Strong and uniform equivalence of nonmonotonic
theories — an algebraic approdach

Mirostaw Truszczyski
Department of Computer Science
University of Kentucky,
Lexington, KY 40506-0046, USA
mirek@cs.uky.edu

September 13, 2006

Abstract

We show that the concepts of strong and uniform equivalence of loggrams
can be generalized to an abstract algebraic setting of operators otetetaiices.
Our results imply characterizations of strong and uniform equivaleorceeiveral
nonmonotonic logics including logic programming with aggregates, delfagitt
and a version of autoepistemic logic.

1 Introduction

In knowledge representation, as in programming in generaén building a knowl-
edge base for a large application domain one of the key metbgital principles is
that ofmodularity. An application domain at hand is partitioned into smaltagfents
and each of these fragments is represented as a separatie n®aetimes it becomes
necessary to replace a module with another one, for instanaptimize the perfor-
mance of reasoning algorithms. However, it is paramouritttiereplacement leaves
the overall meaning of the knowledge base unchanged. Tkailidg when two mod-
ules areequivalent for substitutioemerges as a fundamental problem in studies of
knowledge representation formalisms.

In some cases, the answer is straightforward. If a knowlbdge is represented as
a theory in propositional logic, equivalence for subsititatcoincides with the standard
logical equivalence. Indeed, if two propositional thestieand(are logically equiv-
alent then for every theory of the forin= PU R, the theoryl” = QU R, obtained by
replacingP with @ in T, is logically equivalent t&". The converse statement holds,
as well and so, theorieB and@ are equivalent for substitution if and only if they are
logically equivalent.

*This work was partially supported by the NSF grant [1S-03250

For knowledge representation formalisms based on nonrapiwlogics, the sit-
uation is more complex. In logic programming with the seritanof stable models
[GL88], having the same stable models is too weak a requinetoeguarantee equiv-
alence for substitution. For instance, the following twgitoprograms

P ={p} and Q = {p < not(q)}

have the same stable models (each progran hjpas itsonly stable model). However,
PuU{q} andQ U {q} havedifferentstable models. The only stable modelt {¢} is
{p, ¢} and the only stable model 6J U {¢} is {q}. Similarly, P U {q < not(p)} has
one stable modelp}, and@ U {¢ — not(p)} has two stable modefy} and{q}.

Characterizing logic programs that are equivalent for guh®n with respect to
the stable-model semantics was identified as an importaetireh topic in [LPVO01].
That paper used the terstrong equivalencénstead ofequivalence for substitution
Since the former is prevalent, we use it in our paper, too.

[LPVO01] studied the problem of strong equivalence in thérsgbf logic programs
with nested expressionalso referred to amested logic programfL.TT99]. Nested
logic programming generalizes disjunctive logic programgrwith the semantics of
answer sets [GL91] and, therefore, also normal logic prognang with the semantics
of stable models.

[LPVO1] presented a characterization of strong equivadenicnested logic pro-
grams by exploiting properties of the loghere-and-therdHey30]. [Tur01, Lin02,
Tur03] continued these studies and obtained simple claizations of strong equiv-
alence without explicit references to the lodjiere-and-there In particular, [Tur01,
Tur03] introduced the notion of ase-modeldefined as a certain pair of sets of liter-
als, and proved that two nested logic programs are strorglwalent if and only if
they have the same se-models. In addition, [Tur01] dematestithat the approach of
se-models extends to the case of (nested) default theories.

[EF03] introduced one more notion of equivalence, timform equivalencef
disjunctive logic programs with answer-set semantics. @ispunctive logic programs
P and@ areuniformly equivalenif for every setR of facts PU R andQ U R have the
same answer sets. [EF03] presented a characterizatiorifofm equivalencen terms
of se-models and, for finite programs, in termsiefmodelswhich are se-models with
some additional properties.

A comprehensive discussion of strong and uniform equivaerf disjunctive logic
programs, including recent extensions of the two conceytet setting relativized with
respect to a fixed set of atoms can be found in [EFWO08].

Results from [LPVO01, Tur01, Lin02, Tur03, EF03] and theiogis exhibit common
themes and similarities. To a large degree, it is due to ttigliat all characterizations
of strong and uniform equivalence developed there are dodtaot directly then im-
plicitly, in the logic here-and-thereln this paper we point out to an additional reason
behind these similarities, related to the fact that seraiti many nonmonotonic log-
ics can be introduced in abstract algebraic terms. Our naitribution is an algebraic
account of strong and uniform equivalence in terms of opesatn complete lattices.
Specifically, in the paper we:

1. extend the definitions of strong and uniform equivalerfdéegic programs to the

abstract case of operators on lattices.

2. establish characterizations of strong and uniform edeice of operators in
terms ofse-pairs— objects that generalize se-models to the setting of &tic

3. demonstrate that these characterizations yield, aiaes, characterizations of
strong and uniform equivalence for those nonmonotonickgihose semantics
can be defined in terms of fixpoints of operators on lattices

Our tool is the approximation theory, which deals with pmigs of fixpoints of
operators on complete lattices [DMTO0O0]. It provides an htgé& account of sev-
eral nonmonotonic logics including (normal) logic prograimg, default logic and
autoepistemic logic, and allows one to state and prove ptiepeof these logics in
a uniform, general and abstract way [DMTO03]. Recent apptioa of the approxima-
tion theory include the development of semantics of logimgpams with aggregates
[Pel04, PDBN04] and an abstract account of splitting thesrp/GD04b, VGDO04a].

2 Preliminaries

We start with an overview of elements of the approximaticeotly [DMTO00]. We as-
sume familiarity with the concepts of a lattice, latticeendg <, and lattice operations
A andv. A lattice L is completdf every subset of. has both least upper and greatest
lower bounds. In particular, a complete lattice has a lelashent, denoted by, and
a greatest element, denoted by

An operatoron a latticeL is any function fromL to L. An operatorO on L is
monotonef for every z,y € L such thatr < y we haveO(x) < O(y). Similarly,
an operatolO on L is antimonotondf for every z,y € L such thatr < y we have
O(y) < O(z). Constanibperators are both monotone and antimonotone.

Let O be an operator on a lattide. An elementz € L is aprefixpoint(a fixpoint,
respectively) ofO if O(z) < z (O(x) = z, respectively). If an operatad has a
least fixpoint, we denote this fixpoint lfp(O). The following theorem by Tarski and
Knaster establishes a fundamental property of monotonetgye on complete lattices
[Tar55].

Theorem 1 Let O be a monotone operator on a complete lattice Then,O has a
least fixpoint and this least fixpoint is also the least prefirpof O.

The approximation theory [DMTOQ] is concerned with operaton lattices and
mappings fromL2 to L. We emphasize that we consistently use the texappingfor
functions fromL? to L, and reserve the termperatorfor functions whose domains
and co-domains coincide.

Definition 1 Let L be a complete lattice. A mappint: L? — L is anapproximating
mappingif for everyx € L, the operatorA(-, x) is monotone and the operatei(z, -)
is antimonotoné.

LIn this paper, we mention only applications to logic programgrand default logic.

