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Abstract This paper addresses the problem of representing the set of repairs of a

possibly inconsistent database by means of a disjunctive database. Specifically, the

class of denial constraints is considered. We show that, given a database and a set

of denial constraints, there exists a (unique) disjunctive database, called canonical,

which represents the repairs of the database w.r.t. the constraints and is contained in

any other disjunctive database with the same set of minimal models. We propose an

algorithm for computing the canonical disjunctive database. Finally, we study the size

of the canonical disjunctive database in the presence of functional dependencies for

both repairs and cardinality-based repairs.

Keywords Inconsistent databases · Incomplete databases · Repairs · Disjunctive

databases

1 Introduction

The problem of managing inconsistent data nowadays arises in several scenarios. How

to extract reliable information from inconsistent databases, i.e. databases violating

integrity constraints, has been extensively studied in the past several years. Most of

the works in the literature rely on the notions of repair and consistent query answer [2].

Intuitively, a repair for a database w.r.t. a set of integrity constraints is a consistent

database which “minimally” differs from the (possibly inconsistent) original database.

The consistent answers to a query over an inconsistent database are those tuples which
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can be obtained by evaluating the query in every repair of the database. Let us illustrate

the notions of repair and consistent query answer by means of an example.

Example 1 Consider the following relation r

employee

Name Salary Dept

john 50 cs

john 100 cs

and the functional dependency f : Name → Salary Dept stating that each em-

ployee has a unique salary and a unique department. Clearly, r is inconsistent w.r.t.

f as it stores two different salaries for the same employee john. Assuming that the

database is viewed as a set of facts and the symmetric difference is used to capture

the distance between two databases, there exist two repairs for r w.r.t. f , namely

{employee(john, 50, cs)} and {employee(john, 100, cs)}. The consistent answer to the

query asking for the department of john is cs (as this is the answer of the query in

both repairs), whereas the query asking for the salary of john has no consistent answer

(as the two repairs do not agree on the answer).

An introduction to the central concepts of consistent query answering is [8], whereas

surveys on this topic are [6,5].

Inconsistency leads to uncertainty as to the actual values of tuple attributes. Thus,

it is natural to study the possible use of incomplete database frameworks in this context.

The set of repairs for a possibly inconsistent database could be represented by means of

an incomplete database whose possible worlds are exactly the repairs of the inconsistent

database.

In this paper, we consider a specific incomplete database framework: disjunctive

databases. A disjunctive database is a finite set of disjunctions of facts. Its semantics is

given by the set of minimal models. There is a clear intuitive connection between incon-

sistent and disjunctive databases. For instance, the repairs of the relation r of Exam-

ple 1 could be represented by the disjunctive database D = {employee(john, 50, cs) ∨
employee(john, 100, cs)}, as the minimal models of D are exactly the repairs of r w.r.t.

f . Disjunctive databases have been studied for a long time [12,13,15,10]. More recently,

they have again attracted attention in the database research community because of

potential applications in data integration, extraction and cleaning [4]. Our approach

should be distinguished from the approaches that rely on stable model semantics of

disjunctive logic programs with negation to represent repairs of inconsistent databases

[3,7,11].

In this paper we address the problem of representing the set of repairs of a database

w.r.t. a set of denial constraints by means of a disjunctive database (in other words, a

disjunctive database whose minimal models are the repairs).

We show that, given a database and a set of denial constraints, there exists a

unique, canonical disjunctive database which (a) represents the repairs of the database

w.r.t. the constraints, and (b) is contained in any other disjunctive database having

the same set of minimal models. We propose an algorithm for computing the canon-

ical disjunctive database which in general can be of exponential size. Next, we study

the size of the canonical disjunctive database in the presence of restricted functional

dependencies. We show that the canonical disjunctive database is of linear size when

only one key in considered, but it may be of exponential size in the presence of two
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keys or one non-key functional dependency. Finally, we demonstrate that these results

hold also for a different, cardinality-based semantics of repairs [14].

The paper is organized as follows. In Section 2, we introduce some basic notions

in inconsistent and disjunctive databases. In Section 3, we present an algorithm to

compute the canonical disjunctive database and show that this database is contained

in any other disjunctive database with the same minimal models. In Section 4, we

study the size of the canonical disjunctive databases in the presence of functional

dependencies. In Section 5, we investigate the size of the canonical disjunctive databases

under the cardinality-based semantics of repairs. Finally, in Section 6 we draw the

conclusions and outline some possible future research topics.

2 Preliminaries

In this section we introduce some basic notions of relational, inconsistent, and disjunc-

tive databases.

2.1 Relational databases

We assume the standard concepts of the relational data model. A database is a collec-

tion of relations. Each relation is a finite set of tuples and has a finite set of attributes.

The values of each attribute are integers, rationals or uninterpreted constants. Each

tuple t̄ in a relation p can be viewed as a fact p(t̄); then a database can be viewed as

a finite set of facts.

