Static and Dynamic Structural Symmetry Breaking

Pierre Flener!>2*, Justin Pearson?, and Meinolf Sellmann®

! Faculty of Engineering and Natural Sciences
Sabanci University, Orhanli, Tuzla, TR — 34956 Istanbul, Turkey
2 Department of Information Technology
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
{pierref, justin}@it.uu.se
3 Department of Computer Science

Brown University, Box 1910, Providence, RI1 02912, USA
sello@cs.brown.edu

Abstract. We reconsider the idea of structural symmetry breaking for constraint
satisfaction problems (CSPs). We show that the dynamic dominance checks used
in symmetry breaking by dominance-detection search for CSPs with piecewise
variable and value symmetries have a static counterpart: there exists a set of con-
straints that can be posted at the root node and that breaks all the compositions
of these (unconditional) symmetries. The amount of these symmetry-breaking
constraints is /inear in the size of the problem, and yet they are able to remove
a super-exponential number of symmetries on both values and variables. More-
over, we compare the search trees under static and dynamic structural symmetry
breaking when using fixed variable and value orderings. These results are then
generalized to wreath-symmetric CSPs with both variable and value symmetries.
We show that there also exists a polynomial-time dominance-detection algorithm
for this class of CSPs, as well as a linear-sized set of constraints that breaks these
symmetries statically.

1 Introduction

Symmetry breaking for constraint satisfaction problems (CSPs) has been the topic of
intense research in recent years, as symmetries naturally arise in many real-life applica-
tions. Substantial progress was achieved in many directions, often exhibiting significant
speedups, for instance in configuration and network design. It is outside the scope of
this introduction to review the wealth of research in this area. However, it is important
to highlight some recent research avenues to position this paper properly.

One of the interesting developments has been the design of general symmetry-
breaking schemes such as symmetry breaking by dominance detection (SBDD) and
symmetry breaking during search (SBDS). SBDD [3,5] is particularly appealing for
our purposes as it combines low memory requirements with a number of dominance
checks linearly proportional to the depth of the search tree. It then became natural to
study which classes of symmetries for CSPs are tractable, i.e., admit polynomial-time

* Work done while on leave of absence as an Erasmus Exchange Teacher at Sabanci University.

dominance-detection algorithms. This issue was first studied in [15], where symme-
try breaking for various classes of value symmetries was shown to take constant time
and space. In [13], this result was generalized elegantly to all value symmetries. We
next revisited the issue for CSPs with simultaneous piecewise variable and value sym-
metry in [14], where a polynomial-time dominance-detection algorithm was given and
the name ‘structural symmetry breaking’ was coined. The same paper also presented
intractability results for set-CSPs under variable and value interchangeability, leaving
open whether wreath symmetric CSPs (formally defined later in this paper) with vari-
able and value symmetries were tractable with respect to symmetries. Moreover, some
recent interesting results (see [16,9]) have indicated the possibility of automatically
detecting certain classes of symmetries. These results taken together offer an opportu-
nity to address the need for more automation, which was presented as one of the main
challenges faced by constraint programming in industry [8].

In parallel, researchers have investigated, and this for many years (e.g., [7]) static
symmetry breaking, which consists in the idea of adding constraints to a CSP in order
to remove symmetries. That is, by breaking symmetries statically, we mean the addition
of constraints that leave exactly one representative solution in each equivalence class of
solutions. Lexicographic constraints [2] are one traditional way of breaking symmetries
in this way.

This paper is an extension and revision of our [4]. It addresses two open issues in
structural symmetry breaking. First, it reconsiders CSPs with piecewise interchangeable
variables and values and studies whether the polynomial-time dominance-detection al-
gorithm of [14] has a static counterpart. In other words, it studies whether there exists a
set of constraints that, when added to the CSP at hand, produces a symmetry-free search
tree. Second, the paper studies wreath symmetric CSPs with interchangeable variables
and values. Note that throughout this paper we focus on unconditional (or global) sym-
metries, that is we do not handle any symmetries that appear during search. The results
of this paper can be summarized as follows:

We show that the polynomial-time dominance-detection algorithm of [14] has a
static counterpart, namely that there exists a set of constraints for CSPs with piece-
wise symmetric variables and values that, when added to the CSP, results in a
symmetry-free search tree.

— We establish a clear link between this static structural symmetry breaking (SSSB)
scheme and the dynamic structural symmetry breaking (DSSB) scheme of [14] by
comparing their search trees under various forms of consistency for the symmetry-
breaking constraints whenever the variable and value orderings are fixed.

— We show that wreath symmetric CSPs, with piecewise interchangeable variables
and wreath interchangeable values, pose a tractable dominance detection problem.
The dominance check is rather complex, but we also provide a set of constraints
that break all these symmetries.

— To our knowledge, this is the first time that, for some classes of symmetries for

CSPs, static symmetry breaking has been shown capable of breaking all compo-

sitions of variable and value symmetries at the same time, using an amount of

symmetry-breaking constraints that is polynomial in the size of the problem, and
yet removing, in general, a super-exponential number of symmetries on both val-

ues and variables. In fact, the number of constraints is even linear in the size of the
problem.

— With the case of wreath values closed, the only classes of symmetries for which
intractability results have been proven [14] involve variable and value symmetries
over set CSPs or 0/1 representations of these as matrix models. The tractability
results in this paper thereby also improve our understanding of what can and what
cannot make symmetry breaking hard.

The remainder of the paper is organized as follows. Section 2 reviews the basic con-
cepts. Section 3 presents the symmetry-breaking constraints for CSPs with piecewise
variable and value interchangeability. Section 4 then establishes a link between static
and dynamic symmetry breaking for such piecewise symmetric CSPs. Sections 5, 6,
and 7 present the analogous, generalized concepts and results for wreath symmetric
CSPs. Finally, Section 8 concludes the paper and discusses future research directions.

2 Basic Concepts

In this section, we fix some standard notation that we will use throughout the paper.
Particularly, we define what we understand by piecewise variable and value symmetry,
and what in this context we mean by dominance detection.

Definition 1 (CSP, Assignment, Solution).

— A constraint satisfaction problem (CSP) is a triplet (V, D,C), where V denotes
the set of variables, D denotes the set of possible values for these variables and
is called their domain, and C' : (V — D) — Bool is a constraint that specifies
which assignments of values to the variables are solutions.

— An assignment for a CSP P = (V, D, C) is a function a : V — D.

— A partial assignment for a CSP P = (V, D, C) is a function o« : W — D, where
W C V. The scope of «, denoted by scope(a), is W.

— A solution to a CSP P = (V, D, C) is an assignment o for P such that C(c) =
true. The set of all solutions to a CSP P is denoted by Sol(P).

