Skip to main content
Log in

A description logic based situation calculus

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We consider a modified version of the situation calculus built using a two-variable fragment of the first-order logic extended with counting quantifiers. We mention several additional groups of axioms that can be introduced to capture taxonomic reasoning. We show that the regression operator in this framework can be defined similarly to regression in Reiter’s version of the situation calculus. Using this new regression operator, we show that the projection and executability problems (the important reasoning tasks in the situation calculus) are decidable in the modified version even if an initial knowledge base is incomplete. We also discuss the complexity of solving the projection problem via regression in this modified language in general. Furthermore, we define description logic based sub-languages of our modified situation calculus. They are based on the description logics \(\mathcal{ALCO}(U)\) (or \(\mathcal{ALCQO}(U)\), respectively). We show that in these sub-languages solving the projection problem via regression has better computational complexity than in the general modified situation calculus. We mention possible applications to formalization of Semantic Web services and some connections with reasoning about actions based on description logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30(1–4), 171–210 (2001)

    MathSciNet  Google Scholar 

  2. Baader, F., Lutz, C., Miliĉić, M., Sattler, U., Wolter, F.: A description logic based approach to reasoning about web services. In: Proceedings of the WWW 2005 Workshop on Web Service Semantics (WSS2005). Chiba City, Japan (2005)

  3. Baader, F., Lutz, C., Miliĉić, M., Sattler, U., Wolter, F.: Integrating description logics and action formalisms: first results. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), pp. 572–577. Pittsburgh, PA, USA (2005)

  4. Baader, F., Miličić, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description logics and action formalisms for reasoning about web services. Technical Report LTCS-05-02, Chair for Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology, Germany (2005). Available at http://lat.inf.tu-dresden.de/research/reports.html

  5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd Edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  6. Bacchus, F., Halpern, J., Levesque, H.: Reasoning about noisy sensors and effectors in the situation calculus. Artif. Intell. 111, 171–208 (1999)

    Article  MathSciNet  Google Scholar 

  7. van Benthem, J.: Modal correspondence theory. Ph.D. thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam (see also van Benthem, J.: Correspondence theory. In: Gabbay, D.M. Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 3, pp. 325–408. Kluwer Academic, Norwell, 1976)

  8. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Naples (1985)

    Google Scholar 

  9. Berardi, D., Calvanese, D., de Giacomo, G., Lenzerini, M., Mecella, M.: e-service composition by description logics based reasoning. In: Calvanese, D., de Giacomo, G., Franconi, E. (eds.) Proceedings of the 2003 International Workshop in Description Logics (DL-2003). Rome, Italy (2003)

  10. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–84. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  11. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic, Springer, ISBN 3-540-42324-9, 2nd printing, 2001 (1997)

  12. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82(1–2), 353–367 (1996)

    Article  MathSciNet  Google Scholar 

  13. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level robot programming in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI’00), pp. 355–362. Austin, Texas (2000)

  14. Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Turhan, A.Y., Tessaris, S. (eds.): In: Proceedings of the 2007 International Workshop on Description Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8–10 June 2007, CEUR Workshop Proceedings, vol. 250 (2007). http://ceur-ws.org/Vol-250/

  15. Calvanese, D., de Giacomo, G., Lenzerini, M., Rosati, R.: Actions and programs over description logic ontologies. In: [14] (2007)

  16. Castilho, M.A., Herzig, A., Varzinczak, I.J.: It depends on the context! a decidable logic of actions and plans based on a ternary dependence relation. In: Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-02), pp. 343–348, Toulouse, France, 19–21 April 2002

  17. Chang, L., Lin, F., Shi, Z.: A dynamic description logic for representation and reasoning about actions. In: Zhang, Z., Siekmann, J.H. (eds.) Knowledge Science, Engineering and Management, Second International Conference, KSEM 2007. Lecture Notes in Computer Science, vol. 4798, pp. 115–127, Springer, Melbourne, Australia, 28–30 November 2007

    Google Scholar 

  18. Chang, L., Shi, Z., Qiu, L., Lin, F.: Dynamic description logic: embracing actions into description logic. In: [14] (2007)

  19. Demolombe, R.: Belief change: from situation calculus to modal logic. J. Appl. Non-Class. Log. 13(2), 187–198 (2003)

    Article  Google Scholar 

  20. Demolombe, R., Herzig, A., Varzinczak, I.J.: Regression in modal logic. J. Appl. Non-Class. Log. 13(2), 165–185 (2003)