We say that a database is consistent w.r.t. a set of integrity constraints if it satisfies

the integrity constraints, otherwise it is inconsistent. In this paper we consider the class

of denial constraints. A denial constraint is a first-order logic sentence of the following

form:

∀X1 . . . Xn ¬[p1(X1) ∧ . . . ∧ pn(Xn) ∧ ϕ(X1, . . . , Xn)]

where the Xi’s are sequences of variables, the pi’s are relational symbols and ϕ is a

conjunction of atoms referring to built-in, arithmetic or comparison, predicates. Special

cases of denial constraints are functional dependencies and key constraints. A functional

dependency is of the form

∀X1X2X3X4X5 ¬[p(X1, X2, X4) ∧ p(X1, X3, X5) ∧X2 6= X3]

The previous functional dependency can be also stated as X → Y , where X is the

set of attributes of p corresponding to X1 whereas Y is the set of attributes of p

corresponding to X2 (and X3). A key constraint is of the form

∀X1X2X3 ¬[p(X1, X2) ∧ p(X1, X3) ∧X2 6= X3]

We say that the set of attributes corresponding to X1 is a key. We assume that the

given set of integrity constraints is satisfiable.
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2.2 Inconsistent databases

As it has been already said in the introduction, a repair of a database w.r.t. a set

of integrity constraints is a consistent database which “minimally” differs from the

(possibly inconsistent) original database [2]. The symmetric difference is used to cap-

ture the distance between two databases. Because we consider denial constraints and

assume that the symmetric difference has to be minimal under set inclusion, repairs

are maximal consistent subsets of the original database (although in Section 5 we will

consider cardinality-based repairs, where the cardinality of the symmetric difference is

minimized). The set of repairs of a database D w.r.t. a set F of denial constraints is

denoted by repairs(D,F ).

Given a database D and a set F of denial constraints, the conflict hypergraph [9]

for D and F , denoted by GD,F , is a hypergraph whose set of vertices is the set of

facts of D, whereas the set of edges consists of all the sets {p1(c1), . . . , pn(cn)} s.t.

p1(c1), . . . , pn(cn) are facts of D which violate together a denial constraint in F , i.e.

there exist a denial constraint

∀X1 . . . Xn ¬[p1(X1) ∧ . . . ∧ pn(Xn) ∧ ϕ(X1, . . . , Xn)]

in F and a substitution ρ s.t. ρ(Xi) = ci for i = 1..n and ϕ(c1, . . . , cn) is true. A fact

t of D is said to be conflicting (w.r.t. F ) if it is involved in some constraint violations,

that is there exists an edge {t, t1, . . . , tm} (m ≥ 0) in GD,F . For a fact t of D, we

denote by edgesD,F (t) the set of edges of GD,F containing t, i.e. edgesD,F (t) = {e =

{t, t1, . . . , tk} | e ∈ E}.

2.3 Disjunctive databases

A disjunctive database D is a finite set of non-empty disjunctions of distinct facts. A

disjunction containing exactly one fact is called a singleton disjunction. A set M of

facts is a model of D if M |= D; M is minimal if there is no M ′ ⊂ M s.t. M ′ |= D.

We denote by MM(D) the set of minimal models of D. For a disjunction d ∈ D, Sd

denotes the set of facts appearing in d. Given two distinct disjunctions d1 and d2 in D,

we say that d1 subsumes d2 if the set of facts appearing in d1 is a (proper) subset of

the set of facts appearing in d2, i.e. Sd1
⊂ Sd2

. Moreover, the reduction of D, denoted

by reduction(D), is the disjunctive database obtained from D by discarding all the

subsumed disjunctions, that is

reduction(D) = {d | d ∈ D ∧ ∄d′ ∈ D s.t. d′ subsumes d}.

Observe that for any disjunctive database D, MM(D) = MM(reduction(D)).

2.4 Computational complexity

We adopt here the data complexity assumption [16], under which the complexity is

a function of the number of facts in the database. The set of integrity constraints is

considered fixed. In this setting, the conflict hypergraph is of polynomial size and can be

computed in polynomial time. We study the size of a disjunctive database representing

the set of repairs of a relational database D w.r.t. a set of integrity constraints F as a

function of the number of facts in D.
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3 Disjunctive databases for representing repairs

In this section we propose an algorithm to compute a disjunctive database whose

minimal models are the repairs of a given database w.r.t. a set of denial constraints. We

show that the so computed disjunctive database is the canonical one, that is any other

disjunctive database whose minimal models coincide with the repairs of the original

database is a superset of the canonical one (containing, in addition, only disjunctions

which are subsumed by disjunctions in the canonical disjunctive database).

Algorithm 1

Input: a database D and a set F of denial constraints
Output: a disjunctive database whose minimal models are the repairs for D and F

1 : bD := ∅
2 : D′ := D − {t | {t} is an edge of GD,F }
3 : for each t ∈ D′

4 : Let edgesD′,F (t) = {e1, . . . , en}

5 : bD := bD ∪ {t ∨ t1 ∨ . . . ∨ tn | ti ∈ ei and ti 6= t for i = 1..n}

6 : repeat until bD does not change
7 : for each edge e = {t1, . . . , tk} in GD′,F

8 : for each t1 ∨D1, . . . , tk ∨Dk ∈ bD s.t. Di is not an empty disjunction and
Di does not contain any fact t′ 6= ti in e, i = 1.. k

9 : bD := bD ∪ {D1 ∨ . . . ∨Dk}

10 : return reduction(bD)

We denote by D(D, F ) the disjunctive database returned by Algorithm 1 with the

input consisting of a database D and a set F of denial constraints. In the second step

of the algorithm, every fact t s.t. {t} is an edge of the conflict hypergraph is discarded.

The disjunctions introduced in the step 5 allow us to guarantee that the minimal

models are maximal (consistent) subsets of D. Intuitively, a disjunction of the form

t ∨ t1 ∨ . . . ∨ tn (which contains one fact from each edge containing t) prevents from

having a model m of bD which contains neither t nor the ti’s as in this case m would

not be maximal.

The disjunctions introduced in the step 9 allow us to guarantee that the minimal

models ofD(D,F ) are consistent w.r.t. F . Specifically, the loop in lines 6–9 is performed

until bD satisfies the following property: for every edge e = {t1, . . . , tk} of the conflict

hypergraph (k > 1), if there are t1 ∨D1, . . . , tk ∨Dk ∈ bD s.t. each Di is not an empty

disjunction, then {D1∨ . . .∨Dk} is also in bD. As it is shown in the proof of Theorem 1,

this property entails that every minimal model of bD does not contain {t1, . . . , tk}.
Observe that the loop ends when bD does not change anymore; at each iteration new

disjunctions are added to bD. Since the number of disjunctions is bounded (if the original

database has h facts, there cannot be more than 2h − 1 disjunctions) the algorithm

always terminates. In the last step of the algorithm, subsumed disjunctions are deleted.

