
Taxed Congestion Games with Failures

Michal Penn∗

mpenn@ie.technion.ac.il

Maria Polukarov†

pmasha@tx.technion.ac.il

mp3@ecs.soton.ac.uk

Moshe Tennenholtz‡

moshet@microsoft.com

moshet@ie.technion.ac.il

December 6, 2008

Abstract

In this paper, we introduce and study Taxed Congestion Games with Failures [TCGFs],

extending congestion games with failures [CGFs] to consider costly task submission. We

define TCGFs, and prove that TCGFs possess a pure strategy equilibrium. Moreover, we

provide an efficient algorithm for the computation of such equilibrium. We also provide

a specialized, simpler, algorithm for the case in which all resources are identical.

1 Introduction

Models of congestion arise from many real-life situations and have been analyzed by re-

searchers from several fields. Much of the research of congestion settings deals with the

model of congestion games introduced by Rosenthal [11]. In a congestion game, a player has

to choose from a finite set of resources, and the player’s payoff depends only on the number of

players choosing his resources. Congestion games have been used to model network routing,

task allocation, demand for items to be produced, competition among firms for production

∗Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel
†The work was done when the author was a Ph.D. student at the Technion, Haifa 32000, Israel. Cur-

rently the author is a member of Intelligent Agents and Multimedia Group in Department of Electronics and

Computer Science at University of Southampton, SO17 1BJ, Southampton, UK.
‡Microsoft Israel R&D Center, 13 Shenkar Street, Herzeliya 46725, Israel; Faculty of Industrial Engineering

and Management, Technion, Haifa 32000, Israel

1

processes, migration of animals between different habitats, etc. [1, 4, 7, 10, 11]. Given the

importance of congestion games, various generalizations of the basic model have been con-

sidered in the literature. In particular, congestion games have been generalized to local-effect

games [2], to player-specific congestion games [3], to weighted congestion games [3], and to

ID-congesiton games [5]. In these, generalized, models, the player’s payoff depends not only

on the number of players choosing his resources but also on the number of players choosing

neighboring resources or on players’ identities.

Although congestion games are central to the computer science and game theory literature,

the above models do not take into consideration the possibility that resources may fail to

execute their assigned tasks. However, in the computer-science context of congestion settings,

where resources are typically represented by machines, computers or communication lines,

resources are obviously prone to failures because of high load, breakage, etc. In order to

address this issue, we introduced a study of resource failures in congestion games [8]. We

presented a model of Congestion Games with Failure [CGFs] that allows to refer to the delay

experienced by users who select a particular resource as a function of the number of players

who select to use it, as well as to the fact that resources may fail with some probability, and

as a result, a player may choose a subset of the resources in order to attempt and perform his

task. This model however did not deal with the issue of costs incurred by selecting a resource.

Needless to say, dealing in the scope of a well defined model with congestion effects, costly

submission, and resource failures, is a desired objective. The model we offer in this paper

incorporates all these features. We call it Taxed Congestion Games with Failures [TCGFs].

In a TCGF there are n agents and m resources. Each agent has a job that he needs to process,

for which he can use each of the resources. Each resource might fail with some probability.

As a result, the agent may decide to submit his job to several resources, maximizing his

probability of success. The processing time of each resource depends on the number of jobs

submitted to that resource, and the agent suffers the cost associated with the resource with

the fastest processing time he selected. If all the agent’s selected resources fail (or he has

not selected any resource) then the agent suffers some incompletion costs. What makes each

agent’s decision highly non-trivial is that each job submission is costly; that is, in addition

to the cost incurred due to the delay, there is some fixed payment (which we term ”tax”),

which is proportional to the number of selected resources. Therefore, there are two central

issues that come into play in TCGFs:

2

1. There is a tradeoff between the probability of successful job completion and the (fixed)

costs of submission.

2. While an agent suffers delay costs which are proportional only to the processing time

of the fastest resource, submission to many resources by many agents might make the

processing time high due to the increase in congestion level.

The above setting, and the associated tradeoffs, capture in a straightforward manner many

realistic situations. This is evidently the situation in the manufacturing domain where re-

sources are machines, and in the context of distributed operating systems, but also in the

service industry, in which a resource may be a courier required to deliver a message.

Notice that TCGFs extend CGFs, but should not be viewed as a generalization of classical

congestion games. This is due to the fact that in both CGFs and TCGFs we care about

the delay incurred by the fastest (the least congested) selected resource which did not fail,

and not about the congestion on all selected resources. Thus, an agent’s payoff function in

CGFs and TCGFs uses the minimum, rather than the sum, operator. A model which extends

classical congestion games to deal with failures via additive payoffs is presented in [9].

A major question in the context of models of congestion is the existence of a pure strategy

equilibrium. The important result of Rosenthal in [11] is that congestion games always

possess pure strategy Nash equilibria. Monderer and Shapley [6] introduced the notions

of potential function and potential game and proved that the construction of a potential

function is sufficient for showing the existence of a pure strategy equilibrium. The authors

[6] observed that Rosenthal [11] proved his theorem on congestion games by constructing a

potential function – hence, every congestion game has a potential function. Moreover, they

showed that every finite potential game is isomorphic to a congestion game. Therefore, the

classes of finite potential games and congestion games coincide. In cases where a potential

function does not exist, showing the existence of a pure strategy equilibrium is typically a

non-trivial issue. Since even the model introduced in [8] does not admit a potential function,

the TCGF-model introduced in this paper (which in particular is a strict generalization of

the former model) does not possess a potential function. Hence, the question of whether a

pure strategy Nash equilibrium exists in TCGFs, as well as the complexity of finding it, are

of considerable significance.

3

In this paper, we prove the existence of a pure strategy Nash equilibrium in any TCGF, and

present a polynomial time algorithm for constructing such an equilibrium. In addition, we

develop a simple efficient procedure for computing a pure strategy equilibrium in symmetric

TCGFs, where all resources are identical. Our contributions can therefore be summarized as

follows:

1. In Section 2 we introduce the first model to capture congestion effects, costly submission,

and resources failures, in a game-theoretic setting.

2. In Section 3 we prove the existence of pure strategy equilibria in any TCGF.

3. We show that pure strategy equilibria can be efficiently constructed for TCGFs; this

will be implied by the constructive proof introduced in Section 3.

4. We show an efficient algorithm targeted at symmetric TCGFs. This topic is dealt with

in Section 4.

2 The model

Our model is an extension of the CGF-model [8]. In a CGF, players share a common set

of resources, where each resource may fail with some known probability. Each player has a

task which can be carried out by any of the resources. For reliability reasons, a player may

choose a subset of the resources in order to try and perform his task. The cost of a player

for utilizing any resource is a function of the total number of players using this resource, and

the cost for a player for successful completion of his task is the minimum among the costs

of his successful attempts. The class of CGFs and, in particular, the subclass of symmetric

CGFs, in which the parameters of the game do not depend on the players’ or resources’

identities, does not admit a potential function; that is, CGFs cannot be reduced to classic

congestion games. Nevertheless, as shown in [8], these games always possess a pure strategy

Nash equilibrium.