We want to reason about a special class of CSPs, namely those where subsets of
variables or values are pairwise interchangeable. For instance, we can imagine a ver-
sion of the scene allocation problem where days are divided in morning and afternoon
sessions; actors probably have strong preferences (and thus different fees for the morn-
ing and afternoon sessions) but the day of the session may not matter. To provide a
formal definition, we first define:

Definition 2 (Partition, Piecewise Bijection). Given a set S and a set of sets P =
{Py,...,P,} such that S = \J; P; and the P; are pairwise non-overlapping, we say
that P is a partition of S and that each P; is a component, and we write S =, P;.

Piecewise interchangeability implies that any reshuffling of variables or values within
each component results in the same problem. Consequently, the corresponding permu-
tations cannot mingle elements from different components:

Definition 3 (Piecewise Bijection). Ler S = ZZ P; be a partitioned set. A bijection
b: S — S is a piecewise bijection over) . P; if and only if {b(e) | e € P;} = P;.

Equipped with this notion, we can now define formally:

Definition 4 (Piecewise Symmetric CSP).A CSPP = (3>, Vi, >, Dy, C) is a piece-
wise symmetric CSP if and only if, for each solution a € Sol(P), each piecewise bi-
Jection T over Y, Dy, and each piecewise bijection o over)y, Vi, we have Tooo €

Sol(P).

Piecewise symmetric CSPs were studied in [14], where a polynomial-time algo-
rithm was devised to detect symmetric dominance between two partial assignments:

Definition 5 (Dominance Detection). Given two partial assignments o and 3 for a
piecewise symmetric CSP P = (3, Vi,>., D¢, C), we say that o dominates 3 if
and only if there exist piecewise bijections o over), Vi, and T over), Dy such that
a(v) = 1o fBoo(v)forallv € scope(r). Then, we call the problem of determining
whether o dominates 3 the dominance detection problem.

Dominance detection constitutes the core operation of symmetry breaking by dom-
inance detection (SBDD) [3,5], and its tractability immediately implies that we can
efficiently limit ourselves to the exploration of symmetry-free search trees only. For
piecewise symmetric CSPs, [14] showed that dominance detection is tractable. This
was accomplished by dynamic structural symmetry breaking (DSSB), where structural
abstractions, so-called value signatures, generalize from an exact assignment of values
to variables by quantifying how often a given value is assigned to variables in each
component:

Definition 6 (Signature). Given a partial assignment o for a piecewise symmetric
CSPP = (>, Vi, 2y D¢, C), the signature of value d under « is the tuple that counts,
for each variable component Vy,, by how many variables in the component the value is
taken in «:

sig,, (d) := (J[{v € Vi N scope(a) | a(v) = d}|)k

where k indexes the different variable components.

In [14], we showed how this structural abstraction allows us to check dominance
between partial assignments « and 3: We set up a bipartite graph where, for each
value d, there is one node on the left and one node on the right. An edge connects
two nodes with associated values d and e from the same value component if and only
if sigo (d) < sigg(e), where < denotes the point-wise ordering of two sequences (and
not their lexicographic ordering). Then, o dominates 3 if and only if the bipartite graph
contains a perfect matching.

Example 1. Consider the piecewise symmetric CSP ({v1, va, v3, v4 }+{vs, v}, {1, 2}+
{3,4}, C) and the partial assignments o = {vy — 2,09 — 2,v3 — 3,v5 — 2} and
B ={v1— 1,v9 — 1,v3 — 1,04 — 3,v5 — 1,v5 — 4}. The signatures of the values
1,2,3,4are (0,0), (2,1), (1,0), (0,0) under v and (3, 1), (0,0), (1,0), (0, 1) under 3.
See the bipartite graph G of Figure 5 later in this paper (and ignore its caption). The

rounded boxes indicate the components of the partition of the value set. There is an
edge (d, e) whenever sig,,(d) < sigg(e). As there exists a perfect matching in G, given
by the solid edges, we conclude that « dominates 3.

Based on this dominance-detection algorithm, DSSB filters values from domains
if and only if setting the respective variable to some value would lead to a symmet-
ric choice point. Since symmetry-based filtering anticipates when variable assignments
will result in symmetric configurations, within DSSB we have to distinguish two dif-
ferent types of filtering: ancestor-based filtering where we compare extensions to the
current partial assignment with previously fully expanded search nodes, and sibling-
based filtering where we compare extensions to the current partial assignment with
other such extensions.

When employing these filtering techniques, DSSB leads to symmetry-free search
trees while causing only polynomial-time overhead. For a more detailed description of
the method and a worst-case asymptotic runtime analysis, we refer the reader to [14].

3 Static SSB for Piecewise Symmetric CSPs

We now show how the idea of structural symmetry breaking, i.e., dominance detec-
tion based on signature analysis, can be used to devise a set of symmetry-breaking
constraints for piecewise symmetric CSPs. For the first time, we will show that a poly-
nomial, and even linear, amount of symmetry-breaking constraints is able to simultane-
ously break super-exponentially many compositions of variable and value symmetries
efficiently.

3.1 Symmetry-Breaking Constraints

Consider a piecewise symmetric CSP (3"7_, V4, 22:1 Dy, C),withV = {vy,...,v0,}
> 7_1 Vi a set of piecewise interchangeable variables and D = {di,...,d,} =
2221 Dy a set of piecewise interchangeable values. Assume a total ordering of the
variables V' and the values D.

As it is commonly done in the literature, we can break the variable symmetries
within each variable component by requiring that earlier variables take smaller or equal
values. To break the value symmetries, we resort to structural abstractions, so-called
signatures, which generalize from an exact assignment of values to variables by quan-
tifying how often a given value is assigned to variables in each component. Let the
frequency

fr=HveVila() =d}|

denote how often each value d; is taken under solution « by the variables in each vari-
able component V. For a solution «, we then denote by

sig,, (di) == (z‘l""vfia)

the signature of d; under «.. Then, for all consecutive values d;, d; 1 in the same value
component, we require that their signatures are lexicographically non-increasing, i.e.,

sig,,(d;) >lex sig,(di+1). So the problem boils down to computing the signatures of
values efficiently. Fortunately, this is an easy task when using the existing global cardi-
nality constraint (gcc) [12].

We summarize the resulting structural symmetry-breaking constraints:

— For each variable component Vj, = {v,, ..., v,}, there is a variable ordering chain:
Up S o S Vg (l)

hence a total of n — a ordering constraints.
— For each value d; and each variable component V}, = {vp, ey vq}, the frequencies

fF=HveVila) =d}|

under partial assignment « are calculated by the constraints

8eC(Up, - s Vgy diyevvsdmy fF, .0 fF) 2)
for each V},, hence a total of a global cardinality constraints.
— For each value component D; = {d,, ..., d,}, there is an ordering chain for the
value signatures:
(;7“-’.](.;)Zlex"'Zlex(fqlv--wfg) (3)

hence a total of m — b lexicographic ordering constraints.