The following theorem states the correctness of Algorithm 1.

Theorem 1 Given a database D and a set F of denial constraints, the set of minimal

models of D(D,F ) coincides with the set of repairs of D w.r.t. F .
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Proof. Since the the disjunctive database D(D,F ) returned by Algorithm 1 is equal to

reduction(bD) (step 10), then MM(D(D,F )) = MM(bD). First we prove

(1) repairs(D,F ) ⊆ MM(bD) and next (2) repairs(D,F ) ⊇ MM(bD).

(1) Consider a repair r in repairs(D,F ). First we show that (a) r is a model of bD and

next (b) that it is a minimal model.

(a) We prove that r satisfies each disjunction in bD by induction. Specifically, as base

case we consider the disjunctions introduced in the step 5 of the algorithm, whereas the

inductive step refers to the disjunctions introduced in the step 9. Suppose by contradic-

tion that r does not satisfy a disjunction t∨t1∨. . .∨tn introduced in the step 5. Observe

that edgesD′,F (t) ⊆ edgesD,F (t) and each edge e′ in edgesD,F (t) − edgesD′,F (t) is

s.t. there is a fact t′ ∈ e′ s.t. {t′} is an edge of GD,F (clearly, t′ 6∈ r). Since in each

edge in edgesD,F (t) there is a fact (different from t) which is not in r, then r ∪ {t} is

consistent, which violates the maximality of r. The inductive step consists in showing

that r satisfies any disjunction added to bD in the step 9 assuming that r satisfies bD.

A disjunction D1 ∨ . . . ∨ Dk, where the Di’s are not empty disjunctions, is added to
bD whenever there exist t1 ∨ D1, . . . , tk ∨ Dk in bD s.t. e = {t1, . . . , tk} is an edge of

GD′,F , and Di does not contain any fact t′ 6= ti in e, for i = 1..k. Since r satisfies all

the disjunctions t1 ∨ D1, . . . , tk ∨ Dk and does not contain some fact tj in e (as e is

an edge of GD,F too), it satisfies the disjunction Dj and then D1 ∨ . . . ∨ Dk as well.

Hence r is a model of bD.

(b) We now show that r is a minimal model, reasoning by contradiction. Assume that

there exists a model m′ ⊂ r and let t be a fact in r but not in m′. Observe that t is a

conflicting fact (it cannot be the case that there is a model of bD which does not contain

a non-conflicting fact because the algorithm introduces, in the step 5, a singleton dis-

junction d for each non-conflicting fact d). Moreover, as r is a repair, t is s.t. {t} is not

an edge of GD,F and then t is in D′. For each edge ei in edgesD′,F (t) = {e1, . . . , en}

there is a fact ti 6= t which is not in r as it is consistent and edgesD′,F (t) ⊆ edgesD,F (t).

The same holds for m′ as it is a subset of r. Then, the disjunction t ∨ t1 ∨ . . . ∨ tn in
bD (added in the step 5) is not satisfied by m′, which contradicts that m′ is a model.

Hence r is a minimal model of bD.

(2) Consider a minimal model m in MM(bD). We show first (a) that it is consistent

w.r.t. F and then (b) that it is maximal.

(a) First of all, it is worth noting that bD doesn’t contain a singleton disjunction t s.t. t is

a conflicting fact of D. This can be shown as follows. Two cases may occur: either {t} is

an edge of GD,F or it is not. As for the first case, since we have proved above that each

repair of D and F is a model of bD and no repair contains t, it cannot be the case that t

is a singleton disjunction of bD. Let us consider the second case. For any conflicting fact t

in D s.t. {t} is not an edge of GD,F , there exist a repair r1 s.t. t ∈ r1 and a repair r2 s.t.

t 6∈ r2. As we have proved above, there are two minimal models of bD corresponding to

r1 and r2, then it cannot be the case that t ∈ bD. We prove that m is consistent w.r.t. F

by contradiction, assuming that m contains a set of facts t1, . . . , tk s.t. e = {t1, . . . , tk}

is in GD,F . Let Sti = {D | ti∨D ∈ bD and D 6= ∅ does not contain any fact t′ 6= ti in e}
for i = 1..k. Two cases may occur: either (a) there is a set Sti which is empty or (b)

all the sets Sti are not empty. (a) Let tj be a fact in e s.t. Stj is empty. It is easy

to see that m − {tj} is a model, which contradicts the minimality of m. (b) For each

D1 ∈ St1 , . . . , Dk ∈ Stk , it holds that D1 ∨ . . . ∨Dk ∈ bD. Then there is a set Stj s.t.

m satisfies each D in Stj , otherwise it would be the case that some D1 ∨ . . . ∨ Dk in



7

bD, where Di is in Sti for i = 1..k, is not satisfied. It is easy to see that m− {tj} is a

model, which contradicts the minimality of m. Hence m is consistent w.r.t. F .