We extend the CGF-model by making task submission costly: in a TCGF, each player pays

a fixed cost (tax) for using each of the resources he had chosen, independently of its suc-

cess or failure. Our extension is accompanied by a limiting assumption of identical failure

probabilities. Below we present the formal definition of the TCGF-model.

4

Let N = {1, . . . , n} be a finite set of players, and let M = {e1, . . . , em} be a finite set of

resources where each resource may fail to execute its assigned tasks with a given failure

probability. We assume that the failure or success of a particular resource is independent of

the failure or success of other resources. We also assume that all the resources possess equal

failure probabilities. We denote the failure probability of each resource by f (0 < f < 1).

Similarly, s = 1 − f stands for the success probability.

The set of pure strategies, Σi, for player i ∈ N is the power set of the set of resources, i.e.

Σi = P(M); the set of pure strategy profiles of all players is denoted by Σ. Player i ∈ N

chooses a strategy σi ∈ Σi which is a (possibly empty) subset of the resources. Player i’s

disutility from an uncompleted task is evaluated by his incompletion cost, wi. The service cost

of resource e for each of its users is a nonnegative nondecreasing function le : {1, . . . , n} → R+

of the congestion experienced by e. In addition, there is a (nonnegative) fixed cost (tax)

(denoted by t) that has to be paid by each player for every resource he uses, independently

of its success or failure.

Let σ ∈ Σ be a strategy profile; the congestion vector that corresponds to σ is h(σ) =

(he(σ))e∈M , where he(σ) represents the total number of users of e in σ. The outcome from

σ is the subset X ⊆ M of the resources that have successfully executed their assigned tasks.

For any player i ∈ N , we say that the execution of player i’s task succeeds if the task of player

i is successfully completed by at least one of the resources chosen by him, i.e. σi ∩ X 6= ∅;

otherwise, if σi ∩ X = ∅, player i’s task fails. The disutility for player i from the strategy

profile σ and outcome X, is denoted by πi (σ,X): player i’s disutility from an uncompleted

task is evaluated by his incompletion cost, that is πi (σ,X) = wi; player i’s disutility from a

successful completion of his task is determined by the minimum among the service costs of

his successful resources:

πi (σ,X) = min
e∈σi∩X

le(he(σ)).

The cost for player i incurred by strategy profile σ and outcome X, ci (σ,X), is the sum of

his disutility, πi (σ,X) and the fixed costs (taxes) over the resources he has utilized:

ci (σ,X) = πi (σ,X) +
∑

e∈σi

t = πi (σ,X) + |σi|t.

Given a strategy profile σ, let X(σ) denote a random variable representing the subset of

successful resources; X(σ) is distributed over the power set of the resources, P (M), and its

5

distribution is determined by f . The expected cost for player i incurred by strategy profile σ,

Ci(σ), is therefore:

Ci(σ) = wif
|σi| +

∑

A∈P(σi)r{∅}

min
e∈A

le (he(σ)) s|A|f |σirA| + |σi|t.

For simplicity of exposition, for any subset A ⊆ M of a given set of resources, we further

denote by P (A) the set of all nonempty subsets of A: P (A) = P(A) r {∅}. Then, the

expected cost of player i can be written as

Ci(σ) = wif
|σi| +

∑

A∈P (σi)

min
e∈A

le (he(σ)) s|A|f |σirA| + |σi|t.

The aim of each player is to minimize his own expected cost.

We notice that if player i chooses an empty set σi = ∅ (does not assign his task to any

resource), then his expected cost equals his incompletion cost: Ci(∅, σ−i) = wi. We also note

that any TCGF with zero taxes is a CGF.

As shown in [8], CGFs and, in particular, player- and resource-symmetric (henceforth, ”sym-

metric”) CGFs, are not potential games. Obviously, the subclass of symmetric CGFs is

included in the class of (symmetric) TCGFs, and therefore, TCGFs and, in particular, sym-

metric TCGFs, do not admit a potential function. However, as we show in the next section,

they always possess a Nash equilibrium in pure strategies.

3 Pure strategy Nash equilibrium

In this section, we present our main result on TCGFs. We show that these games possess a

Nash equilibrium in pure strategies, despite the non-existence of a potential function. Our

proof is constructive and yields an O
(
n2m2(nm + m log m)

)
time procedure for constructing

such an equilibrium in any given TCGF.

We show that TCGFs possess the ”single profitable move property”, previously defined in

[9], implying that a strategy profile which is stable under single moves is a Nash equilibrium.

This significantly decreases the size of the strategy set that needs to be examined in order to

obtain an equilibrium. Furthermore, we show that TCGFs possess an additional property,

”the steady DS-stability property” (to be defined in the sequel), that allows us to develop a

6

monotone1 iterative algorithm that terminates with a Nash equilibrium strategy profile. We

start with the definition of single moves and their intuitive and technical characterizations.

Definition 3.1 For any strategy profile σ ∈ Σ and for any player i ∈ N , adding precisely

one resource to his strategy, σi, is called an A-move of i from σ. Similarly, dropping a single

resource is called a D-move, and switching one resource with another is called an S-move.

Let σ ∈ Σ, i ∈ N and a ∈ σi. We say that a D-move with a is profitable for i if

Ci (σ−i, σi r {a}) < Ci(σ). That is,

wif
|σi|−1 +

∑

A∈P (σir{a})

min
e∈A

le (he(σ)) s|A|f |σi|−|A|−1 + (|σi| − 1) t

< wif
|σi| +

∑

B∈P (σi)

min
e∈B

le (he(σ)) s|B|f |σi|−|B| + |σi|t,

which is equivalent to

∑

A∈P (σir{a})

min
e∈A

le (he(σ)) s|A|f |σi|−|A|−1 −
∑

B∈P (σi)

min
e∈B

le (he(σ)) s|B|f |σi|−|B| + wisf
|σi|−1 < t. (1)

Note that for any pair of sets X,Y , the next equality holds:

P (X) = P (X ∩ Y) ∪ P (X r Y) ∪
{
Ω ∪ Ψ

∣∣Ω ∈ P (X ∩ Y),Ψ ∈ P (X r Y)
}

. (2)

Using (2), (1) can be rewritten as

∑

A∈P (σir{a})

min
e∈A

le (he(σ)) s|A|f |σi|−|A|−1 −
∑

A∈P (σir{a})

min
e∈A

le (he(σ)) s|A|f |σi|−|A|

−
∑

A∈P (σir{a})

min
e∈A∪{a}

le (he(σ)) s|A|+1f |σi|−|A|−1 + wisf
|σi|−1 − la (ha(σ)) sf |σi|−1 < t,

which is equivalent to

sf |σi|−1


wi − la (ha(σ)) +

∑

A∈P (σir{a})

