Skip to main content
Log in

Cooperative behavior of nano-robots as an analogous of the quantum harmonic oscillator

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

A multi-robot system that consists of N nano-robots is studied. It is assumed that the robots correspond to diffusing particles, and interact to each other as the theory of Brownian motion predicts. Brownian motion is the analogous of the quantum harmonic oscillator (Q.H.O.), i.e., of Schrödinger’s equation under harmonic (parabolic) potential. It is shown that the motion of the robots can be described by Langevin’s equation which is a stochastic linear differential equation. It is proved that Langevin’s equation is a generalization of conventional gradient algorithms. Therefore the kinematic models of mobile robots which follow conventional gradient algorithms can be considered as a subcase of the kinematic models which are derived from the diffusion analogous of the Q.H.O model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hog, T.: Coordinating microscopic robots in viscous fluids. Auton. Agents Multi-agent Syst. 14, 271–305 (2007)

    Article  Google Scholar 

  2. Louste, C., Liegeois, A.: Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J. Intell. Robot. Syst. 27, 99–112 (2000)

    Article  MATH  Google Scholar 

  3. Adamatzsky, A., de Lacy Costello, B., Melhuish, C., Ratcliffe, N.: Experimental reaction-diffusion chemical processors for robot path planning. J. Intell. Robot. Syst. 37, 233–249 (2003)

    Article  Google Scholar 

  4. Tan, X.: Self-organization of autonomous systems via Langevin equation. In: 46th IEEE Intl. Conference on Decision and Control, pp. 1435–1440, New Orleans, 12–14 December 2007

  5. Adamatzsky, A., Arena, P., Basile, A., Carmona-Galaán, R., de Lacy Costello, B., Fortuna, L., Frasca, M., Rodriígez-Vázquez, A.: Reaction–Diffusion navigation robot control: from chemical to VLSI analogic processors. IEEE Trans. Circuits Syst.-I: Regular Papers 51(5), 926–938 (2004)

    Article  Google Scholar 

  6. Schmidt, G., Neubauer, W.: High speed robot path planning in time-varying environment employing a diffusion equation strategy. In: Tzafestas, S.G. (ed.) Robotic Systems, pp. 207–215. Kluwer, Dordrecht (1992)

    Google Scholar 

  7. Faris, W.G.: Diffusion, Quantum Theory, and Radically Elementary Mathematics. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  8. Ozhigov, Y.: Amplitude quanta in multi particle system simulation. Russ. Microelectron. 35(1), 53–65 (2006)

    Article  Google Scholar 

  9. Ozhigov, Y.: Simulation of quantum dynamics via classical collective behavior. Russ. Microelectron. 36(3), 193–202 (2007)

    Article  Google Scholar 

  10. Levine, H., Rappel, W.J.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63 (2000)

  11. Gitterman, M.: The Noisy Oscillator: The First Hundred Years, from Einstein until Now. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  12. Duflo, M.: Algorithmes stochastiques. In: Mathématiques et Applications, vol. 23. Springer, New York (1996)

    Google Scholar 

  13. Benvensite, A., Metivier, P., Priouret, P.: Adaptive algorithms and stochastic approximations. In: Applications of Mathematics Series, vol. 22. Springer, New York (1990)

    Google Scholar 

  14. Gazi, V., Passino, K.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B 34, 539–557 (2004)

    Article  Google Scholar 

  15. Rigatos, G.G.: Coordinated motion of autonomous vehicles with the use of a distributed gradient algorithm. In: Applied Mathematics and Computation. Elsevier, Amsterdam (2008)

    Google Scholar 

  16. Rigatos, G.G.: Cooperative behavior of mobile robots as a macro-scale analogous of the quantum harmonic oscillator. In: IEEE SMC 2008 Intl. Conference, Singapore, September 2008

  17. Rigatos, G.G.: Distributed gradient and particle swarm optimization for multi-robot motion planning. In: Robotica. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  18. Klebaner, F.C.: Introduction to Stochastic Calculus with Applications. Imperial College Press, London (2005)

    MATH  Google Scholar 

  19. Comet, F., Meyre, T.: Calcul Stochastique et Modèles de Diffusion. Dunod, Paris (2006)

    Google Scholar 

  20. Rigatos, G.G., Tzafestas, S.G.: Quantum learning for neural associative memories. Fuzzy Sets Syst. 13(157), 1797–1813 (2006)

    Article  MathSciNet  Google Scholar 

  21. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  22. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mécanique Quantique I. Hermann, Paris (1998)

    Google Scholar 

  23. Müller, G.: Quantum Mechanics: Symmetries, 2nd edn. Springer, New York (1998)

    Google Scholar 

  24. Rigatos, G.G., Tzafestas, S.G.: Parallelization of a fuzzy control algorithm using quantum computation. IEEE Trans. Fuzzy Syst. 10, 451–460 (2002)

    Article  Google Scholar 

  25. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities. Reliab. Comput. 10(4), 273–297 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rigatos, G.G., Tzafestas, S.G.: Neural structures using the eigenstates of the quantum harmonic oscillator. Open Syst. Inf. Dyn. 13, 27–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rigatos, G.G.: Quantum wave-packets in fuzzy automata and neural associative memories. Int. J. Mod. Phys. C 18(10), 1551–1569 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tzafestas, S.G., Rigatos, G.G.: Stability analysis of an adaptive fuzzy control system using Petri Nets and learning automata. Math. Comput. Simul. 51(3), 315–341 (2000)

    Article  MathSciNet  Google Scholar 

  29. Rigatos, G.G.: Open-loop control of particle systems based on a model of coupled stochastic oscillators. In: ICQNM 2009, 3rd Intl. Conference on Quantum, Nano and Micro Technologies, Cancun, February 2009

  30. Rouchon, P.: Flatness-based control of oscillators. Z. Angew. Math. Mech. 85(6), 411–421 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigatos, G.G. Cooperative behavior of nano-robots as an analogous of the quantum harmonic oscillator. Ann Math Artif Intell 55, 277 (2009). https://doi.org/10.1007/s10472-009-9130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10472-009-9130-0

Keywords

Mathematics Subject Classifications (2000)

Navigation