(b) Now we prove that m is a maximal (consistent) subset of D reasoning by contra-

diction, thus assuming that there exists m′ ⊃ m which is consistent. Let t be a fact in

m′ but not in m. Since m′ is consistent, for each edge ei in edgesD′,F (t) = {e1, . . . , en}

there is a fact ti 6= t which is not in m′. The same holds for m as it is a (proper) subset

of m′. This implies that m doesn’t satisfy the disjunction t∨ t1 ∨ . . . ∨ tn in bD (added

in the step 5), thus contradicting the fact the m is a model. Hence m is a maximal

consistent subset of D, that is a repair. �

Given a database D with n facts, a rough bound on the size of D(D, F ) is that

it cannot have more than 2n − 1 disjunctions and each disjunction contains at most

n facts, for any set F of denial constraints (in the next section we will study more

precisely the size of D(D, F ) for special classes of denial constraints, namely functional

dependencies and key constraints).

The following theorem allows us to identify all the disjunctive databases which have

the same minimal models of a given disjunctive database. Specifically, it states that

given a disjunctive database D, any other disjunctive database with the same minimal

models is a superset of reduction(D) containing in addition only disjunctions subsumed

by disjunctions in reduction(D). This result allows us to state that there is a (unique)

disjunctive database representing the repairs for a given database and a set of denial

constraints which is contained in any other disjunctive database with the same set of

minimal models. We call such a disjunctive database canonical. Algorithm 1 computes

the canonical disjunctive database (see Corollary 1).

Theorem 2 Given a disjunctive database D, the set R of all disjunctive databases

having the same minimal models as D is equal to:

R= {D′ | reduction(D) ⊆ D′ ∧
∀d′ ∈ D′ − reduction(D) ∃d ∈ reduction(D) which subsumes d′}

Proof. We denote by S(D) the set of all the disjunctive databases whose minimal

models are MM(D). In order to prove that R = S(D), first we show that (1) each

disjunctive database in R is also in S(D) and next that (2) each disjunctive database

in S(D) is in R too.

(1) Consider a disjunctive database D′ in R. It is easy to see that reduction(D′) =

reduction(D). As a disjunctive database and its reduction have the same minimal mod-

els, MM(D′) = MM(D) and hence D′ is in S(D).

(2) We show that any disjunctive database not belonging to R is not in S(D). We

recall that for a disjunction d, Sd denotes the set of facts appearing in d. Consider a

disjunctive database Dout which is not in R. Two cases may occur: (a) reduction(D) 6⊆
Dout or (b) reduction(D) ⊆ Dout and ∃d′ ∈ Dout − reduction(D) s.t. there is no

d ∈ reduction(D) which subsumes d′.

(a) As reduction(D) 6⊆ Dout, there is a disjunction a in reduction(D) which is not in

Dout. Two cases may occur:

– there exists a1 ∈ Dout which subsumes a;

– the previous condition does not hold.
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Let us consider the first case and let I be the interpretation S − Sa1
where S is

the set of facts appearing in reduction(D). It is easy to see that I is a model of

reduction(D) (the only disjunctions that I could not satisfy are those ones that con-

tain only facts in Sa1
; such disjunctions are not in reduction(D) as they subsume a and

reduction(D) does not contain two disjunctions s.t. one subsumes the other). Then,

there exists M ⊆ I which is a minimal model of reduction(D). As a1 ∈ Dout, each

model of Dout contains a fact in Sa1
, then M is not a minimal model of Dout and so

MM(reduction(D)) 6= MM(Dout). Hence Dout 6∈ S(D).

We consider now the second case. We show that Dout 6∈ S(D) in a similar way to the

previous case. Let I be the interpretation S − Sa where S is the set of facts appearing

in Dout. It is easy to see that I is a model of Dout (the only disjunctions that I could

not satisfy are those ones which contain only facts in Sa; such disjunctions are not

in Dout as Dout contains neither a nor a disjunction which subsumes a). Then, there

exists M ⊆ I which is a minimal model of Dout. As a ∈ reduction(D), each model of

reduction(D) contains a fact in Sa, then M is not a minimal model of reduction(D);

hence Dout 6∈ S(D).

(b) Let I be the interpretation S − Sd′ where S is the set of facts appearing in

reduction(D). It is easy to see that I is a model of reduction(D) (the only disjunctions

that I could not satisfy are d′ and those ones which subsume d′). Then, there exists

M ⊆ I which is a minimal model of reduction(D). As d′ ∈ Dout, each model of Dout

contains a fact in Sd′ , then M is not a minimal model of Dout; hence Dout 6∈ S(D). �

Corollary 1 Given a database D and a set F of denial constraints, then D(D,F ) is

the canonical disjunctive database whose minimal models are the repairs for D and F .

Proof. Straightforward from Theorem 1 and 2. �

From now on, we will denote by Dmin(D,F ) the canonical disjunctive database

whose minimal models are the repairs for a database D and a set F of denial constraints.

Whenever D and F are clear from the context, we simply write Dmin instead of

Dmin(D,F ).

4 Functional dependencies

In this section we study the size of the canonical disjunctive database representing the

repairs of a database in the presence of functional dependencies. Specifically, we show

that when the constraints consist of only one key, the canonical disjunctive database

is of linear size, whereas for one non-key functional dependency or two keys the size of

the canonical database may be exponential.

We observe that in the presence of only one functional dependency, the conflict hy-

pergraph has a regular structure that “induces” a regular disjunctive database which

can be identified without performing Algorithm 1. When two key constraints are con-

sidered, we are not able to provide such a characterization; this is because the conflict

hypergraph can have an irregular structure and it is harder to identify a pattern for

Dmin.

Given a disjunction d, we denote by ||d|| the number of facts occurring in d. The

size of a disjunctive database D, denoted as ||D||, is the number of facts occurring in

it, that is ||D|| =
P

d∈D ||d||. We study the size ||Dmin|| of Dmin as a function of the
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size of the given database.