    Article  Google Scholar 

  21. Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI-2007. Lecture Notes in Computer Science, vol. 4667, pp. 68–83. Springer, Berlin (2007)

    Google Scholar 

  22. Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 418–423. Professional Book Center (2005)

  23. Finzi, A., Pirri, F., Reiter, R.: Open world planning in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00), pp. 754–760. Austin, Texas, USA (2000)

  24. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  25. Gabbay, D.: Expressive functional completeness in tense logic. In: Mönnich, U. (ed.) Aspects of Philosophical Logic: Some Logical Forays into Central Notions of Linguistics and Philosophy, “Synthese Library”, vol. 147, pp. 91–117. Reidel (1981)

  26. Gabbay, D.M., Shehtman, V.B.: Products of modal logics, part 1. Log. J. IGPL 6(1), 73–146 (1998)

    Article  MathSciNet  Google Scholar 

  27. Gabbay, D.M., Shehtman, V.B.: Products of modal logics. Part 2: relativised quantifiers in classical logic. Log. J. IGPL 8(2), 165–210 (2000)

    Article  MathSciNet  Google Scholar 

  28. Gabbay, D.M., Shehtman, V.B.: Products of modal logics. Part 3: products of modal and temporal logics. Stud. Log. 72(2), 157–183 (2002)

    Article  MathSciNet  Google Scholar 

  29. de Giacomo, G., Lenzerini, M.: PDL-based framework for reasoning about actions. In: Gori, M., Soda, G. (eds.) Lecture Notes in Computer Science, vol. 992, pp. 103–114. AIIA, Springer, Berlin (1995)

    Google Scholar 

  30. de Giacomo, G., Iocchi, L., Nardi, D., Rosati, R.: A theory and implementation of cognitive mobile robots. J. Log. Comput. 9(5), 759–785 (1999)

    Article  Google Scholar 

  31. de Giacomo, G., Lenzerini, M., Poggi, A., Posati, R.: On the update of description logic ontologies at the instance level. In: Proceedings of the 21st National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI-06), pp. 1271–1276. AAAI Press, Boston, US (2006)

    Google Scholar 

  32. Gil, Y.: Description logics and planning. AI Mag. 26(2), 73–84 (2005)

    Google Scholar 

  33. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bull. Symb. Log. 3(1), 53–69 (1997)

    Article  Google Scholar 

  34. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pp. 306–317. Warsaw, Poland (1997)

  35. Grüninger, M.: Ontology of the process specification language. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 575–592. Springer, Berlin (2004)

    Google Scholar 

  36. Grüninger, M., Menzel, C.: The process specification language (PSL): theory and applications. AI Mag. 24(3), 63–74 (2003)

    Google Scholar 

  37. Gu, Y., Soutchanski, M.: Decidable reasoning in a modified situation calculus. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pp. 1891–1897. Hyderabad, India (2007). http://www.cs.ryerson.ca/~mes/publications/DecidableSitcalc_ijcai07.pdf

  38. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT, Cambridge (2000)

    Google Scholar 

  39. Hemaspaandra, E.: The price of universality. Notre Dame J. Form. Log. 37(2), 174–203 (1996)

    Article  MathSciNet  Google Scholar 

  40. Henkin, L.: Logical systems containing only a finite number of symbols. Tech. rep., Départment de Mathématiques, Université de Montréal, Les Presses de l’Université de Montréal (1967)

  41. Herzig, A., Varzinczak, I.J.: Metatheory of actions: beyond consistency. Artif. Intell. 171(16–17), 951–984 (2007)

    Article  MathSciNet  Google Scholar 

  42. Herzig, A., Perrussel, L., Varzinczak, I.J.: Elaborating domain descriptions. In: Brewka, G. (ed.) 17th European Conference on Artificial Intelligence (ECAI-06). Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 397–401, IOS Press, Riva del Garda, Italy, 29 August–1 September 2006

    Google Scholar 

  43. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 199–204. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  44. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

    Google Scholar 

  45. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06), pp. 57–67. AAAI, Menlo Park (2006)

    Google Scholar 

  46. Hustadt, U., de Nivelle, H., Schmidt, R.A.: Resolution-based methods for modal logics. Log. J. IGPL 8(3), 265–292 (2000)

    Article  MathSciNet  Google Scholar 

  47. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments and description logics. J. Relat. Methods Comput. Sci. 1, 251–276 (2004)

    Google Scholar 

  48. Kakas, A.C., Michael, L., Miller, R.: Modular-\(\mathcal{E}\): an elaboration tolerant approach to the ramification and qualification problems. In: Baral, C., Greco, G., Leone, N., Terracina G. (eds.) Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-05), Springer. Lecture Notes in Computer Science, vol. 3662, pp. 211–226, Diamante, Italy, 5–8 September 2005