2The setL? with the precisionordering is a complete lattice [Gin88, Fit02]. [DMT00] devped the
approximation theory in terms of the so-called approximatipgratorson the latticeL.2. Approximating
mappingdead to a simpler notation and so, we chose to use them in thexpa

If O is an operator onL such thatO(z) = A(x, z), then A is anapproximating
mapping forO.

If z,y,z € L satisfyz < z < y, then we say that the paix, y) is anapproxima-
tion of 2. If A is an approximating mapping for an operatdmon L and (z, y) is an
approximation to: then

Az, 2) < A(z,2) < A(y, 2)

and
A(z,y) < A(z,2) < A(z, z).

The first group of inequalities follows by the monotonicity 4, z), the other one by
the antimonotonicity ofd(z, -). Consequently, we have

Az, 2) < O(z) < Ay, 2)

and
A(z,y) < 0(z) < A(z,),

that is, pairs(A(z, z), A(y, z)) and (A(z,y), A(z, z)) approximateO(z). This prop-
erty motivates the name “approximating mapping” for

Every operato© on a latticel, has an approximating mapping. Indeed detL? —
L be a mapping defined by:

il ifr<y
A(z,y) = { O(x) ife=y

T otherwise.

Clearly, for everyx € L, A(xz,z) = O(z). Next, letx;,z2,y € L and letz; < xs.
If 1 <y, A(z1,y) = L. Ifitis not the case thats < y, A(x2,y) = T. If neither
of these two cases holds; = zo = y. In all casesA(x1,y) < A(za,y), thatis, for
everyy € L, A(-,y) is monotone. In a similar way we verify that for everyc L,
A(z,-) is antimonotone. Thusi is an approximating mapping fap.

In general, approximating mappings are not unique. For tomeoand antimono-
tone operators we distinguish special approximating meggpiNamely, ifO is mono-
tone, we seCo(z,y) = O(x), for z,y € L. If O is antimonotone, we sélp(z,y) =
O(y), forz,y € L. In each case, one can verify th@} is an approximating mapping
for O — we call itcanonical

If A is an approximating mapping for some operatoon a complete lattice, then
Theorem 1 ensures that for eveyye L, ifp(A(-,y)) is well defined (asA(-,y) is a
monotone operator oh). This property makes the following definition sound.

Definition 2 [DMTO0OQ] Let O be an operator on a complete lattideand let A be an
approximating mapping fof). An A-stableoperator forO on L is an operatorS4 on
L such that for every € L:

Sa(y) = lfp(A(-,y)).

An elementz € L is an A-stable fixpoint ofO if x = Sa(z). We denote the set of
A-stable fixpoints 0D by St(O, A).

We will now discuss the relevance of the approximation thgornonmonotonic
logics. We focus on logic programming, consider the prajpmsal case only, and as-
sume that an underlying language is generated by d&ef propositional variables.
We represent 2-valued interpretationsAfas subsets afi¢. With the inclusion rela-
tion as an ordering relation, the set of 2-valued interpi@ta of A¢, denoted byl 4;,
forms a complete latticéL 4, C). The set union operatar is the join operator in this
lattice.

Each logic progranP determines a one-input one-step provability oper@ioon
the latticeL 4, [VEK76]. LetI C At. We recall thafl’» (1) is the set of the heads of all
rules in P whose body holds id. Another operator associated withis a two-input
one-step provability operatdr p [Fit85, Fit91]. If I, J C At thenU (I, J) consists
of the heads of those rules whose positive body holdsaind negative body holds ih
One can check that for evedfyC At, Up (-, I) is monotone¥ (1, -) is antimonotone
and¥p(I,I) = Tp(I). It follows that¥ p is an approximating mapping f@f. Thus,
as long as we view logic programming as a study of propertiég-oand ¥ p, it is a
special case of the approximation theory.

The operatorsi’> and ¥p are fundamental to the study of semantics of logic
programs. Fixpoints of'» are precisely supported models Bf and 4-valued sup-
ported models ofP (including the Kripke-Kleene model of) are determined by
pairs (I, .J) of interpretations such thdt,.J) = (Vp(1,J),¥p(J,I)). Next, the
Gelfond-Lifschitz operatotsLp [GL88], satisfiesGLp(I) = Ifp(¥p(-,I)). Thus,
GLp is theV p-stable operator fof'» and so, stable models f coincide with¥ p-
stable fixpoints ofl’». Since, 4-valued stable models (including the well-fouhde
model of P) can be characterized by pait5, J) of interpretations such th&f, J) =
(GLp(J),GLp(I)), it follows that all major 2-valued and 4-valued semantitigic
programs can be expressed as fixpoints of operators reatEd and V. The key
point is that semantics of logic programs are special casegeneral algebraic theory
of operators and their fixpoints [DMTO0O].

3 Equivalence of lattice operators

Our goal is to show that the concepts of strong and unifornivatgnce can be cast
in the abstract algebraic setting of the approximation thed/e start by defining the
concept of arextensiorof an operator. Le” and R be operators on a lattick. An
extensiorof P with R is an operato® V R defined onlL by setting

(PV R)(z) = P(z) V R(x),

for everyz € L. We call R anextendingoperator and® \V R anextensiorof P with R.
If we consider programs in terms of their one-step provabilperators, the extension
of operators is a direct generalization of the union of twgidgprograms. Indeed, P
andR are logic programs, thefip g = Tp U TR.

As in the case of logic programs, strong and uniform equiadeof operators con-
cerns stable fixpoints of their extensions. However, théonodf a stable fixpoint
depends on the choice of an approximating mapping. Thus)eviee we consider the

equivalence of two operatord and@, we select for each of them one of their approx-
imating mappings, sayip and A, respectively. In this way, we determine a specific
notion of stability for the operator® and(@.

The equivalence oP and@ will depend on stable fixpoints of the operatéts’ R
and@ Vv R. Informally, we will require thatP? v R and@ V R have the same stable
fixpoints. However, the concept of stability becomes ungudiis only ifP vV R and
Q@ V R are assigned some approximating mappings. These appitingnmaappings
should depend in some way on the approximating mappings(6f, respectively) and
R, as otherwise there would be no connection between the ptmoéstability for P
andP Vv R (Q and@ V R, respectively).

We will now consider this issue. Lét andR be operators on a lattide and letA p
and Ar be approximating mappings f@t and R, respectively. It is straightforward to
check that the operatotp \V Ag is an approximating mapping for the operafow R.
Thus, when considering operatdes/ R andQV R, we willuseApV A andAgV Ar
as their approximating mappings. In particular, we will gare(Ap vV Agr)-stable
fixpoints of P v R with (Aqg V Ag)-stable fixpoints of) v R.

Another point concerns operators to use to extErahd(@ with. As in logic pro-
gramming, we impose no restrictions when defining strongvatgnce. To properly
generalize the concept of uniform equivalence, we noteldigit programs consisting
of facts (this class of programs was used to define the uniémivalence in the case
of logic programming), have constant one-step provabdipgrators. Therefore, we
define uniform equivalence of operators with respect toresiteis by constant opera-
tors only. Moreover, we consider them only together withirthanonical approxima-
tions (we recall that constant operators are monotone areldaaonical approximating
mappings). We formalize this discussion in the followindjmi&on.