One key. Given a relation r and a key constraint k stating that the set X of attributes

is a key of r, we denote by cliques(r, k) the partition of r into n = |πX (r)| sets

C1, . . . , Cn, called cliques, s.t. each Ci does not contain two facts with different values

on X. Observe that (i) facts in the same clique are pairwise conflicting with each other,

(ii) the set of repairs of r w.r.t. k is {{t1, . . . , tn} | ti ∈ Ci for i = 1..n}.

Proposition 1 Given a relation r and a key constraint k, then Dmin is equal to

{t1 ∨ . . . ∨ tm | ∃C = {t1, . . . , tm} ∈ cliques(r, k)}

Proof. It is straightforward to see that the minimal models of the disjunctive database

reported above are the repairs of r w.r.t. k; since it coincides with its reduction, The-

orem 2 implies that it is the canonical one. �

It is easy to see that when one key constraint is considered, ||Dmin|| = |r|.

Proposition 2 Given a relation and a key constraint, Dmin is computed in polyno-

mial time by Algorithm 1.

Proof. It is easy to see that after the first loop (steps 3-5) Algorithm 1 produces Dmin

and, after that, step 9 is never performed. �

Two keys. We now show that, in the presence of two key constraints, Dmin may have

exponential size. Let Dn (n > 0) be the family of databases, containing 3n facts, of

the following form:

A B

t11 a b1
...

...
...

tn1 a bn

t12 a1 b1
t13 a1 b′1
...

...
...

tn2 an bn
tn3 an b′n

Let D ∈ Dn and A,B be two keys. The conflict hypergraph for D w.r.t. the two key

constraints consists of the following edges:

{{ti1, tj1} | 1 ≤ i, j ≤ n ∧ i 6= j} ∪ {{ti1, ti2} | 1 ≤ i ≤ n} ∪ {{ti2, ti3} | 1 ≤ i ≤ n}

Thus, the conflict hypergraph contains a clique {t11, . . . , tn1} of size n and, moreover,

ti1 is connected to ti2 which is in turn connected to ti3 (i = 1..n).

Example 2 The conflict hypergraph for a database in D4, assuming that A and B are

two keys, is reported in Figure 1.

The following proposition identifies the canonical disjunctive database for a database

in Dn for which A and B are keys; such a disjunctive database has exponential size.
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Fig. 1 Conflict hypergraph for a database in D4 w.r.t. A,B key constraints

Proposition 3 Consider a database D in Dn and a set of constraints F consisting of

two keys, A and B. Then Dmin is equal to D where

D = {ti2 ∨ ti3 | 1 ≤ i ≤ n} ∪ {ti1 ∨ ti2 ∨
_

z=1..n ∧ z 6=i

tz | 1 ≤ i ≤ n ∧ tz ∈ {tz1, tz3}}

Proof. First of all, we show that the minimal models of D are the repairs of D w.r.t.

F ; in particular we prove that (1) MM(D) ⊆ repairs(D,F ) and (2) MM(D) ⊇
repairs(D,F ).

(1) Consider a minimal model m ∈ MM(D). First we show that (a) m is consistent

w.r.t. F and next (b) that it is maximal.

(a) Let E be the set of edges of GD,F . First we show that for each e = {t′, t′′} in E

and pair of disjunctions d′ = t′ ∨ D′, d′′ = t′′ ∨ D′′ in D s.t. D′ (resp. D′′) does not

contain t′′ (resp. t′), there is a disjunction in D which is equal to or subsumes D′∨D′′;

next we show that this property implies that m is consistent w.r.t. F . We recall that

E is the union of the following three sets:

E1 = {{ti1, tj1} | 1 ≤ i, j ≤ n ∧ i 6= j}

E2 = {{ti1, ti2} | 1 ≤ i ≤ n}

E3 = {{ti2, ti3} | 1 ≤ i ≤ n}

Let us consider the case where e ∈ E1, that is e = {ti1, tj1} (1 ≤ i, j ≤ n ∧ i 6= j).

Then a disjunction in D containing ti1 but not tj1 is of the form

d
′
1 : ti1 ∨ ti2 ∨ tj3 ∨

_

z=1..n ∧ z 6=i,j

t
′
z

where t′z ∈ {tz1, tz3}, or of the form

d
′
2 : th1 ∨ th2 ∨ ti1 ∨ tj3 ∨

_

z=1..n ∧ z 6=h,i,j

t
′
z

where 1 ≤ h ≤ n ∧ h 6= i, j and t′z ∈ {tz1, tz3}. Likewise, a disjunction in D that

contains tj1 but not ti1 is of the form

d
′′
1 : tj1 ∨ tj2 ∨ ti3 ∨

_

z=1..n ∧ z 6=i,j

t
′′
z
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where t′′z ∈ {tz1, tz3}, or of the form

d
′′
2 : tk1 ∨ tk2 ∨ tj1 ∨ ti3 ∨

_

z=1..n ∧ z 6=k,i,j

t
′′
z

where 1 ≤ k ≤ n ∧ k 6= i, j and t′′z ∈ {tz1, tz3}. In all the four possible cases, there is

disjunction in D which subsumes D′ ∨D′′:

– if d′ = d′1 and d′′ = d′′1 , then there exist both tj2 ∨ tj3 and ti2 ∨ ti3 in D which

subsume D′ ∨D′′;

– if d′ = d′1 and d′′ = d′′2 , then there exists ti2 ∨ ti3 in D which subsumes D′ ∨D′′;

– if d′ = d′2 and d′′ = d′′1 , then there exists tj2 ∨ tj3 in D which subsumes D′ ∨D′′;

– if d′ = d′2 and d′′ = d′′2 , then both th1 ∨ th2 ∨ ti3 ∨ tj3 ∨
W

z=1..n ∧ z 6=h,i,j t
′
z and

tk1 ∨ tk2 ∨ ti3 ∨ tj3 ∨
W

z=1..n ∧ z 6=k,i,j t
′′
z , which are in D, subsume D′ ∨D′′.

