2), 38–45 (2001)

    Article  Google Scholar 

  18. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT, Cambridge, Massachusetts (1988)

    Google Scholar 

  19. Gelfond, M., Przymusinska, H.: Reasoning in open domains. In: Logic Programming and Non-Monotonic Reasoning, pp. 397–413. MIT, Cambridge, Massachusetts (1993)

    Google Scholar 

  20. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proc. of Twelfth International World Wide Web Conference (WWW 2003), pp. 48–57. ACM, Budapest, Hungary (2003)

    Chapter  Google Scholar 

  21. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Mateo, California (2001)

    Google Scholar 

  22. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. Proc. of WWW 2004. ACM, New York (2004)

    Google Scholar 

  23. Horrocks, I., Sattler, U.: A description logic with transitive and converse roles and role hierarchies. LTCS-Report 98–05 (1998)

  24. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Proc. of LPAR’99, LNCS, pp. 161–180. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  25. Horrocks, I., Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML, (May 2004)

  26. Hustadt, U., Motik, B., Sattler, U.: Reducing \(\mathcal{SHIQ}^{-}\) description logic to disjunctive datalog programs. FZI-Report 1-8-11/03 (2003)

  27. Jarrar, M., Meersman, R.: Formal ontology engineering in the DOGMA approach. Proc. of CoopIS/DOA/ODBASE, vol. 2519 of LNCS, pp. 1238–1254. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  28. Levy, A.Y., Rousset, M.: CARIN: A representation language combining horn rules and description logics. In: Proc. of ECAI’96, pp. 323–327, Budapest, Hungary (1996)

  29. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Syst. 2(4), 526–541 (2001)

    MathSciNet  Google Scholar 

  30. Lutz, C., Sattler, U.: Mary likes all cats. In: Baader, F., Sattler, U. (eds.) Proc of DL 2000, number 33 in CEUR-WS, pp. 213–226, Aachen, Germany (2000)

    Google Scholar 

  31. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: Proc of ISWC 2004, number 3298 in LNCS, pp. 549–563. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  32. Motik, B., Volz, R., Maedche, A.: Optimizing query answering in description logics using disjunctive deductive databases. In: Proc. of KRDB’03, pp. 39–50, Humberg, Germany (2003)

  33. Rector, A.L., Wroe, C., Rogers, J., Roberts, A.: Untangling taxonomies and relationships: personal and practical problems in loosely coupled development of large ontologies. In: Proc of K-CAP 2001, pp. 139–146. ACM, USA (2001)

    Chapter  Google Scholar 

  34. Rosati, R.: Towards expressive KR systems integrating datalog and description logics: preliminary report. In: Proc. of DL’99, pp. 160–164. Linkping, Sweden (1999)

    Google Scholar 

  35. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web. Sem. 3(1), pp. 41–60 (2005)

    Google Scholar 

  36. The Rule Markup Initiative. http://www.ruleml.org

  37. Schlipf, J.: Some remarks on computability and open domain semantics. In Proc. of the Workshop on Structural Complexity and Recursion-Theoretic Methods in Logic Programming, Washington, District of Columbia (1993)

  38. Swift, T.: Deduction in ontologies via answer set programming. In: Lifschitz, V., Niemelä, I. (eds.) Proc. of LPNMR 2004, vol. 2923 of LNCS, pp. 275–288. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  39. Tobies S.: Complexity results and practical algorithms for logics in knowledge representation. PhD thesis, RWTH-Aachen, Germany (2001)

  40. Uschold, M., Grüninger, M.: Ontologies: Principles, methods, and applications. Knowl. Eng. Rev. 11(2), 93–155 (1996)

    Article  Google Scholar 

  41. Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between DLs and open logic programming. In: Proc. of ICLP 1997, pp. 346–360. MIT, Cambridge, Massachusetts (1997)

    Google Scholar 

  42. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)

    Article  MATH  Google Scholar 

  43. Van Gelder, A., Schlipf, J.: Commonsense axiomatizations for logic programs. J. Log. Program. 17, 161–195 (1993)

    Article  MATH  Google Scholar 

  44. Vardi, M.Y.: Why is modal logic so robustly decidable? Technical Report TR97-274, Rice University, Houston, Texas, April 12 (1997)

  45. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. of ICALP’98, pp. 628–641. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn Heymans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heymans, S., Van Nieuwenborgh, D. & Vermeir, D. Conceptual logic programs. Ann Math Artif Intell 47, 103–137 (2006). https://doi.org/10.1007/s10472-006-9030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9030-5

Keywords

Mathematics Subject Classifications (2000)

Navigation