Note that the number of constraints added is /inear in the size of the problem, unlike in
the more general method in [10], and yet that they are able to break super-exponentially
many compositions of variable and value symmetries.

Although value signatures are here defined in essentially the same way as in Def-
inition 6 in the framework of dominance detection, for static symmetry breaking we
require them to be lexicographically rather than point-wise ordered. Indeed, in dynamic
dominance detection, we are not interested in constructing the lexicographically min-
imal solution of any class of symmetrically equivalent solutions, but just in detecting
specialization of partial assignments. Also, in static structural symmetry breaking, we
require a fotal order between value signatures, but the point-wise order is not total.

3.2 Example

Consider scheduling study groups for two sets of five indistinguishable students each.
There are six identical tables with four seats each. Let {v1,...,v5} + {vg,...,v10}
be the partitioned set of piecewise interchangeable variables, one for each student. Let
the domain {¢1,...,ts} denote the set of tables, which are fully interchangeable. The
structural symmetry-breaking constraints are:

vy Svg Swvg < vy < s
ve < v7 < wg < Vg < vy
gCC(’Ul,...,’U5, tl,...,tﬁ, fll,,fé)
gCC(’Ug,...,’Ulo7 tl,...,t6, f12,..., 62)

(fllvflz) Zlex ** Zlex (f(}afﬁz)

Consider the assignment o = {vy — t1,v9 — t1,v3 — to, Vg — to,v5 — t3}U{vg —
t1,v7 — to,vs > t3,v9 — t4,v19 > t5}. Within each variable component, the
< ordering constraints are satisfied. Having determined the frequencies using the gcc
constraints, we observe that the > constraints are satisfied, because

(23 1) Zlcx (2»]-) Zlcx (]-7]-) Zlcx (07 1) Zlcx (Oa 1) Zlcx (070)

If student 10 moves from table 5 to table 6, producing a symmetrically equivalent as-
signment because the tables are fully interchangeable, the >} constraints are no longer
satisfied, because

(2a 1) Zlex (27 1) Zlex (17 1) Zlex (O, 1) zlex (070) zlex (07 1)

If students 9 and 10 swap their assigned tables, producing a symmetrically equivalent
assignment because both students are of the same student component, the signatures do
not change and the >, constraints remain satisfied; however, we then have vg £ v1g.

3.3 Analysis

We now establish the correctness and completeness of the introduced symmetry-breaking
constraints. The key observation that we need to make is captured by the following
lemma:

Lemma 1. Given an assignment vy to a piecewise symmetric CSP (3, Vi, >, D¢, C),
let the associated tuple of signature multisets be TSM., := ({sig. (d) | d € D¢}),. It
holds that assignments o and (3 are symmetric if and only if TSM, = TSMpg.

Proof. =: Assume there exist piecewise bijections o over), V}, and 7 over), D
such that @ = 7 o 3 o 0. Recall that signatures just count how many variables in
each component take a given value. Therefore, the permutation of variables within
a component cannot change the signatures of values. It follows that TSM, =
TSM;og00 = TSM;.5. But the permutation of values within the same com-
ponent D, does not affect the signature multiset {sigs(d) | d € D;}. Hence
TSM, = TSM,.3 = TSMg.

«: Now assume that TSM, = TSMg. By reversing the previous argument, there
exists a piecewise bijection 7 over), D, such that sig,, (d) = sig,,z(d) for all

d € D. Thus, according to [14], there also exists a piecewise bijection o over
> xVisuchthata =70 foo.

Theorem 1. For every solution « to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the structural symmetry-breaking constraints.

Proof. (a) We first show that, for every solution to the original CSP, there exists at
least one symmetric solution that also obeys all the additional symmetry-breaking con-
straints. Denote by 7, the function that ranks the indices of the values in D}, =
{dp, ..., d,} according to the signatures over some solution a, i.e., sig,, (dr,, , (p)) Zlex
o Zlex SIg, (dm'k (q)). We obtain a symmetric solution 3 where we re-order the values
in each Dy according to 7, ;. Then, when we denote by o ; the function that ranks

the indices of the variables in Vi = {v,,...,v,} according to 3, i.e., B(vg, . (p) <
e < ﬁ(v%_k(q)), we can re-order the variables in each V}, according to o, and we
get a new symmetric solution . As we already argued in the proof of Lemma 1, the re-
ordering of the variables within each component has no effect on the signatures of the
values, i.e., sig. (d) = sigg(d) for all d € D. Thus, is also a solution to the original
CSP that also obeys all symmetry-breaking constraints.

(b) Now assume there are two solutions « and to the piecewise symmetric CSP
that both obey all the symmetry-breaking constraints, and such that there exist piecewise
variable and value bijections ¢ and 7 such that &« = 70 fo¢. According to Lemma 1, it
then holds that TSM,, = TSMg. Because of the lexicographic ordering constraints (3)
on the value signatures, this implies that the signatures under « and 3 are identical
for all d € D. However, with the signatures of all the values thus fixed, and with the
ordering constraints (1) on the variables, there exists exactly one assignment that gives
these signatures. Hence « and (3 must be identical. a

What we have achieved with Theorem 1 is the ability to break statically all piece-
wise variable and value symmetries in a given CSP. It is very important to note that
this theorem is about solutions, rather than about partial assignments, hence the level of
consistency enforced on the symmetry-breaking constraints does not affect the result.

4 Static versus Dynamic SSB for Piecewise Symmetric CSPs

The advantage of a static symmetry-breaking method lies mainly in its ease of use
and its moderate costs per search node. Constraint propagation and incrementality are
inherited from the existing >} and gcc constraints. On the other hand, it is well-known
that static symmetry breaking can collide with dynamic variable and value orderings,
whereas dynamic methods such as SBDD do not suffer from this drawback.

We were interested in studying how dynamic (DSSB) and static structural sym-
metry breaking (SSSB) actually relate to one another. Particularly, we were curious to
know how dynamic structural symmetry breaking (DSSB) and static structural symme-
try breaking (SSSB) relate to one another when variable and value orderings are fixed.
Before stating our main results, let us consider an insightful example.