Definition 3 Let P and () be operators on a latticd, and let Ap and Ay be their
approximating mappings, respectively.

1. P and @ are strongly equivalentwith respect toa(Ap, Ag), written P =, Q
mod (Ap, Ag), if for every operatorR and for every approximating mapping
Apr Of R,

St(P VR,ApV AR) = St(Q VR, AQ \Y AR)

2. P and @ are uniformly equivalenwith respect tq Ap, Ag), written P =,, Q
mod (Ap, Ag), if for everyconstanbperatorR

St(PVR,ApV CRr) = St(Q\/R,AQ vV CRr),

whereCg is the canonical approximating mapping f& (constant operators
are monotone and have canonical approximating mappings).

Thus, givenP and@ and their approximating mappingsr and A, P and@ are
strongly equivalent with respect folp, Ap) if for an arbitrary operatoRz and for an
arbitrary approximating mapping i for R, extensions? V R and@ Vv R of P and
@ have the same stable fixpoints £4p VV Ag)-stable fixpoints on the one side and
(Ag Vv Ag)-stable fixpoints on the other. Similarli, and@ are uniformly equivalent

with respecttd Ap, Ag) if extensions ofP and(with an arbitrary constant operator
R have the same stable fixpoints (Ap vV Cr)-stable fixpoints in the case & v R
and(Ag Vv Cr)-stable fixpoints in the case 6f V R.

Let us consider these definitions from the perspective afabtogic programs.
Let P be a program. As we noted, can be represented in algebraic terms by means of
the operatofl’» and its approximating mapping . Strong equivalence of programs
P and (@ as defined in [LPVO01] requires that for every progrdrstable models of
P U R and@ U R be the same. In the language of operators, that conditiorbean
expressed as follows: for every prograf St(ITp U Tg,¥p U Ug) = St(Tg U
Tr, Vg U Tg). Itis now clear that our definition of strong equivalenceuiegs more,
namely it requires that we consider an arbitrary oper&as an extending operator
and, in addition an arbitrary approximating mappingr for R, while in the case
of logic programming we only need to consider one approximgamapping —V p.
Nevertheless, later in the paper we will show that our dédimiof strong equivalence,
when applied to logic programs yields the same concept oftiteeg equivalence as
the one defined in [LPVO1].

As concerns the concept of uniform equivalence, the sanas simpler. Uniform
equivalence of two progranmid and@, as introduced by [EF03], requires that for every
setR of atoms, stable models @ U R coincide with stable models @ U R. In the
language of operators, this defining condition can be esprkas follows: for every set
of factsR, St(I'p UTR, Y p UV R) = St(Tg UTRr, ¥o U ¥r). We now note that if?
is a set of facts], is a constant operator andz (X,Y) = Tr(X). Thus, Vi = Ci.
Consequently, our definition of uniform equivalence is adirgeneralization of the
definition in [EF03].

4 Se-pairs

In this section, we generalize the notion of an se-modelIuiur03] to the case of
operators.

A pair (z,y) € L? is anse-pairfor P with respect to an approximating mapping
Ap for Pif

(SE1) 2 <y
(SE2) P(y) <y
(SE3) Ap(z,y) <z

We will denote the set ase-pairfor P with respecttodp by SE(P, Ap).

Let us consider this definition from the logic programminggpective. LetP be a
logic program. We observed earlier that semantic® @fre captured by the operators
Tp and¥ p. The following two properties are well known: a set of atorhis a model
of a programP if and only if T»(Y) C Y; and a set of atomX is a model of the
programP? if and only if Up(X,Y) C X.

We now recall that an se-model of a progrdis a pair(X,Y") of sets of atoms
(interpretations) such th& C Y, Y is a model ofP and X is a model ofPY [Tur01].
Thus, our comments above imply that a gair, Y) is an se-model according to [Tur01]

if and only if (X,Y") is an se-pair fofl » with respect tol' ». Consequently, se-pairs
generalize se-models.

In the next two sections we will develop characterizatiohstmng and uniform
equivalence in terms of se-pairs and we will show that ouraittarizations generalize
the results from [Tur01] and [EF03].

5 Strong equivalence

In this section we study the case of strong equivalencejrolteharacterization of this
concept, and show that one can substantially weaken thardgfiondition of strong
equivalence.

Theorem 2 Let P and) be operators on a latticé and letAp and A be approxi-
mating mapping fo® and @ respectively. ISE(P, Ap) = SE(Q, Ag) thenP =, Q
mod (Ap, Ag).

To prove Theorem 2 we will first state and prove some auxiliasylts.

Lemmal Let P be an operator on a latticd. and let Ap be an approximating
mapping forP. If P(y) < y then(y,y) € SE(P,Ap) and (ifp(Ap(-,y)),y) €
SE(P, Ap).

Proof: The pairy, y) satisfies the conditions (SE1) and (SE2). SiAgeis an approx-
imating mapping fot?, Ap(y,y) = P(y). Thus, the paiy, y) satisfies the condition
(SE3), as well. It follows thaty, y) € SE(P, Ap).

Let us denote) = ifp(Ap(-,y)) (we recall thatAp(-,y) is monotone and so, it
has a least fixpoint). Sincép(y,y) = P(y) < y, y is a prefixpoint of the operator
Ap(-,y). By Theorem 1y is also the least prefixpoint alp(-,y). Thus,y’ <y
and the pair(y/, y) satisfies the condition (SE1). The condition (SE2) holdsHhsy t
assumption. Finally, sincg is a fixpoint of Ap (-, y), we havedp(y',y) = v'. Thus,
the condition (SE3) holds fay/, y), as well. Consequentlyy’, y) € SE(P, Ap). O

Lemma 2 Let P and () be operators on a latticd, and letAp and Ag be approx-
imating mapping forP and Q, respectively. IfSE(P,Ap) = SE(Q,Ag), then
St(P,Ap) = St(Q, Ag).

Proof: Lety € St(P, Ap). By the definition, we havg = ifp(Ap(-,y)). It follows
that Ap(y,y) = y and so,P(y) = Ap(y,y) = y. Thus, by Lemma 1(y,y) €
SE(P,Ap)and so(y,y) € SE(Q, Ag). In particular, it follows tha)(y) < y.

Lety = Ifp(Ag(-,y)). SinceQ(y) < y, Lemmalimpliesthaty’,y) € SE(Q, Ag).
Thus,(y',y) € SE(P, Ap) and, by (SE3)y’ is a prefixpoint of the operatotp (-, y).
Consequentlyy < 3’ (by Theorem 1, being the least fixpoint 4t (-, y), y is also the
least prefixpoint ofd p (-, y)).

