Skip to main content
Log in

Geometry of relative plausibility and relative belief of singletons

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The study of the interplay between belief and probability can be posed in a geometric framework, in which belief and plausibility functions are represented as points of simplices in a Cartesian space. Probability approximations of belief functions form two homogeneous groups, which we call “affine” and “epistemic” families. In this paper we focus on relative plausibility, belief, and uncertainty of probabilities of singletons, the “epistemic” family. They form a coherent collection of probability transformations in terms of their behavior with respect to Dempster’s rule of combination. We investigate here their geometry in both the space of all pseudo belief functions and the probability simplex, and compare it with that of the affine family. We provide sufficient conditions under which probabilities of both families coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, M.: Approximation algorithms and decision making in the Dempster–Shafer theory of evidence—an empirical study. Int J Approx Reason 17, 217–237 (1997)

    Article  MATH  Google Scholar 

  2. Black, P.: Geometric structure of lower probabilities. In: Goutsias, Malher, Nguyen (eds.) Random Sets: Theory and Applications, pp. 361–383. Springer, New York (1997)

    Google Scholar 

  3. Chateauneuf, A., Jaffray J.: Some characterization of lower probabilities and other monotone capacities through the use of Moebius inversion. Math. Soc. Sci. 17, 263–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cobb, B.R., Shenoy P.P.: A comparison of Bayesian and belief function reasoning. Inf. Syst. Front. 5(4), 345–358 (2003)

    Article  Google Scholar 

  5. Cobb, B.R., Shenoy P.P.: A comparison of methods for transforming belief function models to probability models. In: Proceedings of ECSQARU’2003, pp. 255–266. Aalborg, Denmark (2003)

  6. Cuzzolin, F.: Dual properties of the relative belief of singletons. In: Proceedings of the Tenth Pacific Rim Conference on Artificial Intelligence (PRICAI’08), Hanoi, Vietnam, 15–19 December 2008

  7. Cuzzolin, F.: A geometric approach to the theory of evidence. IEEE Trans. Syst. Man Cybern., Part C 38(4), 522–534 (2008)

    Article  Google Scholar 

  8. Cuzzolin, F.: Semantics of the relative belief of singletons. In: Workshop on Uncertainty and Logic, Kanazawa, Japan, 25–28 March 2008

  9. Cuzzolin, F.: The intersection probability and its properties. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), Lecture Notes in Computer Science, vol. 5590/2009, pp. 287–298. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  10. Cuzzolin, F.: Dual properties of the relative belief of singletons. In: PRICAI 2008: Trends in Artificial Intelligence, Lecture Notes in Computer Science, vol. 5351/2008, pp. 78–90. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  11. Cuzzolin, F.: Three alternative combinatorial formulations of the theory of evidence. J. Intell. Data Anal. (2010, in press)

  12. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex geometry. IEEE Trans. Syst. Man Cybern., Part B 37(4), 993–1008 (2007)

    Article  Google Scholar 

  13. Cuzzolin, F.: Geometry of upper probabilities. In: Proceedings of ISIPTA’03, Lugano, Switzerland, pp. 188–203 (2003)

  14. Daniel, M.: On transformations of belief functions to probabilities. Int. J. Intell. Syst. 21(3), 261–282 (2006)

    Article  MATH  Google Scholar 

  15. Dempster, A.: A generalization of Bayesian inference. J. R. Stat. Soc., Ser. B 30, 205–247 (1968)

    MathSciNet  Google Scholar 

  16. Dempster, A.: Upper and lower probabilities generated by a random closed interval. Ann. Math. Stat. 39, 957–966 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Denoeux, T.: Inner and outer approximation of belief structures using a hierarchical clustering approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9(4), 437–460 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Denoeux, T., Yaghlane A.B.: Approximating the combination of belief functions using the fast Moebius transform in a coarsened frame. Int. J. Approx. Reason. 31(1–2), 77–101 (2002)

    Article  MATH  Google Scholar 

  19. Dubois, D., Prade H.: Consonant approximations of belief functions. Int. J. Approx. Reason. 4, 419–449 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ha, V., Haddawy P.: Theoretical foundations for abstraction-based probabilistic planning. In: Proc. of the 12th Conference on Uncertainty in Artificial Intelligence, pp. 291–298 (1996)

  21. Haenni, R., Lehmann N.: Resource bounded and anytime approximation of belief function computations. Int. J. Approx. Reason. 31(1–2), 103–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kramosil, I.: Approximations of believability functions under incomplete identification of sets of compatible states. Kybernetika 31, 425–450 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Lowrance, J.D., Garvey T.D., Strat T.M.: A framework for evidential-reasoning systems. In: A. A. for Artificial Intelligence (ed.) Proceedings of the National Conference on Artificial Intelligence, pp. 896–903 (1986)

  24. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  25. Smets, P.: Belief functions versus probability functions. In: Bouchon B., S.L., Y. R. (eds.) Uncertainty and Intelligent Systems, pp. 17–24. Springer, Berlin (1988)

    Google Scholar 

  26. Smets, P.: The canonical decomposition of a weighted belief. In: Proceedings of IJCAI’95, Montréal, Canada, pp. 1896–1901 (1995)

  27. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approx. Reason. 38(2), 133–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Smets, P., Kennes R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artif. Intell. 61(2), 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  30. Vakili: Approximation of hints. Technical report, Institute for Automation and Operation Research, University of Fribourg, Switzerland, Tech. Report 209 (1993)

  31. Voorbraak, F.: A computationally efficient approximation of Dempster–Shafer theory. Int. J. Man-Machine Stud. 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  32. Yaghlane, A.B., Denoeux T., Mellouli K.: Coarsening approximations of belief functions. In: Benferhat S., Besnard P. (eds.) Proceedings of ECSQARU’2001, pp. 362–373 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cuzzolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuzzolin, F. Geometry of relative plausibility and relative belief of singletons. Ann Math Artif Intell 59, 47–79 (2010). https://doi.org/10.1007/s10472-010-9186-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-010-9186-x

Keywords

Mathematics Subject Classifications (2010)

Navigation