  49. Kemke, C.: A formal theory for describing action concepts in terminological knowledge bases. In: Xiang Y., Chaib-draa, B. (eds.) Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science, vol. 2671, pp. 458–465, 11–13 June 2003, Springer, Halifax (2003)

    Google Scholar 

  50. Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 869–924. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  51. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–84 (1997)

    Article  Google Scholar 

  52. Lin, F.: Discovering state invariants. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.), pp. 536–544. KR, AAAI, Menlo Park (2004)

  53. Lin, F.: Situation calculus. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 649–669. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  54. Lin, F., Reiter, R.: State constraints revisited. J. Log. Comput. 4(5), 655–678 (1994)

    Article  MathSciNet  Google Scholar 

  55. Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92, 131–167 (1997)

    Article  MathSciNet  Google Scholar 

  56. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description logics with general TBoxes. In: Fisher, M., van der, Hoek, W., Konev, B., Lisitsa, A. (eds.) Logics in Artificial Intelligence, 10th European Conference. Lecture Notes in Computer Science, vol. 4160, pp. 266–279. JELIA, Springer, Berlin (2006)

    Chapter  Google Scholar 

  57. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Updating description logic ABoxes. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR-06), pp 46–56. AAAI, Menlo Park (2006)

    Google Scholar 

  58. Liu, Y., Lakemeyer, G.: On first-order definability and computability of progression for local-effect actions and beyond. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pp. 860–866. Pasadena, USA (2009)

  59. Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 522–527. Edinburgh, Scotland (2005)

    Google Scholar 

  60. Lutz, C., Sattler, U.: The complexity of reasoning with Boolean modal logics. In: Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp. 329–348. World Scientific, Singapore (2000)

    Google Scholar 

  61. Lutz, C, Sattler, U., Wolter, F.: Description logics and the two-variable fragment. In: McGuiness, D., Pater-Schneider, P., Goble, C., Möller, R. (eds.) Proceedings of the 2001 International Workshop in Description Logics (DL-2001), pp. 66–75. Stanford, California, USA (2001)

    Google Scholar 

  62. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pp. 1978–1984, 20–25 August 1995, Montréal, Québec, Canada (1995)

  63. McCarthy, J.: Programs with common sense. In: Mechanisation of Thought Processes, Proceedings of the Symposium of the National Physics Laboratory, Her Majesty’s Stationery Office. Reprinted in [66], pp. 77–84. London, U.K. (1959)

  64. McCarthy, J.: Situations, actions and causal laws. Memo 2, Stanford University, Department of Computer Science, reprinted in: “Semantic Information Processing” (M. Minsky, ed.), pp. 410–417. MIT, Cambridge (1963)

    Google Scholar 

  65. McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artif. Intell. 28, 89–116 (1986)

    Article  MathSciNet  Google Scholar 

  66. McCarthy, J.: Formalization of common sense. Ablex, Norwood (papers by John McCarthy edited by V. Lifschitz, 1990)

  67. McCarthy, J.: Actions and other events in situation calculus. In: Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR2002), pp. 615–628. Morgan Kaufmann Publishers, Toulouse (2002). Available at http://www-formal.stanford.edu/jmc/sitcalc.html

    Google Scholar 

  68. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edinburgh University Press, Edinburgh, Reprinted in [66] (1969)

    Google Scholar 

  69. McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.A. (eds.) Proceedings of the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), pp. 482–493, Morgan Kaufmann, Toulouse, 22–25 April 2002

    Google Scholar 

  70. McIlraith, S.A.: Integrating actions and state constraints: a closed-form solution to the ramification problem (sometimes). Artif. Intell. 116(1–2), 87–121 (2000)

    Article  MathSciNet  Google Scholar 

  71. Miličić, M.: Complexity of planning in action formalisms based on description logics. In: Dershowitz, N., Voronkov, A. (eds.) Proceedings of the 14th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2007). Lecture Notes in Computer Science, vol. 4790, pp. 408–422. Springer, Berlin (2007)

    Google Scholar 

  72. Morgenstern, L., Riecken, D.: SNAP: An action-based ontology for e-commerce reasoning. In: Formal Ontologies Meet Industry, Proceedings of the 1st International Workshop FOMI 2005. Verona, Italy (2005)