Let us consider the case where e ∈ E2, namely e = {ti1, ti2} (1 ≤ i ≤ n). A disjunction

containing ti1 but not ti2 is of the form

tk1 ∨ tk2 ∨ ti1 ∨
_

z=1..n ∧ z 6=i,k

tz

where 1 ≤ k ≤ n ∧ k 6= i and tz ∈ {tz1, tz3}, whereas a disjunction containing ti2 but

not ti1 is of the form ti2 ∨ ti3. Thus, D
′ ∨D′′, which is equal to

tk1 ∨ tk2 ∨ ti3 ∨
_

z=1..n ∧ z 6=i,k

tz

is in D. Finally, consider the last case where e ∈ E3, that is e = {ti2, ti3} (1 ≤ i ≤ n).

A disjunction containing ti2 but not ti3 is of the form

ti1 ∨ ti2 ∨
_

z=1..n ∧ z 6=i

t
′
z

where t′z ∈ {tz1, tz3}, whereas a disjunction containing ti3 but not ti2 is of the form

th1 ∨ th2 ∨ ti3 ∨
_

z=1..n ∧ z 6=h,i

t
′′
z

where 1 ≤ h ≤ n ∧ h 6= i and t′′z ∈ {tz1, tz3}; D
′ ∨ D′′ is subsumed or equal to the

disjunction

th1 ∨ th2 ∨ ti1 ∨
_

z=1..n ∧ z 6=h,i

t
′′
z

which is in D.

Assume by contradiction that m is not consistent. Then there are two facts ta, tb ∈

m s.t. {ta, tb} ∈ E. Let Sta = {D | ta ∨ D ∈ D and D does not contain tb} and

Stb = {D | tb ∨ D ∈ D and D does not contain ta}. As we have seen before, both

these sets are not empty. We have previously proved that for each Da ∈ Sta and

Db ∈ Stb there is a disjunction in D which equals or subsumes Da ∨ Db. Then, there

is a set Stx among Sta and Stb s.t. m satisfies each D in Stx , otherwise there would

be Da ∈ Sta , Db ∈ Stb and a disjunction in D which is equal to or subsumes Da ∨Db

which is not satisfied by m. Consider the interpretation m′ = m − {tx} and let ty
be the fact among ta and tb which is not tx. We now show that m′ is a model, that

contradicts the minimality of m. Clearly, m′ satisfies every disjunction in D which does
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not contain tx. As for the disjunctions in D containing tx, it is easy to see that they

are satisfied by m′: disjunctions containing ty are satisfied since ty ∈ m′, disjunctions

not containing ty are satisfied as well since m′ satisfies every disjunction in Stx . Hence

m is consistent w.r.t. F .

(b) Now we prove that m is a maximal (consistent) subset of D. First of all, we note

that for each fact t ∈ D there is a disjunction t ∨ t1 ∨ . . . ∨ tn in D s.t. t1, . . . , tn are

facts conflicting with t:

– for the facts ti2 and ti3 (i = 1..n) such disjunctions are ti2 ∨ ti3;

– for the facts ti1 (i = 1..n) such disjunctions are ti1 ∨ ti2 ∨
W

z=1..n ∧ z 6=i tz1.

Assume by contradiction that m is not a maximal (consistent) subset of D. Then there

exists m′ ⊃ m which is consistent. Let t be a fact in m′ but not in m. Since m′

is consistent, each fact conflicting with t is not in m′ and, thus, neither in m. This

implies that m doesn’t satisfy the disjunction t ∨ t1 ∨ . . . ∨ tn containing t and some

fact conflicting with it: the fact that m is a model is contradicted.

(2) Consider a repair r for D and F . We show first (a) that r is a model of D and next

(b) that it is a minimal model.

(a) Suppose by contradiction that r is not a model of D, then there is a disjunction

d ∈ D which is not satisfied by r. Specifically, d is either of the form ti2∨ti3 (1 ≤ i ≤ n)

or ti1∨ti2∨
W

z=1..n ∧ z 6=i tz, 1 ≤ i ≤ n and tz ∈ {tz1, tz3}. In the former case, r∪{ti3}
is consistent, since the only fact conflicting with ti3, namely ti2, is not in r. This con-

tradicts the maximality of r. As for the latter case, let T3 = {tj3 | tj3 appears in d}.
For each tj3 ∈ T3 we have that tj2 ∈ r, because r does not contain tj3 and tj3 is

conflicting only with tj2 (if tj2 was not in r, then r would not be maximal). Then for

each tj3 ∈ T3, since r contains tj2, it does not contain tj1 otherwise it would not be

consistent. Thus r does not contain any fact tk1 with 1 ≤ k ≤ n ∧ k 6= i. Since r

contains neither the facts tk1’s nor ti2, which are all the facts conflicting with ti1, then

r ∪ {ti1} is consistent (observe that ti1 6∈ r). This contradicts the maximality of r.

Hence r is a model of D.

(b) We now show that r is a minimal model of D reasoning by contradiction. Assume

that there exists a model m′ ⊂ r of D and let t be a fact in r but not in m′. All the

facts conflicting with t are not in r as r is consistent. The same holds for m′ since

it is a (proper) subset of r. We recall that for each fact t′ ∈ D there is a disjunc-

tion in D containing t′ and only facts conflicting with t′; then there is a disjunction

d : t ∨ t1 ∨ . . . ∨ tn in D s.t. t1, . . . , tn are facts conflicting with t. Since m′ does not

satisfy d, it is not a model, thus we get a contradiction. Hence r is a minimal model of D.