Example 2. We will demonstrate that, when static variable and value orderings are
used, DSSB can discard a partial assignment explored by SSSB when the static symmetry-
breaking constraints are only used to prune the search tree, i.e., when the symmetry-
breaking constraints are only used to detect that a partial assignment already violates
one of the constraints, but not for filtering (in fact, Theorem 3 will show that the DSSB
tree is in general a non-strict subtree of such an SSSB tree). Moreover, we will show
that SSSB can discard a partial assignment explored by DSSB when hyper-arc con-
sistency is enforced on the conjunction of the symmetry-breaking constraints (in fact,
Theorem 2 will show that such an SSSB tree is in general a non-strict subtree of the
DSSB tree).

For both cases, we use the piecewise symmetric CSP ({v1, ve, v3} + {va}, {1,2} +
{3,4}, C), where the constraints C' are:

e}
/ N
o} [e]
1)37 \Yzél vo=3

Fig. 1. DSSB search tree. The black-box nodes (M) mark the three solutions; all non-depicted
assignments are obtained by propagation.

(0]
/ N
[®)
vs3 7 \Yz‘l

Fig.2. SSSB search tree when hyper-arc consistency is enforced on the conjunction of the
symmetry-breaking constraints; note that it is a subtree of the DSSB tree in Fig. 1.

- V1,V2,V3 € {17 2,3, 4}, V4 € {1, 2}
— All variables together must take values 1 and 2 at most once.
— All variables together must take values 3 and 4 at most twice.

The problem only has the following three solutions up to symmetry: {v; — 1,v9 —
3,v3 +— 3,04 — 2}, {v1 — 1,vg — 3,03 — 4,04 — 2}, and {v1 — 3,02 — 3,05 —
4,04 — 1}.

Consider the SSSB tree when using static symmetry breaking constraints for prun-
ing only. Clearly, the assignment {v; — 2} needs to be checked. However, DSSB
completely discards this assignment as a symmetric sibling of {v; — 1}.

Now consider the DSSB tree after exploring all partial assignments up to o =
{v1 +— 3,vy — 4}. This node has to be explored by DSSB since neither of the no-
goods {vy +— 1} and {v1 — 3,v2 +— 3} dominates it (see Figure 1).

On the other hand, when using SSSB and enforcing hyper-arc consistency on the
conjunction of the symmetry-breaking constraints at the node {v; +— 3}, there is no
support for vy +— 4 and hence the node o = {v; — 3,vy +— 4} is nor explored (see
Figure 2).

In the following first comparison theorem, we claim that SSSB explores a subtree
of the DSSB tree when we enforce hyper-arc consistency on the conjunction of the
symmetry-breaking constraints. By Example 2, we even know that, in that setting, SSSB
sometimes explores a strict subtree of the DSSB tree.

Theorem 2. For piecewise symmetric CSPs, given a fixed variable and value ordering,
and posting the symmetry-breaking constraints accordingly, SSSB explores a subtree of
the tree explored by DSSB when we enforce hyper-arc consistency on the conjunction
of the symmetry-breaking constraints.

Proof. To show that a node (3 in an SSSB tree with hyper-arc consistency on the con-
junction of the symmetry-breaking constraints is also in the DSSB tree, we prove the
contrapositive: that is, § ¢ DSSB implies that 5 ¢ SSSB.

Assume that some partial assignment 8 = {v1 — dy,...,v; — di} &€ DSSB. This
means that there is some partial assignment «, explored before, that dominates 5. We
look at the first (in depth-first order) such node o that dominates 3.

The fact that o dominates means that for all v € scope(«) we have that «(v) =
7 o B o o(v) for some piecewise variable and value bijections o and 7.

As a reminder, given a conjunction C' of constraints, a value d from the domain of
a variable v is not filtered while achieving hyper-arc consistency on C' iff there exists
a solution « to C' such that a(v) = d and o(w) € dom(w) for all variables w. The
assignment « is often referred to as the support of v — d. A hyper-arc consistency al-
gorithm thus essentially ensures that there exist supporting assignments for all variables
and all values in their domains.

Thus, to prove that 5 ¢ SSSB, we have to show that v; — d; has no support, i.c.,
that no full extension 3’ of 3 satisfies the symmetry-breaking constraints. We prove this
by contradiction.

Assume such a 3’ exists. Then, applying 7 and o to (3’ yields a second full assign-
ment:

o =10f o0

that is symmetric to 3’. Moreover, o’ agrees with « for all v € scope(«) and hence is a
child of a.. According to Lemma 1, it then holds that TSM,, = TSMg.

Now, consider the first variable v € V}, (recall that we assume that variables are
being assigned in order) where « and (3 disagree, i.e., &' (w) = a(w) = S(w) = 5'(w)

for all w < v and when we set d := a(v) = o/(v) and e = [(v) = (' (v), we
have that d # e. Since o was explored before (3 and values are also assigned in order,
we can infer that d < e. However, as TSM,» = TSMpg and all variables in earlier

variable components have been assigned in accordance between « and 3, this implies
that sig,,, (f)n = sigg (f)n for all values f and variable components & < k, and also
sig,/(d)r > sigg (d)r. As (' satisfies constraints (1) and (3), there is no match for
the signature sig,,(d) in the signature multiset {sigs (f) | f € D¢} whend € D,.
Therefore, TSM,s # TSMg/. Contradiction. O

Whether it is possible to enforce hyper-arc consistency on the conjunction of the
considered symmetry-breaking constraints in polynomial time remains an open ques-
tion. On the other hand, it is easy to check if a partial assignment violates any individual
symmetry-breaking constraint. In our following second comparison theorem, we claim
that DSSB explores a subtree of the SSSB tree when we use static symmetry-breaking
constraints for pruning purposes only. Example 2 showed a case where, in that setting,
DSSB explores a strict subtree of the SSSB tree.

10

Theorem 3. For piecewise symmetric CSPs, given a fixed variable and value ordering,
and posting the symmetry-breaking constraints accordingly, DSSB explores a subtree of
the tree explored by SSSB when symmetry-breaking constraints are only used to prune
the search tree.

Proof. Proof by contradiction. Assume there exists a node in the DSSB search tree
that is pruned by SSSB. Without loss of generality, we may consider the first node in
a depth-first search tree where this occurs. We identify this node with the assignment
B :={v,...,0} = D.

First assume a variable ordering constraint is violated, i.e., 3(v;) > ((v;) for some
1 < i < j <t where v; and v; are interchangeable. Consider « : {v1,...,v;} — D
such that a(vy,) := B(vy) forall 1 < k < ¢, and a(v;) := ((v;). Then, due to the fixed
variable and value orderings, « is a node that has been fully explored before 3, and «
dominates 3, which is clear by mapping v; to v;. Thus, 3 is also pruned by DSSB.

