Skip to main content
Log in

Improving the anytime behavior of two-phase local search

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Algorithms based on the two-phase local search (TPLS) framework are a powerful method to efficiently tackle multi-objective combinatorial optimization problems. TPLS algorithms solve a sequence of scalarizations, that is, weighted sum aggregations, of the multi-objective problem. Each successive scalarization uses a different weight from a predefined sequence of weights. TPLS requires defining the stopping criterion (the number of weights) a priori, and it does not produce satisfactory results if stopped before completion. Therefore, TPLS has poor “anytime” behavior. This article examines variants of TPLS that improve its “anytime” behavior by adaptively generating the sequence of weights while solving the problem. The aim is to fill the “largest gap” in the current approximation to the Pareto front. The results presented here show that the best adaptive TPLS variants are superior to the “classical” TPLS strategies in terms of anytime behavior, matching, and often surpassing, them in terms of final quality, even if the latter run until completion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  3. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  4. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res. 15(3), 483–495 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Effective hybrid stochastic local search algorithms for biobjective permutation flowshop scheduling. In: Blesa, M.J., Blum C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 5818, pp 100–114. Springer, Heidelberg (2009)

    Google Scholar 

  6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Adaptive “anytime” two-phase local search. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization, 4th International Conference, LION 4, Lecture Notes in Computer Science, vol. 6073, pp. 52–67. Springer, Heidelberg (2010)

    Google Scholar 

  7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Supplementary Material: Improving the Anytime Behavior of Two-Phase Local Search. http://iridia.ulb.ac.be/supp/IridiaSupp2010-012 (2010)

  8. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ehrgott, M., Gandibleux, X.: Approximative solution methods for combinatorial multicriteria optimization. TOP 12(1), 1–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A., Corne, D. (eds.) Evolutionary Multi-criterion Optimization (EMO 2001). Lecture Notes in Computer Science, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)

    MATH  Google Scholar 

  14. Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included. Nav. Res. Logist. Q. 1, 61–68 (1954)

    Article  Google Scholar 

  15. Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

    Article  Google Scholar 

  16. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222. Springer, Berlin (2010)

    Google Scholar 

  17. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics 16(3), 475–510 (2010)

    Article  MATH  Google Scholar 

  18. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)

    Article  MathSciNet  Google Scholar 

  19. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca. C.M., et al. (eds.) Evolutionary Multi-criterion Optimization (EMO 2003). Lecture Notes in Computer Science, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: a review. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, pp. 29–1—29–15. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  21. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–200. Springer(2004)

  23. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

    Article  MATH  Google Scholar 

  24. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)

    Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Dubois-Lacoste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois-Lacoste, J., López-Ibáñez, M. & Stützle, T. Improving the anytime behavior of two-phase local search. Ann Math Artif Intell 61, 125–154 (2011). https://doi.org/10.1007/s10472-011-9235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-011-9235-0

Keywords

Mathematics Subject Classification (2010)

Navigation