We have shown that the minimal models of D are the repairs of D w.r.t. F . Since D =

reduction(D), from Theorem 2 we have that D is the canonical disjunctive database

whose minimal models are the repairs of D w.r.t. F . �

Corollary 2 Consider a database D in Dn and let A and B be two keys; ||Dmin|| =
2n+ (n+ 1) · n2n−1.

Proof. From Proposition 3, it is easy to see that Dmin contains n disjunctions of 2

facts and n2n−1 disjunctions of n+ 1 facts. �

One functional dependency. Given a relation r and a functional dependency f :

X → Y , we denote by cliques(r, f) the partition of r into n = |πX (r)| sets C1, . . . , Cn,

called cliques, s.t. each Ci does not contain two facts with different values on X. For
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each clique Ci in cliques(r, f) we denote by clusters(Ci) the partition of Ci into

mi = |πY (Ci)| sets G1, . . . , Gmi , called clusters, s.t. each cluster doesn’t contain two

facts with different values on Y . It is worth noting that (i) facts in the same cluster are

not conflicting each other, (ii) given two different clusters G1, G2 of the same clique,

each fact in G1 (resp. G2) is conflicting with every fact in G2 (resp. G1), (iii) the set

of repairs of r w.r.t. f is {G1 ∪ . . . ∪Gn | Gi ∈ clusters(Ci) for i = 1..n}.

Proposition 4 Given a relation r and a functional dependency f , then Dmin is equal

to D where

D = {t1 ∨ . . . ∨ tk | ∃C ∈ cliques(r, f) s.t. clusters(C) = {G1, . . . , Gk}
and t1 ∈ G1, . . . , tk ∈ Gk}

Proof. We show first (1) that each minimal model of D is a repair for r and f and

next (2) that each repair of r w.r.t. f is a minimal model of D.

(1) Consider a minimal model m of D. Let cliques(r, f) = {C1, . . . , Cn} be the cliques

for r and f . For each clique Ci in cliques(r, f) there is a cluster Gj in clusters(Ci) =

{G1, . . . , Gk} s.t. Gj ⊆ m (otherwise m would not satisfy the disjunction t1 ∨ . . . ∨ tk
in D where th ∈ Gh and th 6∈ m, h = 1..k). Let G1, . . . , Gn be such clusters, where

each Gl is a cluster of Cl for l = 1..n. Since G1 ∪ . . .∪Gn ⊆ m and G1 ∪ . . .∪Gn |= D,

then m = G1 ∪ . . . ∪Gn, which is, as we have observed before, a repair.

(2) Consider a repair s in repairs(r, f). As s consists of one cluster for each clique,

it is easy to see that s is a model of D. We show that s is minimal by contradiction

assuming that there exists s′ ⊂ s which is a model of D. Let t be a fact in s which

is not in s′. Let Ct and Gt be the clique and the cluster, respectively, containing t;

moreover let clusters(Ct) = {Gt, G1, . . . , Gk}. The disjunction t ∨ t1 ∨ . . . ∨ tk, where

ti ∈ Gi, i = 1..k, which is in D, is not satisfied by s′ as s′ contains exactly one cluster

per clique (thus it does not contain any fact in Gi, i = 1..k) and does not contain t.

This contradicts the fact that s′ is a model. So s is a minimal model of D.

Hence the minimal models of D are exactly the repairs for r and f ; as D is equal to its

reduction, Theorem 2 entails that D = Dmin. �

Clearly, the size of Dmin may be exponential if the functional dependency is a

non-key dependency, as shown in the following example.

Example 3 Consider the relation r, consisting of 2n facts, reported below and the non-

key functional dependency A → B.

A B C

t′1 a b1 c1
t′′1 a b1 c2
...

...
...

...

t′n a bn c1
t′′n a bn c2

There is a unique clique consisting of n clusters Gi = {t′i, t
′′
i }, i = 1..n. Then Dmin =

{t1 ∨ . . . ∨ tn | ti ∈ Gi for i = 1..n} and ||Dmin|| = n2n.
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5 Cardinality-based repairs

In this section we consider cardinality-based repairs, that is consistent databases which

minimally differ from the original database in terms of the number of facts in the

symmetric difference (in the previous sections we have considered consistent databases

for which the symmetric difference is minimal under set inclusion, we will refer to them

as S-repairs).

We show that, likewise to what has been presented in Section 4, the size of the

canonical disjunctive database (representing the cardinality-based repairs) is linear

when only one key constraint is considered, whereas it may be exponential when two

keys or one non-key functional dependency are considered.

It is easy to see that in the presence of only one key constraint the cardinality-based

repairs coincide with the S-repairs, so the canonical disjunctive database is of linear

size.

When the constraints consists of one functional dependency, it is easy to see that

if for every clique its clusters have the same cardinality, then the cardinality-based

repairs coincide with the S-repairs. This is the case for the database of Example 3,

where the size of the canonical disjunctive database is exponential.

Finally, we consider the case where two key constraints are considered. We directly

show that the size of the canonical disjunctive database is also exponential.

Lemma 1 Consider a database D in Dn and a set of integrity constraints F consisting

of two keys, A and B. Then the set of S-repairs is is equal to R where

R = {{t12, . . . , tn2}} ∪ { {ti1, ti3} ∪
[

j=1..n ∧ j 6=i

{tj} | 1 ≤ i ≤ n ∧ tj ∈ {tj2, tj3}}

Proof. It is easy to see that each database in R is a S-repair.

Consider a S-repair r of D w.r.t. F . We show that r is in R using reasoning by cases:

– Suppose that t13 ∈ r. Then t12 6∈ r and either (1) t11 ∈ r or (2) t11 6∈ r.