Since(y’,y) € SE(Q, Ag),y’ <y. Consequentlyy =y’ and soy = Ifp(Ag(-,y)).
Thereforey € St(Q, Ag). It follows thatSt(P, Ap) C St(Q, Ag). The converse in-
clusion follows by the symmetry. |

Lemma 3 Let P be an operator on a complete lattideand letA» be an approximat-
ing mapping forP. For every operatoiR on L and for every approximating mapping
Ap for R,

SE(PV R,ApV Ar) = SE(P,Ap) N SE(R, AR).

Proof: If (z,y) € SE(PV R,Ap V Ag) or (z,y) € SE(P,Ap) N SE(R, Ar) then
x < y. Moreover,(P V R)(y) < yifand only if P(y) < y andR(y) < y. Finally,
(Ap V AR)(z,y) < zifandonly if Ap(z,y) < z andAg(z,y) < x. Thus,(z,y) €
SE(PV R,ApV Ag)ifandonly if (z,y) € SE(P, Ap) N SE(R, AR). O

Proof of Theorem 2. Let R be an operator o, and let A be an approximating
mapping forR. SinceSE (P, Ap) = SE(Q, Ag), by Lemma 3 it follows thaSE (P v
R,ApV ARr) =SE(QV R,Aq V Ag). Thus, by Lemma 29t(P V R, Ap V Agr) =
St(QV R, Ag V Ag), and the assertion follows. |

We will now prove the converse statement to Theorem 2. In faetwill prove
a stronger statement by restricting the class of operatoesneeds to consider as ex-
panding operators.

An operatorR on a complete latticd. is simpleif for somez,y € L such that

x < y, we have
T if 2 <z
R(z) = { Yy otherwise

for everyz € L.

We note that constant operators are simple. Indeedjsfthe only value taken by
an operatoR, R is simple withz = y = w.

Moreover, every simple operatéris monotone. Indeed, let< y be two elements
in L that defineR (according to the formula given above).zlf < z, andR(z2) = v,
thenR(z1) < R(z2) (@asR(z1) = x ory, andz < y). If, on the other handR(z2) = «
thenzy < z. Thus,z; < z, t00, andR(z1) = z. In each caseR(z1) < R(z2).

In particular, R has thecanonicalapproximating mapping'r which, we recall,
satisfiesCr(z,y) = R(z).

Theorem 3 Let P and @ be operators on a complete lattideand letAp and A be
approximating mappings faP and@, respectively. If for every simple operatron L
we haveSt(P\/R, APVCR) = St(Q\/R, AQ\/CR), thenSE(P, Ap) = SE(Q, AQ)

As before, we will first state and prove an auxiliary result.

Lemma 4 If for every constant operatoR on a complete latticd. we haveSt(P Vv
R,ApV Cgr) = St(QV R,Aq Vv Cg), then for every € L, P(y) < y if and only if
Qly) <y.

Proof: Lety € L and let us assume th&(y) < y. We defineR by settingR(z) = y,
for everyz € L. Thus,R is a constant operator din

We note thatdp(y,y) = P(y) < y. Moreover,Cr(y,y) = R(y) = y.
y=Ap(y,y) VvV Cr(y,y) or, in other wordsy is a fixpoint of Ap (-,) V Cr(-,

Thus,
Y).

Let z € L be an arbitrary fixpoint ofAp (-, y) V Cr(-,y). Then
z = Ap(z,y)VCr(z,y) = Ap(z,y) V R(2)
= Ap(zy)Vy>y.
It follows thaty = Ifp(Ap(-,y) V Cr(-,y)) and soy € St(PV R, Ap V CRr). By the
assumption of Lemma4, € St(QVR, AgVCRr), thatisyy = lfp(Ag (-, y)VCr(-,y)).

In particular, it follows thayy = Ag(y,y) V Cr(y,y) = Q(y) Vy. Thus,Q(y) < y.
The converse implication follows by the symmetry argument. m|

Proof of Theorem 3. Let (z,y) € SE(P, Ap). It follows thatz < y andP(y) < y.
By Lemma 4,Q(y) < y.

If x = y then, by Lemma 1(z,y) € SE(Q, Ag). So, let us assume that< y.
Let R be a simple operator oh given by

T if z<z
R(z) = { Yy otherwise.

We recall that sincé? is simple, itis monotone. Thus, it has the canonical appnaxi
ing mappingCr, and for every:,y € L, Cr(z,y) = R(z).

We now observe thatlg(y,y) = Q(y) < y and, asz < y, thatCgr(y,y) =
R(y) = y. It follows that

y=Aq(,y)V Cr(y,y).

That is,y is a fixpoint of the operatodg (-, y) V Cr(-,y).
Let z be an arbitrary fixpoint oflg (-, y) vV Cr(-,y), that s,

z=Aq(z,y) V Cr(2,y). (1)

By our assumption; < y and sox < R(z). SinceCg(z,y) = R(z), z < Cg(z,y).
By (1) Cr(z,y) < z. Thus, we have

x < Cr(z,y) < z. @)
Let us assume that < z. By the definition ofR, R(z) = y and so,
y=R(z) = Cr(zy) < =

Thus,y = ifp(Ag(-,y) VCr(-,y)) and soy € St(QV R, Ag Vv Cr). By the assump-
tion,y € St(PV R, Ap VvV Cg) and soy = lfp(Ap(,y) V Cr(-,¥)).

Since(z,y) € SE(P, Ap), Ap(z,y) < x. Moreover,Cg(z,
Thus,

)
y) = R(2) = a.

Ap(l',y) \ CR(‘ra y) =

It follows thatz is a fixpoint of Ap(-,y) V Cg(:,y). Sincey is the least fixpoint of
Ap(-,y)VCr(-,y),y < z, acontradiction. Consequently, it is not the case that z.
Since by (2) we have < z, it follows thatz = z. Thus, by (1),4¢(z,y) < =z
andso(z,y) € SE(Q, Ag). ConsequentlySE (P, Ap) C SE(Q, Ag). The converse
inclusion follows by the symmetry argument. m|
Theorems 2 and 3 yield a complete characterization of tlengtequivalence of
operators.

10

Corollary 4 Let P and(be operators on a latticé& and letAp and A be approx-
imating mappings fo® and Q respectively. Thel® =, Q mod (Ap, Ag) if and
only if SE(P, Ap) = SE(Q, Ag).

Theorems 2 and 3 also imply a result stating that when estab{ strong equiv-
alence it suffices to consider extensions by simple opeyasod for each simple op-
erator — to consider its canonical approximating mappinly.oithus, the defining
condition of strong equivalence can be weakened significant

Theorem 5 Let P and Q be operators on a latticé and letAp and Ag be approx-
imating mappings fo® and) respectively. Thel® =, @ mod (Ap, Ag) if and
only if for every simple operataR, St(PV R, Ap vV Cg) = St(Q V R, Ag V Cg).

We will now show formally that in the case of nhormal logic prams our approach
to strong equivalence generalizes the one developed in(QiPV

Theorem 6 Normal logic programsP and @ are strongly equivalent in the sense of
[LPVO1]if and only if the operatord’» and Ty, are strongly equivalent with respect to
(¥ p, ¥gy) according to Definition 3.