Now assume a lexicographic ordering constraint on the value signatures is violated.
Denote the interchangeable values by d; and d;, with 1 < ¢ < j. Since 3 was cho-
sen minimally, when we denote the variable component that shows that sig 5(di) <Yex
sigg(d;) by Vi, we know that sigz(d;)[{] = sigg(d;)[¢] for all £ < k and sigg(d;)[k] +
1 = sigg(d;)[k]. With s ;= max{p | p <t & B(v,) = d;}, weseta : {vi,...,vs41} —
D with a(v,.) := B(v,.) forallr < sand a(vsy1 := d;). Again, due to the fixed variable
and value orderings, « is a node that has been fully explored before 3, and dominates
B, which is clear simply by mapping d; to d;. Hence, (3 is also pruned by DSSB. ad

Note that Theorems 2 and 3 together revise Theorem 2 of our [4], where we wrongly
claimed that the two search trees were always identical when the variable and value
orders are fixed. Indeed, we had overlooked the fact that two different levels of consis-
tency were assumed in the two proof directions. Also, part (a) of the proof of Theorem 2
of [4] was unnecessarily complicated; it is replaced by the simpler and more generic
proof of Theorem 2 of the present paper.

In summary, we conclude that dynamic symmetry breaking draws its strength from
its ability to accommodate dynamic variable and value orderings, but causes an unnec-
essary overhead when these orderings are fixed. In this case, static symmetry breaking
offers a much more light-weight method for piecewise symmetric CSPs.

5 Wreath Symmetry

We now wish to extend our ability to accommodate more complex symmetry classes
than piecewise symmetry only. To this end, we consider a class of CSPs that assign a
pair of values (d, d2) from a domain D; X D to each variable, where the values in Dy
are piecewise interchangeable and, for a given value in D1, the values in D, are piece-
wise interchangeable as well. These problems are here called wreath value-symmetric
CSPs, because the symmetry group corresponds to a wreath product of groups [1].
Such problems arise naturally in a variety of applications, e.g., in resource allocation
and scheduling. Consider, for example, the problem of scheduling a meeting where
different groups must meet some day of the week in some room, subject to constraints.

11

Z

(a) (b)

Fig. 3. Permutations on the domain {1, 2} x {1, 2}. With the help of wreath symmetry, we can
express that the permutation (a) is a valid symmetry while (b) is not. Piecewise symmetry does
not allow us to make that distinction.

The days are interchangeable and, on a given day, the rooms are also interchangeable.
Problems like this can be modeled as wreath value-interchangeable CSPs:

Definition 7 (Wreath Bijection). Given two partitions S1 = 3, Shand Sy = v Sz,
let S = S1 X S5 denote their Cartesian product. A bijection 7 : S — S is a wreath
bijection over S1 X Ss if and only if there exists a piecewise bijection 1| over Zp S; and
piecewise bijections 75 over 3 Sg for each s € S, suchthar7((s,t)) = (11(s), 75 (t))-

Definition 8 (Wreath Value Symmetry). Given domain partitions D, = Zp Dll) and
Dy =3, D2, a CSPP = (V,D; x Ds,C) is called wreath value-symmetric CSP if
and only if, for each solution o« € Sol(P) and each wreath bijection T over D1 X Ds,
we have T o o € Sol(P).

Note that the notion of wreath symmetry allows us to tackle much more refined
symmetries than what can be expressed by piecewise symmetries only. In Figure 3, we
show an example that illustrates the increased expressiveness of wreath value symmetry.

6 Dynamic SSB for Wreath Symmetric CSPs

In the following, we present, illustrate, and analyze a dominance detection algorithm
for CSPs with piecewise variable symmetry and wreath value symmetry, simply called
wreath symmetric CSPs hereafter.

6.1 The Dominance Detection Algorithm

Consider a wreath symmetric CSP (}_7_, Vi, D1 x D2, C), with V = {vy,...,v,} =
>, Vi aset of piecewise interchangeable variables and Dy x Ds a set of wreath in-
terchangeable values, with Dy = {dy,...,d;,, } and Dy = {eq,..., e, } each having
piecewise interchangeable elements.

Given partial assignments « and /3, the dominance detection algorithm attempts to
construct a piecewise bijection o over 2221 Vi and piecewise bijections 71 and 75 for

12

Initialize G as the empty graph
for all value components p do
for all values d, e € S, do
if G(d, e) contains a perfect matching then
Add (d,e') to G
end if
end for
end for
Return true if and only if G contains a perfect matching

Algorithm 1: Dominance detection for wreath symmetric CSPs.

all e € D such that a(v) = 70 § o o(v) for all v € scope(w), where T denotes
the wreath bijection based on 7, and the 75. By definition, if the algorithm succeeds in
finding such piecewise bijections, then o« dominates 3. Our algorithm will be based on
the following core observation:

Remark 1. The piecewise bijection 7y can map 71(e;) = d; only if there exists a piece-
wise bijection 75* such that

Hv € Vi | B(v) = (e1,e2)}]

82(61,62) =
> {veVila) = (di, 73" (e2))}| =t s&(d1, 75" (e2))

for all k, where s,’i(a, b) denotes the number of variables in component V4, that partial

assignment -y maps to {(a, b).

Now, for any partial assignment v and values f; € D; and fo € Dj, we define

sig, ((f1, f2)) == (5 (f1, f2)s - -, 85 (f1, f2)).

Then, in order to compute the subset of possible mappings that 7; could make, for each
p and every pair di,e; € D}, our algorithm sets up the bipartite graph with the node
sets Ni(dy,e1) :={d | d € Dy} = Dy and No(dy,eq) := {e’ | e € Dy} as the set of
primed copies of the values in D5, and with the edge set

A(dy, e1) :={(dz, €5) € N1(dy,e1) x Na(dy,e1) |
Jq: da,eq € Dg & sig, ({d1,da)) < sigg((e1,e2))}

With Remark 1, observe that 71 (e1) = d is only ever feasible if a perfect matching in
the bipartite graph G(dy,e1) := (N1(d1,e1) + Na(dy,e1), A(dy,e1)) exists. Conse-
quently, to compute 71, we set up the bipartite graph G := (N + N», A) with the node
sets Ny := {d | d € D1} = Dy and Ny := {¢’ | e € D1} as the set of primed copies
of the values in Dy, and with the edge set

A:={(dy,e}) € Nyx Ny |Ip: dyi,e; € Dzl, & G(d,e1) has a perfect matching}.

The algorithm decides that o dominates /3 if and only if G contains a perfect matching.
The procedure is summarized as Algorithm 1.