1. Since t11 ∈ r, for j = 2..n tj1 6∈ r and either tj2 or tj3 is in r, that is r =

{t11, t13, t2, . . . , tn} where tj ∈ {tj2, tj3}, j = 2..n. It is easy to see that r ∈ R.

2. Since t11 6∈ r, there exists tk1 ∈ r with 2 ≤ k ≤ n. Then tk2 6∈ r and tk3 ∈ r.

For j = 2..n ∧ j 6= k, tj1 6∈ r and either tj2 or tj3 is in r, that is r =

{t13, tk1, tk3} ∪
S

j=2..n ∧ j 6=k{tj} where tj ∈ {tj2, tj3}. Clearly, r ∈ R.

– Suppose that t13 6∈ r. Then t12 ∈ r and t11 6∈ r. Two cases may occur: either (1)

there exists tk1 ∈ r with 2 ≤ k ≤ n or (2) tj1 6∈ r for j = 1..n.

1. Since tk1 ∈ r then tk2 6∈ r and tk3 ∈ r. For j = 2..n ∧ j 6= k tj1 6∈ r and

either tj2 or tj3 is in r, that is r = {t12, tk1, tk3} ∪
S

j=2..n ∧ j 6=k{tj} where

tj ∈ {tj2, tj3}. It is easy to see that r ∈ R.

2. r = {t12, . . . , tn2} which is in R. �

Corollary 3 Consider a database D in Dn and a set of integrity constraints F con-

sisting of two keys, A and B. Then the set of cardinality-based repairs is

{ {ti1, ti3} ∪
[

j=1..n ∧ j 6=i

{tj} | 1 ≤ i ≤ n ∧ tj ∈ {tj2, tj3}}

Proof. Straightforward from Lemma 1. �
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The following proposition identifies the canonical disjunctive database for a database

in Dn for which A and B are keys; such a disjunctive database is of exponential size.

In the following proposition and corollary, Dmin denotes the canonical disjunctive

database representing the set of cardinality-based repairs.

Proposition 5 Consider a database D in Dn and a set of integrity constraints F

consisting of two keys, A and B. Then the canonical disjunctive database Dmin is

equal to D where

D = {ti2 ∨ ti3 | 1 ≤ i ≤ n} ∪ {t1 ∨ . . . ∨ tn| ti ∈ {ti1, ti3}, i = 1..n}

Proof. We first show that (1) each cardinality-based repair of D w.r.t. F is a minimal

model of D and next that (2) each minimal model of D is a cardinality-based repair.

(1) Consider a cardinality-based repair r of D w.r.t. F . We show first that (a) r is a

model of D and next that (b) it is a minimal model.

(a) From Corollary 3, it is easy to see that r satisfies each disjunction ti2 ∨ ti3 in D,

1 ≤ i ≤ n. Since Corollary 3 entails that there exists 1 ≤ j ≤ n s.t. {tj1, tj3} ⊆ r, then

r satisfies each disjunction t1 ∨ . . .∨ tn in D (where ti ∈ {ti1, ti3}, i = 1..n). Thus r is

a model of D.

(b) We observe that for each fact t ∈ D there is a disjunction t ∨ t1 ∨ . . . ∨ tn in

D s.t. t1, . . . , tn are facts conflicting with t: for the facts ti2 and ti3 (i = 1..n) such

disjunctions are ti2∨ti3; for the facts ti1 (i = 1..n) there is the disjunction t11∨. . .∨tn1.
In the same way as in Proposition 3, it can be shown that r is a minimal model of D.

(2) Consider a minimal model m of D. The fact that m is a S-repair of D w.r.t. F can

be shown in the same way as in Proposition 3.

It is easy to see that {t12, . . . , tn2} is not a model of D and then, from Lemma 1 and

Corollary 3, m is a cardinality-based repair of D w.r.t. F .

We have shown that D represents the cardinality-based repairs of D w.r.t. F ; since

D = reduction(D), from Theorem 2 we have that D is the canonical one. �

Corollary 4 Consider a database D in Dn and let A and B be two keys; ||Dmin|| =

2n+ n2n.

Proof. From Proposition 5, it is easy to see that Dmin contains n disjunctions of 2

facts and 2n disjunctions of n facts. �

6 Conclusions

In this paper we have addressed the problem of representing, by means of a disjunc-

tive database, the set of repairs of a database w.r.t. a set of denial constraints. We

have shown that, given a database and a set of denial constraints, there exists a unique

canonical disjunctive database representing their repairs: any disjunctive database with

the same set of minimal models is a superset of the canonical one, containing in ad-

dition disjunctions which are subsumed by the disjunctions in the canonical one. We

have proposed an algorithm to compute the canonical disjunctive database. We have

shown that the size of the canonical disjunctive database is linear when only one key is

considered, but it may be exponential in the presence of two keys or one non-key func-

tional dependency. We have shown that these results hold also when cardinality-based

repairs are considered.
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Future work in this area could explore different representations for the set of re-

pairs. For instance, one can consider formulas with negation or non-clausal formulas.

Such formulas can be more succinct than disjunctive databases, making query evalu-

ation, however, potentially harder. We also observe that in the case of the repairs of

a single relation the resulting disjunctive database consists of disjunctions of elements

of this relation. It has been recognized that such disjunctions should be supported by

database management systems [4]. Moreover, one could consider restricting inconsis-

tent databases in such a way that the resulting repairs can be represented by relational

databases with OR-objects [12]. In this case, one could use the techniques for comput-

ing certain query answers over databases with OR-objects [13] to compute consistent

query answers over inconsistent databases. Finally, other kinds of representations of

sets of possible worlds, e.g., world-set decompositions [1], should be considered. For ex-

ample, the set of repairs of the database in Example 3 can be represented as a world-set

decomposition of polynomial size.
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