(
min
e∈A

le (he(σ)) − min
e∈A∪{a}

le (he(σ))

)
s|A|f−|A|


 < t. (3)

Assume a is a successful resource. Then, the left hand side of (3) stands for the difference

in the expected disutility (cost) of player i, between his strategies σi r {a} and σi. Clearly,

if this value is less than t, the fixed cost of using a, then dropping a is a profitable move for

1That is, the congestion of each resource does not decrease as the algorithm proceeds

7

player i. For simplicity of exposition, we use the following notation: for i ∈ N , a ∈ M and

σ ∈ Σ let

Ca
i (σ) = sf |σi|−1


wi − la (ha(σ)) +

∑

A∈P (σir{a})

(
min
e∈A

le (he(σ)) − min
e∈A∪{a}

le (he(σ))

)
s|A|f−|A|




denote the marginal cost saving by resource a at profile σ for player i.

Thus, (3) can be rewritten as Ca
i (σ) < t, meaning that relative to σ, dropping a is profitable

for i if (and only if) the fixed cost of using a is greater than its marginal cost saving.

Remark 3.2 Note that due to the monotonicity of le(·) for all e ∈ M , Ca
i (·) (weakly) de-

creases with the congestion on resource a and increases with the congestion on each of the

other resources. The former follows directly from the monotonicity of la(·), and the latter is

implied by the monotonicity of le(·) for all e ∈ σi r {a}, since the following holds for any

A ∈ P (σi r {a}):

min
e∈A

le
(
h′

e

)
− min

e∈A∪{a}
le

(
h′

e

)
≥ min

e∈A
le (he) − min

e∈A∪{a}
le (he) ,

where h′ and h are congestion vectors satisfying h′
e ≥ he for all e ∈ σi r {a} and h′

a = ha.

We notice that mine∈A le (he(σ)) ≥ mine∈A∪{a} le (he(σ)) for any set A, implying that the

sum in equation (3) is nonnegative. Thus, from (3) we derive

sf |σi|−1 (wi − la (ha(σ))) < t,

which is equivalent to

la (ha(σ)) > wi −
t

sf |σi|−1
. (4)

Assume a ∈ arg maxe∈σi
le (he(σ)) and assume that a D-move with a is non-profitable for i

(i.e., (3) does not hold). Then, the reverse inequality of (4) is satisfied, since mine∈A le (he(σ)) =

mine∈A∪{a} le (he(σ)) for all A ∈ P (σi r {a}). In addition, since la (ha(σ)) ≥ le (he(σ)) for all

e ∈ σi, the above yields le (he(σ)) ≤ wi −
t

sf |σi|−1
for any e ∈ σi.

Similar inequalities can be derived for A- and S-moves as follows. An A-move from σ with

resource b /∈ σi is profitable for i, i.e. Ci (σ−i, σi ∪ {b}) < Ci(σ), if and only if the marginal

cost saving by b at the resulting profile, (σ−i, σi ∪ {b}), is greater than t, the fixed cost,

i.e. Cb
i(σi ∪ {b}, σ−i) > t. In a similar way, we conclude that an S-move from a ∈ σi to

b /∈ σi is profitable for i, if and only if the marginal cost saving by switching from a to b is

positive, or equivalently, if lb (hb(σ) + 1) < la (ha(σ)). We summarize the above discussion in

Observations 3.3 and 3.4 below.

8

Observation 3.3 Let i ∈ N, a, b,∈ M and σ ∈ Σ satisfying a ∈ σi and b /∈ σi. Then,

(1) A D-move with a is profitable for i if and only if Ca
i (σ) < t.

(2) An A-move with b is profitable for i if and only if Cb
i(σi ∪ {b}, σ−i) > t.

(3) An S-move from a to b is profitable for i if and only if lb (hb(σ) + 1) < la (ha(σ)).

Observation 3.4 Let i ∈ N, a, b ∈ M and σ ∈ Σ satisfying a ∈ σi and b /∈ σi. Then,

(1) (i) If a D-move with a is profitable for i, then la (ha(σ)) > wi −
t

sf |σi|−1 .

(ii) Assume a ∈ arg maxe∈σi
le (he(σ)). Then, if a D-move with a is non-profitable for

i, then le (he(σ)) ≤ wi −
t

sf |σi|−1 for all e ∈ σi.
2

(2) (i) If an A-move with b is non-profitable for i, then lb (hb(σ) + 1) ≥ wi −
t

sf |σi|
.3

(ii) Assume hb(σ) + 1 ≥ he(σ) for all e ∈ σi. Then, the reverse of the above inequality

holds, if an A-move with b is profitable for i.

The following lemma implies that any strategy profile, in which no player wishes unilaterally

to apply a single A-, D- or S-move, is a Nash equilibrium. More precisely, we show that if

there exists a player who benefits from a unilateral deviation from a given strategy profile,

then there exists a single A-, D- or S-move which is profitable for him as well. This property

is called the ”single profitable move property” [9].

Lemma 3.5 (The single profitable move property) Given a TCGF, let σ ∈ Σ be a

strategy profile which is not in equilibrium, and let i ∈ N be a player for which a profitable

deviation from σ is available. Then, there is a profitable single move from σ available to i.

The idea behind the proof is as follows. Assume on the contrary that σ possesses only non-

single-move deviations. Each such deviation can be decomposed into a series of single moves.

Consider such a deviation, say σ′, with a shortest decomposition. Obviously, inverting any

of the single moves is strictly non-profitable with respect to σ′ (otherwise, it could have been

2It is strictly non-profitable if and only if the inequality is strict.
3Same as above.

9

omitted from the original deviation to result a shorter decomposition). This, as we show

below, implies the existence of a profitable single move from the original profile, σ. The

formal proof follows.

Proof: Let σ ∈ Σ be a strategy profile which is not in equilibrium and let i ∈ N be a

player who can benefit from a unilateral deviation from σ. Let PDi(σ) denote the set of all

profitable deviations of i from σ, that is

PDi(σ) = {xi ∈ Σi : Ci(σ−i, xi) < Ci(σ)}.

For any pair of sets A and B, let µ(A,B) = max {|A r B|, |B r A|}. Clearly, if player i

deviates from strategy σi to strategy xi by applying a single A-, D- or S-move, then µ(xi, σi) =

1, and vice versa, if µ(xi, σi) = 1 then xi is obtained from σi by applying exactly one such

move.