  73. Narayanan, S., McIlraith S.: Analysis and simulation of web services. Comput. Networks 42, 675–693 (2003)

    Article  Google Scholar 

  74. de Nivelle, H., Pratt-Hartmann, I.: A resolution-based decision procedure for the two-variable fragment with equality. In: R Goré, A.L., Nipkow, T. (eds.) IJCAR’01: Proceedings of the First International Joint Conference on Automated Reasoning. Lecture Notes in Artificial Intelligence, vol. 2083, pp. 211–225. Springer, London (2001)

    Google Scholar 

  75. Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued nonclassical logics in classical logic. In: Handbook of automated reasoning, pp. 1403–1486. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  76. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS-97), pp. 318–327. A journal version: SIAM J. Comput. 29(4), 1083–1117 (1999). Warsaw, Poland (1997)

  77. Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order two-variable logic with counting. SIAM J. Comput. 29(4), 1083–1117 (2000)

    Article  MathSciNet  Google Scholar 

  78. Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. J. ACM 46(3), 325–364 (1999)

    Article  MathSciNet  Google Scholar 

  79. Pratt, V.R.: A practical decision method for propositional dynamic logic: preliminary report. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 326–337. ACM, San Diego (1978)

    Google Scholar 

  80. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. Logic, Lang. Inf. 14(3), 369–395 (2005). doi:10.1007/s10849-005-5791-1

    Article  MathSciNet  Google Scholar 

  81. Prendinger, H., Schurz, G.: Reasoning about action and change: a dynamic logic approach. J. Logic, Lang. Inf. 5(2), 209–245 (1996)

    Article  MathSciNet  Google Scholar 

  82. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems. MIT, Cambridge (2001)

    Google Scholar 

  83. Sandewall, E.: Features and Fluents: The Representation of Knowledge about Dynamical Systems. Oxford University Press, Oxford (1994)

    Google Scholar 

  84. Schaerf, A.: Reasoning with individuals in concept languages. Data Knowl. Eng. 13(2), 141–176 (1994)

    Article  Google Scholar 

  85. Schiffel, S., Thielscher M.: Reconciling situation calculus and fluent calculus. In: 21st National Conference on Artificial Intelligence (AAAI-2006), pp. 287–292. AAAI, Boston (2006)

    Google Scholar 

  86. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pp. 466–471. Morgan Kaufmann, Sydney (1991)

    Google Scholar 

  87. Schmidt, R.A., Tishkovsky, D.: Deciding ALBO with tableau. In: [14] (2007)

  88. Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint Conference (IJCAR-08). Lecture Notes in Computer Science, vol. 5195, pp. 194–209. Springer, Sydney, 12–15 August 2008

    Google Scholar 

  89. Schmidt-Schaubß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)

    Article  Google Scholar 

  90. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia. MIT, Cambridge (1997)

    Google Scholar 

  91. Spaan, E.: Complexity of modal logics. Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam (1993)

  92. Thielscher, M.: Challenges for Action Theories. Lecture Notes in Computer Science, vol. 1775. Springer, Berlin (2000)

    Google Scholar 

  93. Tobies, S.: A NExpTime-complete description logic strictly contained in C2. In: Flum, J, Rodríguez-Artalejo M (eds.) Computer Science Logic, 13th International Workshop (CSL-99). Lecture Notes in Computer Science, vol. 1683, pp. 292–306. Springer, Berlin (1999)

    Google Scholar 

  94. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. 12, 2000 (2000)

    MathSciNet  Google Scholar 

  95. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)

  96. Varzinczak, I.J.: Action theory contraction and minimal change. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference (KR-2008), pp. 651–661. AAAI, Menlo Park (2008)

    Google Scholar 

  97. Vassos, S., Lakemeyer, G., Levesque, H.J.: First-order strong progression for local-effect basic action theories. In: Proceedings of 11th International Conference on Principles of Knowledge Representation and Reasoning (KR-08), pp. 662–672, Sydney, Australia, 16–19 September 2008

  98. Winslett, M.S.: Updating Logical Databases. Academic, San Diego (1990)

    Book  Google Scholar 

  99. Wolter, F., Zakharyaschev, M.: Dynamic description logics. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 2, pp. 431–446. CSLI, Stanford (1998)

    Google Scholar 

  100. Zolin, E.: Description logic complexity navigator (2007). Available at http://www.cs.man.ac.uk/~ezolin/dl/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Soutchanski, M. A description logic based situation calculus. Ann Math Artif Intell 58, 3–83 (2010). https://doi.org/10.1007/s10472-010-9176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-010-9176-z

Keywords

Mathematics Subject Classification (2000)

Navigation