Proof: The lattice of interest here {4 4;, C), in which the join operator is.
(«) Let R be an arbitrary logic program. Sinde and @) are strongly equivalent
according to Definition 3,

St(TP UTgr,Yp U \I/R) = St(TQ UTgr, Vg U \I/R).

As we noted earlier, the sets of stable modelg’afl R and@ U R are given by the
left-hand side and the right-hand side, respectively, eftuality above. Thug, and
@ are strongly equivalent according to the definition in [LRY.0

(=) Let S be an arbitrary simple operator on the lattitg;. Then there are sets
X,Y C At suchthatX C Y and, for everyZ C At,

X if ZC X
5(2) = { Y otherwise.

Let R be a logic program defined as follows:
R=XU{a—b:acY, be At\ X}.

Itis easy to check th&f = T.

SinceP and(Q are strongly equivalent in the sense of [LPVOR]J R andQ U R
have the same stable models. In the language of operatoreaits thatSt(Tp U
Tr,UpUTR) = St(TgUTR,¥g U ¥g). The programR is a Horn program. Thus,
Up(V,W) = Ur(V,V) = Tr(V) = S(V) = Cs(V,W). It follows that St(Tp U
S, ¥pUCy) = St(ToUS,¥qoUCs). By Theorem 5P and(are strongly equivalent
according to Definition 3. O

11

6 Uniform equivalence

Se-pairs can also be used to characterize uniform equialafe have the following
theorem.

Theorem 7 Let P and () be operators on a complete lattideand letAp and A be
approximating mappings faP and @ respectively. The®? =, Q mod (Ap, Ag) if
and only if

1. foreveryy € L, P(y) < yifandonly ifQ(y) <y

2. foreveryx,y € L suchthatt < y and(z,y) € SE(P, Ap), thereisu € L such
thatr < u < yand(u,y) € SE(Q, Ag)

3. for everyz,y € L such thatr < y and (z,y) € SE(Q, Ag), there isu € L
such thatr < u < y and(u,y) € SE(P, Ap)

Proof: (<) Let R be a constant operator. Then there is L such that for every € L
we haveR(z) = z. Lety € St(PV R, ApV Cg). Theny = ifp(Ap(-,y) VCr(-,y)).
It follows that

Cr(y,y) <y and P(y) = Ap(y,y) <.

SinceP(y) < y, the condition (1) implies thaD(y) < y. Thus,Ag(y,y) = Q(y) <
y. SinceCr(y, y) < y, we obtain thay is a prefixpoint ofAg (-, y) V Cr(:, y).
Lety’ = Ifp(Ag(-,v) V Cr(-,y)). Therefore, we have

y <y

and
r=R(y')=Cry,y) <y

Let us assume that < y. Sincey’ = Aq(v',y) V Cr(¥,y), Ay, y) < V.
Thus, (v',y) € SE(Q,Ag) (we already proved thay’ < y andQ(y) < y). By
the condition (3), there ig” such thaty’ < ¢y’ < y and(y”,y) € SE(P, Ap). In
particular,Ap(y”,y) < y”. In addition, we have

Crly",y) =Ry =z <y <y"

It follows thaty” is a prefixpoint of the operatoip (-, y) V Cr(-,y). Sincey is the
least fixpoint ofAp (-, y) V Cr(-,v), y < y”, a contradiction.

Thus,y’ = y and soy = Ifp(Ag(-,y) vV Cr(-,y)). It follows thaty € St(Q V
R, AoV Cpg). We conclude tha$t(PV R, ApVCgr) C St(QVR, AqgV Ag). The con-
verse inclusion follows by the symmetry argument. THasz, @ mod (Ap, Ag).

(=) The condition (1) follows from Lemma 4. We will now show thiaétcondition (2)
holds. Letz,y € L be suchthat < yand(x,y) € SE(P, Ap). The latter assumption
implies thatP(y) < y. By the condition (1)Q(y) < y.

Let R be an operator o, such that for every € L, R(z) = z. Lety =

fp(Aq(-,y)VCRr(-,y)). Sincedq(y,y) = Qy) < yandCr(y,y) = R(y) =z < y,
Aoy, y)VCr(y,y) < y. Thusyis aprefixpointofdg (-, y) VCr(-, y) and soy’ < y.

12

If y = ythen,y = Ifp(Ag(-,y) VCr(-,y)) and, consequently, = Ifp(Ap(-,y) Vv
Cr(-,y)). Since(z,y) € SE(P, Ap), Ap(x,y) < zandsoAp(z,y)VCr(z,y) < x
(asCr(z,y) = R(z) = x). Thus,z is a prefixpoint ofAp(-,y) V Cr(-,y). Conse-
quently,y < x, a contradiction. Thug;’ < y.

By the definition ofy’, Aq(y',y) < v'. Thus,(v,y) € SE(Q, Ag). The definition
of y' also implies that: = R(y’') = Cr(y’,y) < y'. Thus, the condition (2) holds (for
u = y’). The condition (3) follows by the symmetry argument. |

In the case, when a lattice has the property that its every nonempty subset has
maximal elements (in particular, every finite lattice has firoperty) we have a more
elegant characterization of uniform equivalence.

An se-pair(z,y) € SE(P, Ap) is aue-pairfor P with respect tad p if for every
(z',y) € SE(P, Ap) such thate < 2/, we haver’ = y. We writeUE(P, Ap) for the
set of all ue-pairs fo® with respect tod p.

Theorem 8 Let L be a complete lattice with the property that its every norngrapb-
set has a maximal element. LBtand) be operators orL and letAp and Ag be
approximating mappings faP andQ respectively. The®? =,) mod (Ap, Ag) if
andonly iftUE(P, Ap) = UE(Q, Ag).

Proof: (=) First, it is easy to show thay,y) € UE(P, Ap) if and only if (y,y) €
UE(Q, Aq).
Let us assume thatE(P, Ap) # UE(Q, Ag), that is,

Let X consist of all elements € L such that for some € L, (z,y) € U. SinceX #
, X has a maximal element, say. Lety, be an element of. such that(zy,yo) €
U. Without the loss of generality, we may assume that, yo) € UE(P, Ap) \
UE(Q,Ag). By our observation above, # y, and soxo < yo.

SinceP =, Q mod (Ap, Ag) and sincgxzo, yo) € UE(P, Ap) C SE(P, Ap),
by Theorem 7 there is € L such thatry < u < yo and(u,y0) € SE(Q, Ag). Let
u’ be a maximal such element(its existence follows from our assumption about the
lattice L). Then(u',y0) € UE(Q,Ag). Since(zo,yo) ¢ UE(Q,Aq), v # xo.
Thus,z¢ < «’. From the way we chose, it follows that (v’, yo) € UE(P, Ap) and
so(u',y0) € SE(P, Ap). Sincexry < u’ < yo, this is a contradiction with the property
that(xo,y0) € UE(P, Ap).

(<) We first show that the condition (1) of Theorem 7 holds. Pfy) < y then,
by Lemma 1,(y,y) € SE(P, Ap). It follows that (y,y) € UE(P,Ap) and so,
(y,y) € UE(Q, Ag). In particular, we have thap(y) < y. The proof of the con-
verse implication is symmetric.