Let yi ∈ arg minxi∈PDi(σ) µ(xi, σi), and assume µ(yi, σi) > 1. Then, the following three

inequalities hold for any a ∈ σi and b /∈ σi:

Ci(σ−i, σi r {a}) ≥ Ci(σ); (5)

Ci(σ−i, σi ∪ {b}) ≥ Ci(σ); (6)

Ci (σ−i, (σi r {a}) ∪ {b}) ≥ Ci(σ). (7)

We consider separately each of the following three cases: (i) |σi ryi| > |yi rσi|, (ii) |yi rσi| >

|σi r yi|, and (iii) |yi r σi| = |σi r yi|.

Case (i): Let a ∈ σi ryi, and consider the strategy profile y′i = yi ∪{a} obtained by inverting

the D-move with a from σ. Clearly, µ(y′i, σi) = |σi r y′i| < |σi r yi| = µ(yi, σi). Hence, by the

choice of yi, Ci(σ−i, y
′
i) > Ci(σ−i, yi), implying by Observation 3.4(2),

la(ha(σ)) > wi −
t

sf |yi|
. (8)

Let ā ∈ arg maxe∈σi
le(he(σ)). By (5) and Observation 3.4(1),

lā(hā(σ)) ≤ wi −
t

sf |σi|−1
⇒ la(ha(σ)) ≤ wi −

t

sf |σi|−1
. (9)

Now, |yi| ≤ |σi| − 1 (since |σi r yi| > |yi r σi|) impling that (8) contradicts (9).

Case (ii): Let b ∈ arg maxe∈yirσi
le(he(σ) + 1). By (6) and Observation 3.4(2) we get

lb(hb + 1) ≥ wi −
t

sf |σi|
. (10)

10

In addition, (7) and Observation 3.3(3) imply lb(hb +1) ≥ la(ha) for all a ∈ σi. This, coupled

with the choice of b, implies that b ∈ arg maxe∈yi
le(he(σ−i, yi)).

Consider the strategy profile y′′i = yi r {b} obtained by inverting the A-move with b from σ.

Clearly, µ(y′′i , σi) = |y′′i r σi| < |yi r σi| = µ(yi, σi). Hence, by the choice of yi, Ci(σ−i, y
′′
i) >

Ci(σ−i, yi), implying by b ∈ arg maxe∈yi
le(he(σ−i, yi) and Observation 3.4(1) that

lb(hb + 1) < wi −
t

sf |yi|−1
. (11)

Now, |σi| ≤ |yi| − 1 (since |yi r σi| > |σi r yi|) implies that (11) contradicts (10).

Case (iii): Let a ∈ σi r yi and b ∈ yi r σi, and consider y′′′i = (yi r {b}) ∪ {a}. Clearly,

µ(y′′′i , σi) < µ(yi, σi). Hence, by the choice of yi, Ci(σ−i, y
′′′
i) > Ci(σ−i, yi), implying by

Observation 3.3(3) that la(ha) > lb(hb + 1). This, in turn, yields Ci(σ−i, σ
′
i) < Ci(σ), in

contradiction to (7). This completes the proof. �

Based on Lemma 3.5, in order to prove the existence of a pure strategy Nash equilibrium, it

suffices to present an A-, D- and S-stable strategy profile, as defined below.

Definition 3.6 A strategy profile σ is said to be A-stable (resp., D-stable, S-stable) if

there are no players with a profitable A- (resp., D-, S-) move from σ.

We notice that the strategy profile σ0 = (∅, . . . , ∅) is D- and S-stable (henceforth, ”DS-

stable”), so the subset of DS-stable profiles is not empty. Our goal is to find a DS-stable

profile for which no profitable A-move exists, implying this profile is in equilibrium. Using

the above, we develop an iterative algorithm having the following properties:

• The input and the output of each iteration of the algorithm is DS-stable.

• The congestion of each resource e ∈ M does not decrease as the algorithm proceeds.

• The algorithm terminates with a Nash equilibrium strategy profile.

Below we present our TNE-algorithm that finds a pure strategy Nash equilibrium in a given

TCGF. Let us start with its brief description. The TNE-algorithm is initialized with σ0 =

(∅, . . . , ∅), and each of its iterations begins with a DS-stable strategy profile (see Lemma

11

3.7 in the sequel). Let σ represent the input of an iteration of the TNE-algorithm, and let

h denote its corresponding congestion vector (h = h(σ)). The algorithm sorts the set of all

resources e ∈ M with he < n in a non-decreasing order of le(he + 1). For each player i, let ei

be the smallest resource (according to the current order) not in σi. Observe that if there is a

profitable A-move of i from σ then the A-move with ei is a most profitable move for him. If

there are no profitable A-moves for any player, then σ is a Nash equilibrium strategy profile

and the algorithm terminates. Otherwise, let N̄ denote the set of all players who wish to

apply an A-move, and let emin = min{ei : i ∈ N̄}. The algorithm selects from N̄ a player iA

with eiA = emin, and adds resource emin to his strategy. If the resulting strategy profile, σ′,

is DS-stable, then the algorithm proceeds to the next iteration. Otherwise, if σ′ is not DS-

stable (see Figure 1), it needs to be stabilized. As proved in Lemma 3.7 (Claim 3.10), the only

A-stable

S-stable

DS-stable

D-stable

A-move

Figure 1: Applying an A-move to a DS-stable profile may destroy the DS-stability.

potential cause for the in-DS-stability of σ′ is the existence of a player who wishes to apply a

D- or S-move with emin. Let Ñ denote the set of players who wish to make such a change in

their strategies. The algorithm selects player jD from Ñ , and removes resource emin from his

strategy. Then, Lemma 3.7(Claim 3.11) shows that the resulting strategy profile, σ′′, is DS-

stable (see Figure 2), and the algorithm proceeds to the next iteration. We note in Remark

3.12 in the sequel, that splitting each S-move into a D-move that is followed by an A-move in

the following iteration, does not effect the outcome of the algorithm. Therefore, our procedure

considers, in fact, only two kinds of operations: additions and deletions. Furthermore, Lemma

3.8 shows that the algorithm stops with a Nash equilibrium strategy profile, and enables us

to derive the time complexity of the algorithm. The TNE-algorithm is presented below.

12

A-stable

S-stable

DS-stable

D-stable

A-move

D-move

Figure 2: The DS-stability can be fixed by a single D-move.

TNE-algorithm

Initiali- For all i ∈ N , set σi := ∅;

zation: For all e ∈ M set he := 0;

Main [1] Set M̄ := {e ∈ M : he < n};

step: [2] Reorder M̄ according to the rule

x ≤ y ⇔ lx(hx + 1) ≤ ly(hy + 1);

[3] For all i ∈ N , set ei := min{x : x /∈ σi};

[4] If Ci(σ−i, σi ∪ {ei}) ≥ Ci(σ)

for all i ∈ N , then QUIT;

[5] Set N̄ := {i ∈ N : Ci(σ−i, σi ∪ {ei}) < Ci(σ)};

[6] Set emin := min{ei : i ∈ N̄};

[7] Select iA ∈ {i ∈ N̄ : ei = emin};

σiA := σiA ∪ {emin};

hemin
:= hemin

+ 1;

[8] If (σ−iA , σiA ∪ {emin}) is DS-stable,

then go to (1);

13

[9] Set Ñ := {j ∈ N : Cj(σ) > Cj(σ−j , σj r {emin}) or

∃u ∈ M̄ r σj, Cj(σ) > Cj(σ−j , (σj r {emin}) ∪ {u})};

[10] Select jD ∈ Ñ ;

[11] Set σjD
:= σjD

r {emin};

hemin
:= hemin

− 1, and go to [3].

