Skip to main content
Log in

Exploiting multivalued knowledge in variable selection heuristics for SAT solvers

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We show that we can design and implement extremely efficient variable selection heuristics for SAT solvers by identifying, in Boolean clause databases, sets of Boolean variables that model the same multivalued variable and then exploiting that structural information. In particular, we define novel variable selection heuristics for two of the most competitive existing SAT solvers: Chaff, a solver based on look-back techniques, and Satz, a solver based on look-ahead techniques. Our heuristics give priority to Boolean variables that belong to sets of variables that model multivalued variables with minimum domain size in a given state of the search process. The empirical investigation conducted to evaluate the new heuristics provides experimental evidence that identifying multivalued knowledge in Boolean clause databases and using variable selection heuristics that exploit that knowledge leads to large performance improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marques-Silva, J.P., Guerra, L.: Algorithms for satisfiability in combinational circuits based on backtrack search and recursive learning. In: Proceedings of XII Symposium on Integrated Circuits and Systems Design (SBCCI) (1999)

  2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: 39th Design Automation Conference (2001)

  3. Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. In: 38th Design Automation Conference (DAC ’01) (2001)

  4. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.: Balance and filtering in structured satisfiable problems. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI’01, Seattle, WA, pp. 351–358 (2001)

  5. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI’96, Portland, OR, pp. 1194–1201. AAAI Press, Menlo Park, CA (1996)

    Google Scholar 

  6. Béjar, R., Manyà, F.: Solving the round robin problem using propositional logic. In: Proceedings of the 17th National Conference on Artificial Intelligence, AAAI-2000, Austin, TX, pp. 262–266. AAAI Press, Menlo Park, CA (2000)

    Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)

    Article  MATH  Google Scholar 

  8. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc. Comput. Mach. 7(3), 201–215 (1960)

    MATH  Google Scholar 

  9. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  Google Scholar 

  10. Bayardo, R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI’97, Providence, RI, pp. 203–208. AAAI Press, Menlo Park, CA (1997)

    Google Scholar 

  11. Li, C.M.: Anbulagan, Heuristics based on unit propagation for satisfiability problems. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI’97, Nagoya, Japan, pp. 366–371. Morgan Kaufmann, San Mateo, CA (1997)

    Google Scholar 

  12. Li, C.M.: Anbulagan, Look-ahead versus look-back for satisfiability problems. In: Proceedings of the 3rd International Conference on Principles of Constraint Programming, CP’97, Linz, Austria. LNCS, vol. 1330, pp. 341–355. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  13. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI’92, San Jose, CA, pp. 440–446. AAAI Press, Menlo Park, CA (1992)

    Google Scholar 

  14. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence, AAAI’94, Seattle, WA, pp. 337–343. AAAI Press, Menlo Park, CA (1994)

    Google Scholar 

  15. Hoos, H.: SATLIB: A collection of SAT tools and data. See www.satlib.org (1999)

  16. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  17. Bessière, C., Régin, J.: Refining the basic constraint propagation algorithm. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI’01, Seattle, WA, pp. 309–315 (2001)

  18. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of ECAI’94, pp. 125–129. (1994)

  19. Culberson, J.: Graph coloring page: The flat graph generator. See http://web.cs.ualberta.ca/~joe/Coloring/Generators/flat.html (1995)

  20. Génisson, R., Jégou, P.: Davis and Putnam were already checking forward. In: Proceedings of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary, pp. 180–184 (1996)

  21. Walsh, T.: SAT v CSP. In: Proceedings of the 6th International Conference on Principles of Constraint Programming, CP-2000, Singapore. LNCS, vol. 1894, pp. 441–456. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  22. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), Lyon, France, pp. 121–125 (2002)

  23. Smith, B., Dyer, M.: Locating the phase transition in binary constraint satisfaction problems. Artif. Intell. 81, 155–181 (1996)

    Article  Google Scholar 

  24. Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Mv-Satz: A SAT solver for many-valued clausal forms. In: 4th International Conference Journées de L’Informatique Messine, JIM-2003, Metz, France (2003)

  25. Ansótegui, C., Béjar, R., Cabiscol, A., Li, C.M., Manyà, F.: Resolution methods for many-valued CNF formulas. In: Fifth International Symposium on the Theory and Applications of Satisfiability Testing, SAT-2002, Cincinnati, USA, pp. 156–163 (2002)

  26. Ansótegui, C., Manyà, F., Béjar, R., Gomes, C.: Solving many-valued SAT encodings with local search. In: Proceedings of the Workshop on Probabilistics Approaches in Search, 18th National Conference on Artificial Intelligence, AAAI-2002, Edmonton, Canada (2002)

  27. Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: Proceedings, International Symposium on Multiple-Valued Logics, ISMVL’99, Freiburg, Germany, pp. 248–255. IEEE Press, Los Alamitos, CA (1999)

    Google Scholar 

  28. Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In: Basin, D., D’Agostino, M., Gabbay, D., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 61–82. Kluwer, Dordrecht (2000)

    Google Scholar 

  29. Béjar, R., Cabiscol, A., Fernández, C., Manyà, F., Gomes, C.P.: Capturing structure with satisfiability. In: 7th International Conference on Principles and Practice of Constraint Programming, CP-2001, Paphos, Cyprus. LNCS, vol. 2239, pp. 137–152. Springer, Berlin Heidelberg New York (2001)

    Chapter  Google Scholar 

  30. Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical logic. In: Proceedings, 31st International Symposium on Multiple-Valued Logics (ISMVL), Warsaw, Poland, pp. 221–226. IEEE Computer Society Press, Los Alamitos, CA (2001)

    Chapter  Google Scholar 

  31. Béjar, R., Manyà, F.: A comparison of systematic and local search algorithms for regular CNF formulas. In: Proceedings of the 5th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’99, London, England. LNAI, vol. 1638, pp. 22–31. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  32. Manyà, F., Béjar, R., Escalada-Imaz, G.: The satisfiability problem in regular CNF-formulas. Soft Comput. 2(3), 116–123 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ansótegui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansótegui, C., Larrubia, J., Li, C. et al. Exploiting multivalued knowledge in variable selection heuristics for SAT solvers. Ann Math Artif Intell 49, 191–205 (2007). https://doi.org/10.1007/s10472-007-9062-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-007-9062-5

Keywords

Mathematics Subject Classifications (2000)

Navigation