To prove the condition (2) of Theorem 7, let us consi@ery) € SE(P, Ap)
and such that < y. Lety’ be a maximal element such th@t',y) € SE(P, Ap)
andz < ¢y’ < y. It follows that(y',y) € UE(P,Ap). Consequently(y’,y) €
UE(Q, Aq) € SE(Q, Ag)-

13

The condition (3) of Theorem 7 follows by symmetry. Thus, hedrem 7P =,
Q mod (Ap,Ag).]

We conclude this section by a result showing that in the césermnal logic pro-
grams, our notion of uniform equivalence generalizes thiEB03]. The result follows
directly from the two corresponding definitions, when we ¢dhnect programs with
their one-step provability operators, (2) take into act¢dhat every constant operator
S on the latticeL 4, is of the formTr, whereR is a set of atoms (facts) from¢, and
(3) observe thal p = Csg.

Theorem 9 Normal logic programsP and @ are uniformly equivalent in the sense of
[EFO03] if and only if the operatord’s and T, are uniformly equivalent with respect
to (¥p, ¥g) according to Definition 3.

7 Other results

In this section, we present results on strong and uniformvatance of monotone
and antimonotone operators. We start with a lemma that cteizes se-pairs of a
monotone operator with respect to its canonical approxirgahapping.

Lemma 5 Let P be a monotone operator on a complete latticeThenSE (P, Cp) =
{(z,y) € L?: x <y, P(y) <y, andP(z) < x}.

Proof. By the definition,
SE(Pa CP) = {(I,y) € Lz: x < Y, P(y) < Y, andCP(xvy) < ‘T}
We haveCp(z,y) = P(z). Thus, the assertion follows. O

Theorem 10 Let P and Q be monotone operators on latticee. ThenP =, @
mod (Cp, Cgp) if and only if P and @ have the same prefixpoints.

Proof: From Lemma 5 it follows that i? and Q have the same prefixpoints then
SE(P,Cp) = SE(Q,Cg)andso,P =, Q mod (Cp,Cq).

For the converse implication, let us assume tRat; @ mod (Cp,Cg). It fol-
lows thatSE (P, Cp) = SE(Q,Cq). Since(y,y) € SE(P,Cp) ((y,y) € SE(Q,Cq),
respectively) if and only ifP(y) < y (Q(y) < y, respectively), the assertion follows.
O

Corollary 11 Let P and Q be monotone operators on a complete lattice Then
P=,0Q mod (Cp,Cq)ifandonlyifP =, Q mod (Cp,Cq).

Proof: Strong equivalence implies uniform equivalence.usfHet us assume that
P =, Q mod (Cp,Cq). By Theorem 7, for every € L, P(z) < z if and only if
Q(z) < z. That is,P and@ have the same prefixpoints. By Theorem 0=, Q
mod (Cp, Cg). O

If PisaHornprogram thefir is monotone and » = C'p. Moreover, prefixpoints
if Tp are precisely models dP. Thus, Theorem 10 and Corollary 11 imply results on
strong and uniform equivalence of Horn programs (cf. [EFW06]

14

Corollary 12 Let P and @ be Horn programs. Then the following conditions are
equivalent:

1. P andQ are strongly equivalent
2. P andQ@ are uniformly equivalent

3. P and@ have the same models.

For antimonotone operators we only have a simple charaaterm of strong equiv-
alence.

Theorem 13 Let P and Q be antimonotone operators on a complete latticeThen
P =, @ mod (Cp,Cp) if and only if P and @ have the same prefixpoints and for
every prefixpoiny of bothP andQ, P(y) = Q(y).

Proof: (=) Let P(y) < y. SinceCp(P(y),y) = P(y), (P(y),y) € SE(P, Ap).
Thus,(P(y),y) € SE(Q,Cq). Thatis,Q(y) = Co(P(y),y) < P(y) <y. It follows
thaty is a prefixpoint ofQ and thatQ(y) < P(y). By the symmetry argument, if
Q(y) <y, thenP(y) <yandP(y) < Q(y). Thus, the assertion follows.
(<) We have thatz,y) € SE(P,Cp) if and only if P(y) < = < y. This is equiv-
alent toQ(y) < z < y and, further, to(z,y) € SE(Q,Cq). Thus,SE(P,Cp) =
SE(Q,Cg) and so,P and(@ are strongly equivalent. a
This result implies a corollary for logic programs that ategly negative (no rule
has a positive literal in the body).

Corollary 14 Let P and @ be purely negative logic programs. Théhand @ are
strongly equivalent if and only iP and @ have the same models and for every model
M of both P and @, the sets of heads éf -applicable rules inP and @ are the same.

8 Default logic

We will now apply the results of this paper to default logi®[80]. Let At be a set of
propositional variables. By 4; we denote the set of all propositional formulas over
At and byP(F4;) — the family of all subsets of-4;. Together with the inclusion
relation,P(F 4;) forms a complete lattice. The operators the join in this lattice.

In our presentation, we will assume familiarity with basimcepts of default logic
and refer to [MT93] for details. We recall thadafaultis an expressiod of the form

a: ﬁlw"vﬁn
,y)

d:

wherea, 5;, 1 < i < n, and~y are formulas fromF,, called theprerequisite the
justificationsand theconsequenbf d, respectively. We setre(d) = «, just(d) =
{B1,...,Bn} andcons(d) = ~.

A default theoryis a pair(D, W), whereD is a set of defaults and” C F4;. A
key notion associated with default theories is that ofstiensiorjRei80]. We will now

15

present a definition of an extension. It is a reformulationthef original definition to
make it better aligned with the abstract theory of equivegen

Let U,V C Fu and letd be a default. We say thdU, V') enablesd, written
(U, V) d, if U |= pre(d) and, for everys € just(d), V [~ —3. LetA = (D, W) be
a default theory. We now defineZainput one-step provabilitpnapping

‘I’AZ 'P(fAt) X P(fAt) — 'P(]:At)
by setting for every pair of sefg, V' € P(Fa:)
VAU, V) =W U{cons(d): d € D, (U, V) > d}.

It is easy to check that the operatbi (-, V') is monotone. Thus, it has a least fixpoint
and we define
LaA(V) = Cn(lfp(¥a(- V).

The choice of the notation is not accidental. The operBtois indeed the operatdr
introduced in [Rei80]. We call a séf € P(F4:) anextensiorof A if

E =Ta(E).

Given extensions as basic semantic objects, we now definsotieepts of strong
and uniform equivalence of default theories (the notiortmirsy equivalence was intro-
duced in [Tur01], in a slightly more general setting of ndstefault theories). We will
use the following notation: for default theorigs = (D', W’) andA” = (D", W"),
we will write A’ U A" for the default theory D’ U D", W' U W").

Definition 4 Let A’ and A” be default theories.

1. A’ and A" are strongly equivalenif for every default theory\, the default
theoriesA’ U A and A” U A have the same extensions

2. A’ and A" are uniformly equivalentif for every default theornA = (, W), the
default theories\’ U A and A” U A have the same extensions.