13

(€Y . ‘.@ 10 19 00
0,0 |(<22> :— @ (0,0 0,0) 0,0
(10 |(<23>H=------ Ly 0,0 0,0
(0,0) @ <143 (1,0 (0,0 0.1

(a) (b)

Fig. 4. (a) The bipartite graph G(2, 1) constructed to assess whether 7 (1) = 2 is feasible. (b) The
bipartite graph G(3,4) constructed to assess whether 71(4) = 3 is feasible. An edge between
(d1,dz) and (e1,e5) indicates that sig,, ((d1,d2)) < sigg((e1,e2)). The signatures are given
next to the value pairs. The rounded boxes indicate the components of the partition of Ds. Perfect
matchings, if any, are given by the solid edges.

Fig. 5. The first-component bipartite graph G, containing an edge (d, e) for each feasible mapping
71(€) = d. The rounded boxes indicate the components of the partition of D;. As there exists a
perfect matching in G, given by the non-dotted edges, we conclude that o dominates 3.

6.2 Example

Assume we are given a CSP ({v1, v, vz, va}+{vs,v6}, ({1,2}4+{3,4}) x ({1,2,3} +
{4}), C) and partial assignments a« = {v1 — (2,3),v0 — (2,1),v3 — (3,1),v5 —
(2,1)}and 8 = {v1 — (1,4),v2 — (1,1),v3 — (1,3),v4 — (3,2),v5 — (1,3),v6 —
(4,4)}.

Now assume that we consider to have 71 map the first-component value 1 to value 2.
What are, for instance, the signatures of value (2, 3) under « and of value (1, 3) under
(37? We see that «v assigns exactly one variable to (2, 3), and this variable is in compo-
nent {vy, va, v3,v4 }. According to our definition, it therefore holds that sig,, ((2,3)) =
(1,0). On the other hand, 3 assigns two variables to (1,3), one from {vy, vs, v3,v4}
and one from {vs, v6 }. Thus, sigg((1,3)) = (1, 1).

When setting 71 (1) = 2, all the signatures and the entire graph G(2, 1) are shown
in Figure 4(a), which also depicts a perfect matching in G(2, 1), which means that the
edge (2, 1') is part of the first-component graph G, given in Figure 5. In contrast to this

14

existing edge, consider setting 71 (4) = 3. The corresponding graph G(3, 4) is shown in
Figure 4(b): since the node 1 corresponding to value (3, 1) has no adjacent edge at all,
there is no perfect matching in the graph. Indeed, we see that, when setting 71 (4) = 3,
the assignment a(v3) = (3,1) finds no v € {vy,v2,v3,v4} and no e € {1,2,3} such
that 3(v) = (4, €). Consequently, the edge (3,4’) is not part of G. However, we see in
Figure 5 that G contains the perfect matching M = {(1,2'),(2,1),(3,3), (4,4")}.

Now, the perfect matching M on G gives us the bijection 7; such that 7;(1) =
2 (from the edge (2,1")), 71 (2) = 1 (from edge (1,2)), 71(3) = 3, and 7,(4) =
4. Based on this setting, we define 75 based on the perfect matching in G(2,1) by
(1) = 3, 73(2) = 2, 72(3) = 1, and 74 (4) = 4 (see Figure 4). Note that this
assignment implicitly permutes the variables v for which G(v) = (1, ¢e) for some e €
{1,2, 3,4} while obeying the variable components. In our case, we implicitly get the
partial variable bijection o with o (v1) = v4, 0(v2) = v1, 0(v3) = Ve, and o (vs) = vs.
Note that we never actually need to compute the variable bijection o that we get by
combining the individual re-orderings.

6.3 Analysis

With the help of this method for dominance detection via structural symmetry breaking,
we can show:

Theorem 4. The dominance detection problem for CSPs with wreath value symmetry
and piecewise variable symmetry is tractable.

Proof. First, let us show that the algorithm above is correct, i.e., that it does not detect
dominance when there is none. Clearly, the perfect matching M in G gives us a piece-
wise bijection 71 over D; by setting 71(e1) := d; for all (dy,e;) € M. Moreover, for
each edge (di,e1) in M, the corresponding perfect matching in G(dy,e1) gives us a
piecewise bijection 75* over Dy that is consistent with setting 71 (e1) := dy. Note that
75 implicitly assigns one variable from the set {v € Vi, | 3 ez : B(v) = (e1,€2)}
to each variable in {v € Vi, | 3 d2 : a(v) = (di,d2)}. This implies that the im-
plicit variable bijections for all matching edges (d1,e;) in M do not collide as they
map variables from disjoint subsets into disjoint subsets of V. Consequently, we can
construct one global piecewise variable bijection o and one wreath bijection 7 such that
a(v) =Tofoo(v)forall v € scope(a).

Now, regarding the completeness of our algorithm, assume that « actually dom-
inates (3. Denote the corresponding bijections by o, 71, and 75 as before. Under the
piecewise variable bijection o, we find that, for each 7 (e1) = dy, 75" (d2) = es, and
variable component V}, there must exist at least as many variables in V), that o maps
to (dy,ds) as variables in the same V}, that 3 maps to (e, e5). Consequently, we have
that sig,, (d1, d2) < sigg(e1, e2), which implies that 75" defines a perfect matching in
G(dy,e1). Then, for each 71 (e;) = dy, there exists the edge (71, d;) in G, which shows
that G has a perfect matching. Thus, our algorithm finds that o dominates 3.

Finally, we note that at most | Dy |2+ 1 matchings need to be solved by the algorithm.
Consequently, it runs in polynomial time. a

15

Theorem 4 is theoretically strong in that it subsumes many of previously proven
results regarding the tractability of symmetry breaking. As a matter of fact, all the
tractability results on breaking piecewise value and variable symmetry of CSPs con-
sidered in [15] and in [14] follow from Theorem 4. However, from a practical perspec-
tive, the algorithm presented is very costly, especially when compared with constant
overhead methods for breaking only value symmetries like the ones presented in [15].
Consequently, while the point here was to show that, with DSSB, it is even possible to
efficiently handle wreath value symmetry and piecewise variable symmetry, in practice
one is of course well advised to choose the dominance-detection algorithm just so that
it can handle the symmetries that need to be broken.

Note that the dominance checker that we outlined in the proof above can be gen-
eralized for wreath tuples with k& entries. However, the runtime then turns out to be
exponential in k.

7 Static SSB for Full Wreath Symmetric CSPs

We now show that structural symmetry breaking can also be used to devise structural
symmetry-breaking constraints for wreath symmetric CSPs. For simplicity, we do so
only for piecewise variable symmetry and full wreath value symmetry, that is where
Definition 7 is restricted to the case where the underlying piecewise bijections are all
full bijections. We call such CSPs full wreath symmetric CSPs in this paper. It would
be easy to generalize this to piecewise bijections, but we do not do so here to keep the
notation simple.