Lemmas 3.7 and 3.8 below are central for proving the correctness of the TNE-algorithm. For

the reason of exposition, we have chosen to present their proofs at the end of this section.

Lemma 3.7 The output of each iteration of the TNE-algorithm is a DS-stable profile.

The proof consists of two parts. We start by showing that the only potential cause for an

in-DS-stability of a profile obtained by an A-move from a DS-stable profile is the existence of

a player, say player j, who used the added resource before the addition operation and wishes

to drop it after it had been added by another player (see Claim 3.10). We proceed by showing

that if such player j exists, then if he removes the added resource from his strategy then the

resulting profile is DS-stable (see Claim 3.11). Thus, Lemma 3.7 implies the existence of a

monotone procedure with its inputs and outputs at each iteration being DS-stable strategy

profiles.

Clearly, the congestion of each resource does not decrease as the algorithm proceeds. There-

fore, in order to prove that the algorithm terminates after finitely many iterations, it suffices

to show that every sequence of iterations with a constant congestion is finite. This statement

follows from Lemma 3.8, implying that once a player has added a resource to his strategy

set, he will not remove it, unless the congestion in the system has been changed.

Lemma 3.8 Let σk represents the input of the k’th iteration of the TNE-algorithm with hk

being its corresponding congestion vector, and let p = ikA be a player who adds resource ek
min

to his strategy σk
p at the beginning of the k’th iteration. Then, every e ≤ ek

min satisfies e ∈ σr
p

for all r > k with hr = hk. That is, player p uses all the resources ordered less than ek
min, as

long as the congestion in the system has not been changed.

We turn now to present our main result.

14

Theorem 3.9 The TNE-algorithm finds a pure strategy Nash-equilibrium in a given TCGF

in time O
(
n2m2(nm + m log m)

)
.

Proof: Validity Let σ be the output of the TNE-algorithm. The algorithm halts if and only

if there are no players who wish to unilaterally apply an A-move from σ. That is, σ is an

A-stable strategy profile. In addition, by Lemma 3.7, σ is DS-stable. Thus, by Lemma 3.5,

σ is a Nash equilibrium strategy profile.

Complexity Each iteration of the algorithm takes O(nm + m log m) operations for reordering

the resources and applying an A- and a D-move. We show below that the number of iterations

is bounded by (nm)2. Since the congestion of the resources do not decrease as the algorithm

proceeds, the number of possible congestion combinations of the resources (congestion vec-

tors) is bounded by nm. Assume the algorithm starts a new iteration and let h denote the

current congestion vector. By Lemma 3.8, a player that adds a resource, at the beginning of

the iteration, will not remove it as long as the congestion of the resources remains h. Thus,

preserving the same congestion vector, the algorithm can replace the users of each resource at

most once. Therefore, the number of iterations with the same congestion vector is bounded

by nm, and the complexity of the TNE-algorithm is O
(
n2m2(nm + m log m)

)
. �

We proceed with the proofs of Lemmas 3.7 and 3.8.

Proof of Lemma 3.7: The proof is by induction on the iteration depth. For the first

iteration the proof is immediate. The input of the first iteration is σ = (∅, . . . , ∅) which

is obviously DS-stable. If no player wishes to apply an A-move then the output of the first

iteration is σ. Otherwise, if there is a player iA, who wishes to apply an A-move with resource

emin, then the output of the first iteration is a strategy profile σ′ = (σ−iA , σiA ∪ {emin}). In

this case, CiA(σ−iA , σiA ∪ {emin}) < CiA(σ), impling that a D-move with emin from σ′ is

not profitable for iA. By the TNE-algorithm, lemin
(1) ≤ le(1), for all e ∈ M . This yields

CiA(σ−iA , σiA ∪ {emin}) ≤ CiA(σ−iA , σiA ∪ {e}), for all e ∈ M . That is, iA does not wish to

apply an S-move with emin from σ′. Since all other players have nothing to drop or exchange,

the strategy profile σ′ – the output of the first iteration – is DS-stable.

Now we assume that the input of the k’th iteration (k > 1) is DS-stable and show that so is

its output. Let σ be the DS-stable input of the k’th iteration. If no player wishes to apply

an A-move then the output of the k’th iteration is σ. Otherwise, player iA adds resource

15

emin to his strategy. For simplicity of notation, let us denote iA by i and emin by a, and let

σ′ = (σ−i, σi ∪ {a}). Then,

Claim 3.10 Let j ∈ N r {i}. Then, the only potential profitable D- or S- move by j from

σ′ is with a.

Proof: Let b ∈ σ′
j r{a} = σj r{a}. By the D-stability of σ and Observation 3.3(1), Cb

j(σ) ≥ t.

Recall that σ′ = (σ−i, σi ∪ {a}), hence he(σ
′) = he(σ) for all e ∈ M r {a} and ha(σ

′) =

ha(σ) + 1, implying he(σ
′) ≥ he(σ) for all e ∈ M and hb(σ

′) = hb(σ) (since b 6= a). Then,

by Remark 3.2, Cb
j(σ

′) ≥ Cb
j(σ) ≥ t, implying by Observation 3.3(1) that a D-move with b is

non-profitable for j.

By the S-stability of σ and Observation 3.3(3), for any resource c /∈ σj = σ′
j we have lc(hc(σ)+

1) ≥ lb(hb(σ)). Now, since he(σ
′) ≥ he(σ) for all e ∈ M and hb(σ

′) = hb(σ), the above yields

lc(hc(σ
′) + 1) ≥ lb(hb(σ

′)), implying by Observation 3.3(3) the non-profitability of an S-move

from resource b.

Thus, no player j 6= i wishes to apply a D- or S-move from any resource b ∈ σ′
j = σj, b 6= a.