We will now show that these two concepts fall into the genalgébraic scheme
discussed in the paper.

We observed earlier that for evelyy € P(Fa,), the operatol (-, V') is mono-
tone. Itis also easy to see that for evéfye P(F4;), the operato A (U, -) is an-
timonotone. It follows thatV o is an approximating mapping for the operafox on
P(Fa:) such that for every/ € P(Fa,),

Ga(U) =TA(U,U).

The following property of extensions is a direct conseqeearfcthe corresponding
definitions.

Theorem 15 Let A = (D, W) be a default theory. Then a s&t € P(Fy4,) is an
extension ofA if and only if there isV € P(F4:) such thatl is a ¥ o -stable fixpoint
of Ga (thatis,V = ifp(¥a(-,V)))and E = Cn(V).

16

Proof: (=) Let E be an extension ah, that is,
E=Ta(E) = Cn(lfp(Va(:, E)))-

Let us defineV = [fp(¥a(-, E)). It follows thatE = Cn(V). Moreover, since
E =Cn(V), foreveryU € P(Fa:), we havela (U, V) = U (U, E). Consequently,
V=1fp(¥a(-,V)).

(<) If E = Cn(V) then for everyU € P(Fa:) we haveUa (U, V) = U (U, E).
Thus,

E=Cn(V) = Cn(lfp(¥al(-,V))) = Cnllfp(Ya(:, E))) = Ta(E).

Thus, E is an extension ofA. a

Theorem 15 implies that extensions of a default thebrgre precisely the closures
under propositional consequencelof -stable fixpoints of7 o . Consequently, we have
the following result establishing a connection betweeorgjr(uniform) equivalence of
default theoriesA’ and A”, and strong (uniform) equivalence of operat6ts. and
Gar.

Theorem 16 Let A’ and A” be default theories. TheA’ and A” are strongly (re-
spectively, uniformly) equivalent if and only if the operatG o- andG A are strongly
(respectively, uniformly) equivalent with respectfoa., U ar).

Proof: We recall that the lattice of interest here is thédat{P(F4;), C), and that the
corresponding join operator is. We also note that for every two default theoriks
andA”, we have

Gauar =Gar UGar,

and
\I/A/UAN = \I/A/ U \I/A//,

We will now deal with the case of strong equivalence.

(<) Let A be an arbitrary default theory. Sinc&y. andG .+ are strongly equivalent
with respect tqU A/, Uar), (T A UWA)-stable fixpoints of5 A UG are the same as
(T A UWA)-stable fixpoints ofi A UG . By our observations abov@,a. A -stable
fixpoints of Garua are the same a8 -stable fixpoints of7aua. By Theorem
15, A’ U A andA” U A have the same extensions and Ad,and A" are strongly
equivalent.

(=) Let .S be an arbitrary simple operator on the lattleeF 4.) (with the inclusion as
the ordering relation). Then, there are s&ts” € P(F4,) such thatX C Y and

X if ZCX
8(2) = { Y otherwise

for everyZ € P(Fa.). Let us define
D:{%:aeKﬁefAt\X}

and setA = (D, X). Clearly,GA = S.

17

Since A’ and A” are strongly equivalent)’ U A and A” U A have the same
extensions. In the language of operators, it meansSh@a U Ga, Tar U TA) =
St(Garn UGa,Uar UWA). As all defaults ofA are justification-freeWa (U, V) =
\I/A(U, U) = GA(U) = S(U) = Cs(U, V) It follows thatSt(GA« US, Ua- UCS) =
St(Gar U S, ¥arUCg). By Theorem 5(G A andGa are strongly equivalent with
respect tdWar, Yan).

For the case of uniform equivalence the argument is similaitbequires an obser-
vation that constant operators ®{F 4.) are precisely the operators of the fofi,
for some default theorh = (0,). O

Theorem 16 allows us to apply the results of this paper toadtterize the strong
and uniform equivalence of default theories.

Apair (U, V), whereU, V € P(F ;) is adefault se-pai(or, dse-paij for a default
theoryA = (D, W) if

(SE-DL1) W CUCV
(SE-DL2) for every defaulil € D, if (V,V) > dthencons(d) € V
(SE-DL3) for every defaulil € D, if (U, V) > d, thencons(d) € U.

One can check thdt/, V) is a dse-pair for a default theory if and only if (U, V')
is anse-pairfor the operatoiG o with respect tol o. Thus, Corollary 4 implies the
following result.

Theorem 17 Default theoriesA’ and A" are strongly equivalent if and only if they
have the same dse-pairs.

This result in turn has a corollary, which allows one to fiesthe class of se-pairs
that one needs to inspect when testing strong equivalence.

Corollary 18 Default theoriesA’ and A" are strongly equivalent if and only if they
have the same dse-paifE, V'), whereU,V C W/ UW" U{cons(d): d € D' U D"}.

Our general results also imply characterizations of théoami equivalence of de-
fault theories. We say that a sBt C F4; is closedunder a sefD of defaults if for
everyd € A such that(V,V) t> d, cons(d) € V.

Theorem 19 Default theoriesA’ and A" are uniformly equivalent if and only if

1. for everyV C F,, V is closed unde)’ if and only if V' is closed undeiD”,
whereD’ and D" are the sets of defaults &’ and A", respectively

2. for every dse-paitU, V) for A’, if U & V then there i€/’ such thaty C U’ ¢
V and(U’, V) is a dse-pair forA”

3. for every dse-paifU, V') for A”,if U ¢ V then there id)’ such thaty C U’ &
Vand(U’,V) is a dse-pair forA’.

18

In the case of finite default theories, the characterizatambe restated in terms of
default ue-pairs. A default se-pair for a default thedrysay (U, V), is adefault ue-
pair (or, due-paip for A if for every default se-paitU’, V') for A such thaty ¢ U’,
we havel’ = V.

Theorem 20 Let A’ and A” be finite default theories. Thel' and A” are uniformly
equivalent if and only if they have the same due-pairs.

9 Discussion

We showed in the paper that our approach yields as cordlaggults on strong and
uniform equivalence of logic programs and default theoriés a similar way, we
can characterize strong and uniform equivalence of logigams with aggregates
as studied in [Pel04, PDBn04], and of modal theories withshmantics of exten-
sions [DMTO00], which yields a version of autoepistemic offirming a precise modal
match to the default logic. The reason is that in each cassetimantics (stable models,
extensions) is given in terms of an operator on a completiedznd its approximating
mapping.

Our approach, as presented here, it does not apply to nesgedgrograms and
nested default theories. We conjecture that it can be egtktwicover these formalisms
by building on the algebraic approach to disjunctive logiegpamming proposed in
[PTO4]. This is a topic of our ongoing research.

A fundamental research question is whether there are o#insions of equivalence
of operators on complete lattices. [PV04] argued that indbetext of answer-set
programming strong and uniform equivalence are the onlydamcepts of this type.
Our results suggest that the two concepts are close to eaehalso in a more gen-
eral algebraic setting we considered here. Namely, as lengeadefine equivalence
in terms of extending operators defined non-trivially on ¢éméire lattice L, they es-
sentially exhaust all possibilities. Considering constgperators (with their canonical
approximations) as extending operators characterizésramequivalence. Consider-
ing just a slightly larger class of simple operators (moezpalso with their canonical
approximations only) already yields the notion of strongieajence.