7.1 Symmetry-Breaking Constraints

Consider a full wreath symmetric CSP (3" _; Vi, D1x Do, C), with V = {v1,...,v,}
22:1 V};, a set of piecewise interchangeable variables and D; x D- a set of wreath in-
terchangeable values, with D1 = {dy,...,d;,, } and Dy = {eq, ..., e, } each having
fully interchangeable elements. Assume a total ordering of the variables V', the elements
D1, and the elements D-. Here are the structural symmetry-breaking constraints:

— For each variable component Vj, = {v,, ..., v,}, there is a variable ordering chain:
Up Slex e Slex Vq (4)

hence a total of n — a lexicographic ordering constraints.
— For each value (d;, e;) and each variable component Vi, = {v,...,v,}, the fre-
quencies
i’fj = [{v e Vi | v € scope(a) & a(v) = (d;,e;)}

under partial assignment « are calculated by the constraints

gcc(vp, <oy Ugy (d1761)7 ey (dm],€m2), flk,la .. -afyl;hmz) (5)

for each V}, hence a total of a global cardinality constraints.

16

— For each element d;, there is an ordering chain for what we call the signatures of
the (d;, e;) values:

(fil,lw"afz%l) Zlex (fi{27"’7f32) ZIEX 2IGX (fi{mg?"‘vfﬁmg) (6)

hence a total of m; chains of my — 1 lexicographic ordering constraints each.
— There is an ordering chain for what we call the compound signatures of the d;

elements:
(fll,lr"'vfil,la f11,25""ff,27) fll,mgv""fﬁmg)
zlcx
(f21,17'"’f2a,17 f21,2""7fél,27 AR f%,mg""afél,mg) (7)
Zlex"'Zlex
(1%11,1%"’ gzl,la f%@l,%"" %1,2’) f71711,m27""f1$7,1,m2)

hence one chain of m; — 1 lexicographic ordering constraints.

Again, we find that the number of constraints added is linear in the size of the problem
(note that m; - my is linear in the input size when the domains are given explicitly), and
yet they are able to break super-exponentially many compositions of variable and value
symmetries as we shall show later in this section.

Note that these constraints specialize into (a specialization for full value symmetry
of) the symmetry-breaking constraints of Section 3.1 for piecewise symmetric CSPs.
Indeed, the compound signature ordering chain (7) is vacuously true when m; = 1
while the signature ordering chains (6) then amount to the single signature ordering
chain (3). Conversely, the signature ordering chains (6) are vacuously true when mo = 1
while the compound signature ordering chain (7) then amounts to the signature ordering
chain (3). In any case, the variable ordering chains (4) trivially specialize into (1) as
we essentially deal with 1-tuples, and the global cardinality constraints (5) trivially
specialize into (2).

Finally, note that the constraints above can be adapted to accommodate piecewise
rather than full wreath value symmetry: The only difference is that the ordering con-
straints (6) and (7) on the signatures then do not apply at value partition boundaries.

7.2 Example

Consider scheduling study groups for ten students divided into two categories of five
indistinguishable students each. There are six tables with four seats each, divided over
two rooms containing three tables each. The rooms are indistinguishable, and, within
each room, all tables are indistinguishable. Let {v1, ..., v5} + {vs, ..., v10} be the set
of piecewise interchangeable variables, one for each student. Let the domain {ry, 72} x
{t1,t2,t3} denote the set of tables, which are wreath interchangeable. The structural

17

symmetry-breaking constraints are:

V1 Slex *** Slex Us

V6 Slex *** Slex V10

gCC(Ul, ..., Us, (T17t1)7 ceey (T27t3), f1171, ceey f2173)

gCC(’UGa -+ 010, (r13t1)7 ceey (7‘2,t3), f12,1’ RS f22,3)

(f11,1af12,1) Zlex (f11,2vf12,2) lex (f11,3af12,3)

(le,laf22,1) Zlex (f21,27f22,2> lex (f21,3af22,3)

(fll,laf12,1’ f11,2af12,2’ f11,37f12,3) Zlex (f21717f22,1? f21727f22,2? f21737f22,3)

Consider the assignment

a={vy — (r1,t1),v2 — (ri,t1), v — (r1,t1),va = (r1,ta2), v5 — (r1,t2),
vg = (T2, t1),v7 = (o, t1), U8 — (T2, t1),v9 — (r2,t2), V10 — (r2,3) }.

The <jox variable ordering constraints are satisfied. Having determined the value fre-
quencies using the gcc constraints, we observe that the >, (compound) signature or-
dering constraints are all satisfied, because

(37 O) zlex (23
(

If we swap the two rooms, producing a symmetrically equivalent assignment, namely

0) Zlex (0)0) & (0,3) zlex (07 1) Zlex (07 1) &
3a05 27()’ 070) Zlex (0737 0717 071)

B =A{v1 — (ro,t1),ve — (ro,t1),v3 — (ra,t1),v4 > (T2, ta),v5 — (ra, t3),
vg > (r1,t1), v7 — (r1,t1),v8 — (r1,t1),v9 — (r1,t2), v10 — (r1,t2)},

the <oy variable ordering constraints are still satisfied, but the > (compound) signa-
ture ordering constraints are now violated, because

(073) zlex (Oa 1) zlex (Oa 1) & (3a0) zlex (230) Zlex (070) &
(0335 07 13 071) ZIex (3703 2707 070)

7.3 Analysis
Analogously to the case of piecewise symmetric CSPs, we find:

Lemma 2. Given a full wreath symmetric CSP (3"} _, Vi, D1x D2, C), and an assign-
ment -y, let the associated multiset of signature multisets be MSM., := {{sig, ((d,e)) |
e € Do} | d € D1} It holds that two assignments « and (3 are symmetric if and only if
MSM,, = MSMs.

Proof. =: Assume « and (3 are symmetric. We observe once more that the permutation
of variables within variable components does not affect the signatures of values.
Then, for each d € D;, the permutation of values in D5 only permutes elements
in {sigz((d,e)) | e € Dz}, which leaves the multiset as a whole unchanged. The
same holds for the permutation of values in D; and MSMg.

18

<: Now assume that MSM, = MSMp. By reversing the previous argument, there
exist a permutation 71 over Dy and for each d € D; a permutation Tg over Dy such
that sig,, ((d, e)) = sigs((T1(d), 75 (e))) and such that {sig,, ((d,e)) | e € Do} =
{sigg((11(d),75(e))) | e € Dy}. Then it is easy to construct o and 7 such that

a=Tofoo.

Equipped with this insight, we can now establish the counterpart of Theorem 1 for
full wreath symmetric CSPs:

Theorem 5. For every solution « to a full wreath symmetric CSP, there exists exactly
one symmetric solution that obeys the structural symmetry-breaking constraints.