�Claim3.10

If no player j 6= i wishes to apply a D- or S-move with the added resource a, then the output of

the k’th iteration is the strategy profile σ′ = (σ−i, σi∪{a}). In this case, we complete the proof

by showing that player i also does not wish to apply any D- or S-move. Clearly, after adding

resource a, player i does not wish to drop it. Recall that a ∈ arg min{le(he + 1) : e /∈ σi},

which yields Ci(σ
′) ≤ Ci(σ

′
i, (σ

′
i r {a}) ∪ {e}) for any e /∈ σ′

i, implying that player i does

not wish to exchange resource a by any other resource. It remains to show that i does not

wish to drop or exchange any resource b ∈ σ′
i r {a} = σi. This follows from the fact that

Ci(σ
′) < Ci(σ) and the σ’s S-stability, which imply the following:

(i) Ci(σ
′) < Ci(σ) ≤ Ci(σ−i, (σi r {b}) ∪ {a}) = Ci(σ

′
−i, σ

′
i r {b});

(ii) Ci(σ) ≤ Ci(σ−i, (σi r {b}) ∪ {e}), for all e /∈ σi. By Observation 3.3(3), this yields

lb(hb(σ)) ≤ le(he(σ) + 1) for all e /∈ σi and, in particular, for all e /∈ σ′
i. Now, since

he(σ
′) ≥ he(σ) for all e ∈ M and hb(σ

′) = hb(σ), the above yields lb(hb(σ
′)) ≤ le(he(σ

′)+

1), implying Ci(σ
′) ≤ Ci(σ

′
−i, (σ

′
i r {b}) ∪ {e}), for all e /∈ σ′

i.

16

If there exists player jD who wishes to apply a D- or S-move with the added resource a, then

the output of the algorithm is a strategy profile σ′′ = (σ′
−jD

, σ′
jD

r {a}) which is obtained

from σ′ by the D-move of jD from a.4 For simplicity of notation, we denote jD by j. Then,

Claim 3.11 (The steady DS-stability property) The strategy profile σ′′ is DS-stable.

Proof: Note that σ′′ = (σ−{i,j}, σi ∪ {a}, σj r {a}), hence σ′′ and σ have the same congestion

vector, and all players in N r {i, j} do not distinguish between σ′′ and σ. Therefore, it

remains to show the DS-stability of σ′′ with respect to players i and j. For simplicity of

exposition, let us denote the congestion vector of σ′′ and σ by h (h = h(σ) = h(σ′′)).

Consider player i. By the S-stability of σ and Observation 3.3(3),

le(he) ≤ le′(he′ + 1) (12)

for all e ∈ σi and e′ /∈ σi, and, in particular, for all e ∈ σ′′
r {a} and e′ /∈ σ′′

i . Since

a ∈ arg min{le′(he′ + 1) : e′ /∈ σi}, then la(ha + 1) ≤ le′(he′ + 1) for all e′ /∈ σi. By the

monotonicity of le(·) for all e ∈ M , la(ha) ≤ le′(he′ + 1) for all e′ /∈ σi, and, in particular,

for all e′ /∈ σ′′
i . Thus, for all e ∈ σ′′ and e′ /∈ σ′′

i we get le(he) ≤ le′(he′ + 1) and Ci(σ
′′) ≤

Ci(σ
′′
−i, (σ

′′
i r {e})∪{e′}), implying that player i does not wish to apply any S-move from σ′′.

By Ci(σ
′) < Ci(σ) and the monotonicity of le(·) for all e ∈ M ,

la(ha) ≤ la(ha + 1) ⇒ Ci(σ
′′) ≤ Ci(σ

′) < Ci(σ) = Ci(σ
′′
−i, σ

′′
i r {a}),

implying that player i does not wish to apply a D-move with resource a. We show now that

this holds for all other resources in σ′′
i .

By (12), la(ha + 1) ≥ le(he) for all e ∈ σi. Then, By Ci(σ
′) < Ci(σ) and Observation 3.4(2),

la(ha + 1) < wi −
t

sf |σi|
. (13)

Let b ∈ σ′′
i r {a} = σi. By (13) and la(ha + 1) ≥ lb(hb) we have lb(hb) < wi −

t

sf |σi|
, implying

lb(hb) < wi −
t

sf
|σ′′

i
|−1

(since |σi| = |σ′′
i | − 1). Thus, by Observation 3.4(1), the D-move with

b from σ′′ is non-profitable for i.

4Notice that the algorithm applies a D-move of player jD from resource a even if jD would prefer to

exchange a by another resource. If this is the case, then at next iteration jD will be the only player with a

profitable A-move and will be selected by the algorithm to apply it (see Remark 3.12 following this proof).

That is, the desirable by jD S-move is just split into two iterations.

17

Consider now player j. Assume first that a D-move with a from σ′ is profitable for j. In this

case we derive the DS-stability of σ′′ directly from the DS-stability of σ. More precisely, by

the D-stability of σ and Observation 3.3(2), for all e ∈ σj and, in particular, for all e ∈ σ′′
j we

get le(he) ≤ wj −
t

sf
|σj |−1

< wj −
t

sf
|σ′′

j
|−1

, where the latter inequality follows since |σ′′
j | > |σj |.

Therefore, no profitable D-move from σ′′ is available to j.

By the S-stability of σ and Observation 3.3(3), for any e ∈ σj and e′ ∈ M r σj we have

le(he) ≤ le′(he′ + 1), implying that no profitable S-move from σ′′ with e ∈ σ′′
j and e′ ∈

(M r σ′′
j) r {a} is available to j. By the profitability of the D-move with a from σ′ and the

D-stability of σ, we get la(ha +1) > wi−
t

sf
|σj |−1

and le(he) ≤ wi−
t

sf
|σj |−1

for any e ∈ σj and,

in particular, for any e ∈ σ′′
j , implying that la(ha + 1) > le(he). Therefore, we can conclude

that no profitable S-move with e ∈ σ′′
j and a is available to j, completing the proof of the

S-stability of σ′′ in this case.

Otherwise, if the D-move with a is not profitable for j, then there is a profitable S-move from

a to c /∈ σ′′
j , implying that

lc(hc + 1) < la(ha + 1). (14)

As in the previous case, the D-stability of σ′′ w.r.t player j follows directly from the D-

stability of σ. Let us proceed and prove the S-stability of σ′′ w.r.t j. Assume on the contrary

that j wants to switch resource v ∈ σ′′
j with resource u ∈ M r σ′′

j . Then, by Observation

3.3(3),

lu(hu + 1) < lv(hv). (15)

If u 6= a then (15) contradicts (12). Otherwise, by (14) and (12), la(ha + 1) > lv(hv), in

contradiction to (15). �Claim3.11

This completes the proof of the lemma. �Lemma3.7

Remark 3.12 Consider the k’th iteration of the algorithm, where an A-move of player ikA

with resource ek
min destabilizes the system. If after adding ikA to ek

min player jk
D prefers to

remove ek
min from his strategy, then he will not wish to add it to his strategy at the next

iteration, i.e. jk
D /∈ N̄k+1. Otherwise, if after adding ikA to ek

min player jk
D prefers to switch

18

resource ek
min with another resource u /∈ σjk

D
, then we show that the S-move can be split into

two moves, a D-move and an A-move. Note that lu(hu+1) < lek
min

(hek
min

+1) implies u < ek
min,

and therefore, at the next iteration, jk
D will be the single player in the set {i ∈ N̄k+1 : ei =

ek+1
min }. Hence, at the next iteration (k + 1), player jk

D will be selected by the algorithm as

player ik+1
A and he will add resource u to his strategy. Thus, splitting the S-move into a

D-move and an A-move does not effect the process.