To get a new notion of equivalence, we would need a class ohtgrs containing
constant operators but not simple ones. One candidate igldke of antimonotone
operators. This class, however, does not seem to correspamy situations of practi-
cal relevance. Another possibility is to consider constgrdrators only, as in uniform
equivalence, but allow arbitrary approximating mappinge.note however, that in the
context of logic programming (and most likely also other mamotonic logics) this is
not a promising direction. The reason is that if a progiaims a set of facts, no natural
approximating mappings emerged fBs other than the two-input operatérp.

On the other hand, an interesting and important extensiatrohg and uniform
equivalence of programs can be obtained by restrictingltss of extending programs
to those built only of atoms from some fixed sétC At [EFWO06]. This approach
results in strong and uniform equivalence of prograseiativizedwith respect toA.
We observe that the relativized equivalence can be corgiderour algebraic setting.

19

Let L be a complete lattice and lgte L. An operatorR on L is ay-operatorif (1) for
everyz € L, R(z) < y,and (2) forevery,, zs € L, R(z1Ay) = R(z2Ay); thatis, ifR
is determined by an operator on the complete lafice L: = < y}. By allowing only
y-operators as extending operators, we obtain strong afaromy-equivalencewhich
generalizes the corresponding notions from [EFWO06] proghtisere for programs. We
are presently studying algebraic properties of strong aifdum y-equivalence.

References

[DMT00]

[DMTO3]

[EFO03]

[EFWO06]

[Fit85]

[Fito1]

[Fit02]

[Gin88]

[GL88]

[GLO1]

[Hey30]

M. Denecker, V. Marek, and M. Truszcagki. Approximations, stable op-
erators, well-founded fixpoints and applications in nonotonic reason-
ing. In J. Minker, editorLogic-Based Artificial Intelligencepages 127—
144. Kluwer Academic Publishers, 2000.

M. Denecker, V. Marek, and M. Truszcagki. Uniform semantic treat-
ment of default and autoepistemic logicArtificial Intelligence Journal
143:79-122, 2003.

T. Eiter and M. Fink. Uniform equivalence of logic grams under the
stable model semantics. Rroceedings of the 2003 International Confer-
ence on Logic Programmingolume 2916 olLecture Notes in Computer
Sciencepages 224-238. Springer, 2003.

T. Eiter, M. Fink, and S. Woltran. Semantical chagaizations and com-
plexity of equivalences in answer set programmiAGM Transactions on
Computational Logic2006. To appear.

M. C. Fitting. A Kripke-Kleene semantics for logiacggrams.Journal of
Logic Programming2(4):295-312, 1985.

M. C. Fitting. Bilattices and the semantics of logimgramming.Journal
of Logic Programming11:91-116, 1991.

M. C. Fitting. Fixpoint semantics for logic prograning — a surveyThe-
oretical Computer Scien¢@78:25-51, 2002.

M.L. Ginsberg. Multivalued logics: a uniform apgch to reasoning in
artificial intelligence.Computational Intelligencet:265-316, 1988.

M. Gelfond and V. Lifschitz. The stable semantics lagic programs. In
Proceedings of the 5th International Conference on LogiogPamming
pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation ingio programs and
disjunctive databasedlew Generation Computing:365-385, 1991.

A. Heyting. Die formalen regeln der intuitionistteen logik. Sitzungs-
berichte der Preussischen Akademie von Wissenschaftessik@tisch-
mathematische Klasspages 42-56, 1930.

20

[Lin02]

[LPVO1]

[LTT99]

[MTO3]

[PDBN04]

[Pel04]

[PT04]

[PVO4]

[Rei80]

[Tar55]

[Tur01]

[Turo3]

[VEK76]

F. Lin. Reducing strong equivalence of logic progm to entailment
in classical propositional logic. IRrinciples of Knowledge Represen-
tation and Reasoning, Proceedings of the 8th Internatiddahference
(KR2002) Morgan Kaufmann Publishers, 2002.

V. Lifschitz, D. Pearce, and A. Valverde. Stronglguivalent logic pro-
grams.ACM Transactions on Computational Logi(4):526-541, 2001.

V. Lifschitz, L. R. Tang, and H. Turner. Nested exps@ns in logic pro-
grams.Annals of Mathematics and Artificial Intelligengeages 369-389,
1999.

W. Marek and M. Truszczyski. Nonmonotonic Logic; Context-Dependent
Reasoning Springer, Berlin, 1993.

N. Pelov, M. Denecker, and M. Bruynooghe. Parttabke models for
logic programs with aggregates. In V. Lifschitz and I. Nié&peeditors,
Logic programming and Nonmonotonic Reasoning, Proceedifighe7!"
International Conferengesolume 2923, pages 207-219. Springer, 2004.

N. Pelov. Semantics of logic programs with aggrega®hD Thesis. De-
partment of Computer Science, K.U.Leuven, Leuven, Be]@064.

N. Pelov and M. Truszchgki. Semantics of disjunctive programs with
monotone aggregates — an operator-based approach. Inelgraide
and T. Schaub, editorBroceedings of the 10th International Workshop on
Non-Monotonic Reasoning, NMR-(Q#ages 327-334, 2004.

D. Pearce and A. Valverde. Uniform equivalence fouildlorium logic
and logic programs. IfProceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoniwmgjume 2923 of
Lecture Notes in Atrtificial Intelligen¢c@ages 194—-206. Springer, 2004.

R. Reiter. A logic for default reasoningrtificial Intelligence 13(1-2):81—
132, 1980.

A. Tarski. Lattice-theoretic fixpoint theorem ang applications.Pacific
Journal of Mathematics$:285-309, 1955.

H. Turner. Strong equivalence for logic programsl atefault theories
(made easy). IfProceedings of Logic Programming and Nonmonotonic
Reasoning Conference, LPNMR 20@blume 2173 ofLecture Notes in
Artificial Intelligence pages 81-92. Springer, 2001.

H. Turner. Strong equivalence made easy: Nestetessns and weight
constraints. Theory and Practice of Logic Programming, (4&5):609—
622, 2003.

M.H. van Emden and R.A. Kowalski. The semantics adicate logic as
a programming languagdournal of the ACM23(4):733-742, 1976.

21

[VGDO04a] J. Vennekens, D. Gilis, and M. Denecker. Splittalgoperator: An alge-
braic modularity result and its application to auto-epistelogic. In J.P.
Delgrande and T. Schaub, editoRroceedings of the 10th International
Workshop on Non-Monotonic Reasonipgges 400-408, 2004.

[VGDO04b] J. Vennekens, D. Gilis, and M. Denecker. Splittisng operator: an al-
gebraic modularity result and its applications to logicgreonming. In
V. Lifschitz and B. Demoen, editorgogic programming, Proceedings of
the 20th International Conference on Logic Programmind,Pa04, pages

195-209, 2004.

22