Proof. (a) Given a solution «,, we show that there exists at least one symmetrically
equivalent solution that also satisfies all the symmetry-breaking constraints. First, for
each d, determine a full bijection 7¢ : Dy — Dy such that all the lexicographic ordering
constraints (6) on the signatures are satisfied. This can be seen as a wreath bijection
acting as the identity on the first component. Second, determine a full wreath bijection
7 such that all the lexicographic ordering constraints (7) on the compound signatures are
satisfied, the trick at this stage being to carry over the 7¢ bijections obtained in the first
stage. Doing this will not violate any of the already satisfied constraints (6). Finally, we
observe that reordering the variables so that they satisfy all the lexicographic ordering
constraints (4) has no effect on any of the signatures, so there exists a solution o’ that
is symmetric to « and that satisfies all the structural symmetry-breaking constraints.
(b) Now we prove that any two solutions that satisfy all the structural symmetry-
breaking constraints must be identical. According to Lemma 2, there is a fixed multiset
of signature multisets MISM., for all solutions that are symmetric to solution -y. How-
ever, for all d € Dj, the elements in the signature multiset {sig, ((d,e)) | e € Ds}
are ordered by the lexicographic ordering constraints (6) on the value signatures. More-
over, the lexicographic ordering constraints (7) on the compound signatures enforce an
ordering of all the elements in MSM,,. In combination with the variable ordering con-
straints (4), there is but one assignment that fulfils all these constraints for each fixed
multiset of signature multisets MSM.,. O

8 Conclusions

We have shown the great power of structural symmetry breaking on complex cases of
simultaneous value and variable interchangeability in CSPs. The results on dynamic
symmetry breaking are theoretically significant in that they subsume many of previ-
ously proven results regarding the tractability of dominance detection. From a practical
perspective, the dynamic algorithms presented are very costly, though, especially when
compared with constant-overhead methods for breaking only value symmetries like the
ones presented in [15]. Consequently, we have exploited the idea of structural symme-
try breaking to devise sets of symmetry-breaking constraints that simultaneously break
all the compositions of piecewise variable and piecewise or wreath value symmetries.
To our knowledge, these are the first identified classes of symmetries for CSPs where a
polynomial, yet even a linear number of static symmetry breaking constraints suffices

19

to break a super-exponential number of variable and value symmetries. We have then
shown that, in case of static variable and value orderings, the search tree explored by
static structural symmetry breaking (SSSB) is a subtree of the one explored by dynamic
structural symmetry breaking (DSSB) when we achieve hyper-arc consistency for the
conjunction of symmetry breaking constraints, and that the DSSB search tree is a sub-
tree of the SSSB tree when we use constraints for pruning purposes only. Note that the
first result implies that SSSB is, in principle, able to guarantee symmetry-free search
trees. This is a clear indication that using SSSB is the way to go whenever fixed variable
and value orderings can be expected to work well.

With respect to future work, the following questions arise. Can hyper-arc consis-
tency be enforced in polynomial time on the considered conjunctions of symmetry-
breaking constraints? Can we find general conditions under which a static symmetry-
breaking method leads to symmetry-free search trees? Can static structural symmetry
breaking be usefully combined with the dynamic lexicographic ordering constraints
of [11]?

Acknowledgements:

The authors are partly supported by grant IG2001-67 of STINT, the Swedish Foun-
dation for International Cooperation in Research and Higher Education. Meinolf Sell-
mann is supported by the National Science Foundation through the Career: Cornflower
Project (NSF award number 0644113). Many thanks to Pascal Van Hentenryck, who
co-authored a previous version of this paper [4], for his comments on this version. Fi-
nally, we appreciate the constructive feedback by Barbara Smith, Chris Jefferson, and
the anonymous referees of [4].

References

1. P. Cameron. Permutation Groups. Number 45 in London Mathematical Society Student
Texts. Cambridge University Press, 1999.

2. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. In Proceedings of KR’96, pages 148—159. Morgan Kaufmann, 1996.

3. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh, editor, Pro-
ceedings of CP’01, volume 2239 of LNCS, pages 93—107. Springer-Verlag, 2001.

4. P. Flener, J. Pearson, M. Sellmann, and P. Van Hentenryck. Static and dynamic structural
symmetry breaking. In F. Benhamou, editor, Proceedings of CP’06, volume 4204 of LNCS,
pages 695-699. Springer-Verlag, 2006.

5. F. Focacci and M. Milano. Global cut framework for removing symmetries. In T. Walsh,
editor, Proceedings of CP’01, volume 2239 of LNCS, pages 77-92. Springer-Verlag, 2001.

6. L. P. Gent and B. M. Smith. Symmetry breaking during search in constraint programming.
In Proceedings of ECAI’00, pages 599-603, 2000.

7. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems. In J. Ko-
morowski and Z. Ras, editors, Proceedings of ISMIS’93, volume 689 of LNAI, pages 350—
361. Springer-Verlag, 1993.

8. J.-F. Puget. Constraint programming next challenge: Simplicity of use. In M. Wallace, editor,
Proceedings of CP’04, volume 3258 of LNCS, pages 5-8. Springer-Verlag, 2004.

20

10.

11.

12.

13.

14.

15.

16.

. J.-F. Puget. Automatic detection of variable and value symmetries. In P. van Beek, editor,

Proceedings of CP’05, volume 3709 of LNCS, pages 475—489. Springer-Verlag, 2005.

J.-F. Puget. An efficient way of breaking value symmetries. In Proceedings of AAAI'06.
AAAI Press, 2006.

J.-F. Puget. Dynamic lex constraints. In F. Benhamou, editor, Proceedings of CP’06, volume
4204 of LNCS, pages 453-467. Springer-Verlag, 2006.

J.-C. Régin. Generalized arc-consistency for global cardinality constraint. In Proceedings of
AAAI'96, pages 209-215. AAAI Press, 1996.

C. M. Roney-Dougal, I. P. Gent, T. Kelsey, and S. Linton. Tractable symmetry breaking
using restricted search trees. In R. L. de Mantaras and L. Saitta, editors, Proceedings of
ECAI'04, pages 211-215. 10S Press, 2004.

M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In Proceedings of
IJCAI’05. 2005.

P. Van Hentenryck, P. Flener, J. Pearson, and M. Agren. Tractable symmetry breaking for
CSPs with interchangeable values. In Proceedings of IJCAI’03, pages 277-282. Morgan
Kaufmann, 2003.

P. Van Hentenryck, P. Flener, J. Pearson, and M. Agren. Compositional derivation of sym-
metries for constraint satisfaction. In J.-D. Zucker and L. Saitta, editors, Proceedings of
SARA’05, volume 3607 of LNCS, pages 234-247. Springer-Verlag, 2005.

21