Proof of Lemma 3.8: Consider player p = ikA who adds resource ek
min to his strategy σk

p

at the beginning of the k’th iteration. For any e ≤ ek
min, we prove below that e ∈ σr

p for all

r > k such that hr = hk. Since ek
min /∈ σk

p , we get σr 6= σk for all such r, implying there are

no cycles in the TNE-algorithm.

Assume on the contrary that player p removes some resource e ≤ ek
min from his strategy set,

before or at the r’th iteration. Let k < s ≤ r be the first iteration at which such a D-move is

applied. Then, this change is caused by an A-move of player q = isA with resource es
min ∈ σs

p.

Let σs+ = (σs
−q, σ

s
q ∪ {es

min}). Since by the algorithm every e ≤ es
min satisfies e ∈ σs

p, player

p cannot improve his payoff by switching resource es
min with another resource, but only by

removing es
min from σs

p. Then, Cp(σ
s+) > Cp(σ

s−), where σs− = (σs+
−p, σ

s+
p r {es

min}). By

Observation 3.4(1), this implies

les
min

(hes
min

+ 1) > wp −
t

sf |σs+
p |−1

. (16)

Let k ≤ l < s be the last iteration where player p adds a resource to his strategy, before

dropping resource es
min (recall that player p applies an A-move at the k’th iteration). Then,

Cp(σ
l+) ≤ Cp(σ

l), where σl+ = (σl
−p, σ

l
p ∪ {el

min}). By Observation 3.4(2), this implies

lel
min

(hel
min

+ 1) ≤ wp −
t

sf |σl
p|

. (17)

Since |σs+
p | ≤ |σl

p| + 1, (16) and (17) imply

les
min

(hes
min

+ 1) > wp −
t

sf |σs+
p |−1

≥ wp −
t

sf |σl
p|

≥ lel
min

(hel
min

+ 1),

in contradiction to les
min

(hes
min

+ 1) ≤ lel
min

(hel
min

+ 1). �

4 Symmetric TCGFs

In this section we consider symmetric TCGFs. In a symmetric TCGF, the parameters of

the game are not a function of the player or the resource identities, i.e. for all i ∈ N and

19

e ∈ M we have wi = w and le(k) = l(k) for all k ∈ {0, 1, . . . , n}. Clearly, the TNE-algorithm

is valid for symmetric TCGFs. However, for these, relatively simple, games, we present a

significantly simpler algorithm – the STNE-algorithm – which easily finds a pure strategy

Nash equilibrium profile.

The algorithm is initialized with an empty strategy for each player. It orders the set

N × M = {(i, e) : i ∈ N, e ∈ M} of pairs of players and resources, according to the

rule described in the sequel. Then, using this order, it offers the players a resource to be

added to their strategy. If the corresponding A-move of resource e to strategy σi of player i

does not deteriorate his payoff, the algorithm updates his strategy and proceeds to the next

pair. The algorithm halts upon the first decline. The STNE-algorithm is presented below.

For simplicity of notation, we denote a(mod b) by [a]b.

STNE-algorithm

Initiali- For all i ∈ N , set σi := ∅;

zation: Set k := 0;

Main 1. Set k := k + 1.

step: If k > gcd(m,n), then QUIT;

2. Set q := 1;

(a) Let e(q) = e[q+k−1]m;

(b) If C[q]n(σ−[q]n , σ[q]n ∪ {e(q)}) ≤ C[q]n(σ)

then set σ[q]n := σ[q]n ∪ {e(q)};

Otherwise, QUIT;

(c) Set q := q + 1. If q > lcm(m,n)

then go to 1. Otherwise, go to (a).

The procedure of ordering the set N × M is illustrated by the following example. Suppose

there are n = 9 players and m = 6 resources. We define an order in which we offer the players

to add a resource to their strategy as follows (see Figure 3). We assign the players to the

resources by first assigning player 1 to resource e1, then player 2 is assigned to resource e2,

and so on until player 6 is assigned to the last resource – e6. Then we continue with player 7

going to resource e1, player 8 to e2, and the last player – player 9 – gets resource e3. We start

a new sequence by assigning player 1 to resource e4, and so on until at the end of the first

20

e1 e2 e3 e4 e5 e6

1 2 3 4 5 6

7 8 9 1 2 3

4 5 6 7 8 9

1 2 3 4 5

6 7 8 9 1 2

3 4 5 6 7 8

9

1 2 3 4

5 6 7 8 9 1

2 3 4 5 6 7

8 9

Figure 3: Example for the implementation of the STNE-algorithm.

iteration, player 9 is assigned to resource e6. At the next iteration, we start a new sequence

by moving the players by one step: namely, player 1 is assigned to resource e2, player 2 is

assigned to resource e3, and at the end of the iteration, player 9 is assigned to resource e1.

The length of each iteration is bounded by the least common multiplier of m and n, and the

number of iterations is bounded by the greatest common divider of m and n.

Theorem 4.1 The STNE-algorithm finds a pure strategy Nash equilibrium in a given sym-

metric TCGF in O(nm).

Proof: First, we show that the STNE-algorithm does not assign a player to a particular

resource more than once and thus provides a feasible assignment. Assume this is not true.

Then, either there exist q1, q2 such that q1+k−1 ≡ q2+k−1(mod m), where q1 ≡ q2(mod n),

or there are k1 and k2 such that q1 + k1 − 1 ≡ q2 + k2 − 1(mod m), where q1 ≡ q2(mod n). In

the first case, q1 + k − 1 ≡ q2 + k − 1(mod m) ⇒ q1 ≡ q2(mod m). That is, q1 − q2 divides

both m and n, and therefore q1 − q2 ≥ lcm(m,n). But since q1 ≤ lcm(m,n) and q2 ≥ 1, we

get q1− q2 < lcm(m,n), a contradiction. In the second case, q1 +k1−1 ≡ q2 +k2−1(mod m)

⇒ q1 − q2 ≡ k2 − k1(mod m). That is, k2 − k1 divides gcd(m,n), and therefore k2 − k1 ≥

gcd(m,n). But since k2 ≤ gcd(m,n) and k1 ≥ 1, we get k2−k1 < gcd(m,n), a contradiction.

21

The above also implies that the time complexity of the algorithm is O(nm), since a player is

assigned to a resource at most once, without reordering neither players nor resources. One

can also notice that the length of each iteration of the algorithm is bounded by lcm(m,n), and

the number of iterations is bounded by gcd(m,n), leading to the same bound of complexity

of the algorithm.

Next we show that the output of the STNE-algorithm is a Nash equilibrium strategy profile.

First, we prove that the output of each step of the algorithm is DS-stable. Then we show

that the algorithm terminates with an A-stable strategy profile. Thus, by the single profitable

move property, the resulting combination of strategies is a Nash equilibrium.

Let σr be the output of the r’th step of the STNE-algorithm, and let hr denote the corre-

sponding congestion vector (hr = h(σr)). We show below that σr is DS-stable. The proof

uses the induction principle. For r = 1 the proof is immediate. At the first step, the algorithm

offers player 1 to add resource e1 to his strategy. If the algorithm receives decline, then the

resulting strategy profile of the first step is σ1 = (∅, . . . , ∅) which is obviously DS-stable. If

player 1 adds resource e1 to his strategy then

C1 ({e1}, ∅, . . . , ∅) = wf + sl(1) < w = C1 (∅, . . . , ∅) .

This implies that player 1 does not wish to drop resource e1. By the symmetry between

resources, player 1 does not want to switch resource e1 with any other resource. That is,

C1 ({e1}, ∅, . . . , ∅) = wf + sl(1) = C1 ({e}, . . . , ∅) ,

for all e ∈ M . Other players have nothing to drop or exchange. Thus, σ1 is DS-stable.

Now we prove our statement for r > 1. Assume that at the r’th step the algorithm offers

player i to add resource a to his strategy. If the algorithm receives decline, then σr = σr−1,

and σr is DS-stable by induction. Otherwise, player i adds resource a to his strategy. Then,

Ci(σ
r−1
−i , σr−1

i ∪ {a}) = Ci(σ
r) ≤ Ci(σ

r−1) = Ci(σ
r
−i, σ

r
i r {a}). (18)

We show below that no player wishes to apply a D-move from σr; that is, Cj(σ
r) ≤ Cj(σ

r
−j, σ

r
j r

{e}), for all j ∈ N , e ∈ σj. Note that hr
a ≥ hr

e for all e ∈ M . Then, by (18) and Observation

3.4(1), we get l(hr
e) ≤ w− t

sf
|σr

i
|−1

for all e ∈ σr
i . Now, since for all j ∈ N the STNE-algorithm

22

satisfies |σr
j | ≤ |σr

i |, for any j ∈ N and e ∈ σr
j the above yields l(hr

e) ≤ w − t

sf
|σr

j
|−1

, implying

by Observation 3.4(1) the non-profitability of a D-move of j from σr. Thus, since no player

in N wishes to apply a D-move, σr is D-stable.

We note that the STNE-algorithm satisfies hr
e ≤ hr

e′ + 1 for all e, e′ ∈ M . Then, Observation

3.3 implies that Cj(σ
r) ≤ Cj(σ

r
−j, (σ

r
j r{e})∪{e′}) holds for all j ∈ N , e ∈ σr

j , e′ /∈ σr
j . That

is, no player wishes to apply an S-move from σr, implying that σr is S-stable.

It remains to show that the last iteration of the STNE-algorithm produces an A-stable strat-

egy profile, σ. Assume that at the last iteration the algorithm offers player i to add resource

a to his strategy, and receives decline. Then, by Observation 3.4(2), l(ha(σ)+1) > w− t

sf |σi|
.

Now, since the STNE-algorithm satisfies he ≥ ha for all e ∈ M and |σj | ≥ |σi| for all j ∈ N ,

the above yields l(he(σ)+1) > w− t

sf
|σj |

for all e ∈ M , j ∈ N . Recall that he(σ)+1 ≥ he′(σ)

for all e, e′ ∈ M . Thus, by Observation 3.4(2), the above implies the non-profitability of an

A-move from σ.

Thus, the resulting strategy profile of the STNE-algorithm is A-, D- and S-stable. By Lemma

3.5, this strategy profile is a Nash equilibrium. �

5 Summary and Future Research

In this paper, we introduced and studied congestion settings with unreliable resources, in

which resource usage is costly. This study is motivated by a variety of situations in which

a fixed payment for utilizing resources is demanded by their owners or, alternatively, there

is some central coordinator that imposes taxes in order to achieve better social results. We

defined the class of taxed congestion games with failures [TCGFs] which refers to congestion

effects, resource failures, and costly submission, in a unified game-theoretic setting. Our

model extends on the model presented in [8] by considering submission costs (taxes). We

proved that TCGFs possess pure strategy Nash equilibria, despite the non-existence of a

potential function. Our proof is constructive and yields an efficient non-trivial procedure for

constructing such equilibria in these games. We also introduced a simplified efficient algo-

rithm for the case of symmetric TCGFs.

23

Future research may evaluate the (in)efficiency of Nash equilibria in TCGFs (e.g. the price

of anarchy, the price of stability etc.) and develop methods for improving the social outcome

obtained by selfish players. In this context, it may be of interest to formulate meaningful

conditions under which resource taxation can reduce the total cost suffered in equilibrium.

Other future research directions may include the study of the existence of strong equilibrium

and coalition-proof equilibrium in TCGFs. While strong equilibrium does not exist in any

TCGF, it may be of interest to find cases when it exists; the study of the existence of

coalition-proof equilibrium in TCGFs is a pending complementary project.

References

[1] E. Koutsoupias. Selfish task allocation. Bulletin of EATCS, 81:79–88, October 2003.

[2] K. Leyton-Brown and M. Tennenholtz. Local-effect games. In Proceedings of the 18th In-

ternational Joint Conference on Artificial Intelligence (IJCAI-03), pages 772–777, 2003.

[3] I. Milchtaich. Congestion games with player-specific payoff functions. Games and Eco-

nomic Behavior, 13:111–124, 1996.

[4] I. Milchtaich. Congestion models of competition. American Naturalist, 147(5):760–783,

1996.

[5] D. Monderer. Solution-based congestion games. Advances in Mathematical Economics,

8:397–407, 2006.

[6] D. Monderer and L. Shapley. Potential games. Games and Economic Behavior, 14:124–

143, 1996.

[7] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multi-user communication

networks. In IEEE/ACM Transactions on Networking, volume 1, pages 510–521, 1993.

[8] M. Penn, M. Polukarov, and M. Tennenholtz. Congestion games with failures. In Pro-

ceedings of the 6th ACM Conference on Electronic Commerce (EC-05), pages 259–268,

2005.

[9] M. Penn, M. Polukarov, and M. Tennenholtz. Congestion games with load-dependent

failures: identical resources. In Proceedings of the 8th ACM Conference on Electronic

Commerce (EC-07), pages 210–217, 2007.

24

[10] T. Quint and M. Shubik. A model of migration. Number 1088 in Cowles Foundation

Discussion Papers. Cowles Foundation, Yale University, 1994.

[11] R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International

Journal of Game Theory, 2:65–67, 1973.

25

