
 

 

 
Citation for published version 
 
Guimarans, D., Herrero, R., Riera-Terrén, D., Juan, A.A. & Ramos, J. 
(2011). Combining probabilistic algorithms, Constraint Programming and 
Lagrangian Relaxation to solve the vehicle routing problem. Annals of 
Mathematics and Artificial Intelligence, 62(3), 299-315. 
 
 
DOI 
https://doi.org/10.1007/s10472-011-9261-y 
 
Document Version 

 
This is the Submitted Manuscript version. 
The version in the Universitat Oberta de Catalunya institutional repository, 
O2 may differ from the final published version. 
 
 
Copyright and Reuse 
 
This manuscript version is made available under the terms 
of the Creative Commons Attribution Non Commercial  No Derivatives 
licence (CC-BY-NC-ND) 
http://creativecommons.org/licenses/by-nc-nd/3.0/es/​, which permits 
others to download it and share it with others as long as they credit you, 
but they can’t change it in any way or use them commercially. 
 
 
Enquiries 
 
If you believe this document infringes copyright, please contact the 
Research Team at: repositori@uoc.edu 
 

                           

 

Universitat Oberta de Catalunya  Research archive 
 

 
 

https://doi.org/10.1007/s10472-011-9261-y
http://creativecommons.org/licenses/by-nc-nd/3.0/es/


Noname manuscript No.
(will be inserted by the editor)

Combining Probabilistic Algorithms, Constraint
Programming and Lagrangian Relaxation to solve the
Vehicle Routing Problem

Daniel Guimarans · Rosa Herrero · Daniel

Riera · Angel A. Juan · Juan José Ramos
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Abstract This paper presents an original hybrid approach to solve the Capacitated

Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm

with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introduc-

ing the CVRP and reviewing the existing literature on the topic, the paper proposes an

approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm.

Given a CVRP instance, this algorithm uses a randomized version of the classical

Clarke and Wright Savings constructive heuristic to generate a starting solution. This

starting solution is then improved through a local search process which combines: (a)

LR to optimise each individual route, and (b) CP to quickly verify the feasibility of

new proposed solutions. The efficiency of our approach is analysed after testing some

well-known CVRP benchmarks. Benefits of our hybrid approach over already existing

approaches are also discussed. In particular, the potential flexibility of our methodology

is highlighted.
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08193 Cerdanyola del Vallès (Barcelona), Spain
Tel.: +34 - 93 581 3025
Fax: +34 - 93 581 4031
E-mail: Daniel.Guimarans@uab.cat

Rosa Herrero
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1 Introduction

The growing flows of freight have been a fundamental component of contemporary

changes in economic systems at the global, regional and local scales. Road transporta-

tion is nowadays the predominant way of transporting goods in many parts of the

world. Direct costs associated with road transportation have experienced a significant

increase in the last decade due to the rise of oil price, among other economical factors.

Furthermore, road transportation faces new challenges related to other indirect or ex-

ternal related costs, which usually are easily observable —noise, pollution, accidents,

etc.— but difficult to quantify. The role of transport and logistics as an economic sec-

tor can not be nowadays neglected since new modes of production are concomitant

with new modes of distribution. Achieving flexible, efficient and sustainable routing is

a complex strategy requiring a high level of logistical integration to properly respond

to variations of the freight transport demand. The necessity for optimizing the road

transportation affects to both the public and the private sectors, and constitutes a

major challenge for most industrialized regions.

The Vehicle Routing Problem (VRP) provides a theoretical framework for ap-

proaching the class of logistic problems dealing with physical distribution. This is

among the most popular research areas in combinatorial optimization. It was first de-

fined by Dantzig and Ramser in 1959 [Dantzig and Ramser(1959)], and several variants

of the basic problem have been proposed and studied later. These variants represent

different types of operational constraints such as, for instance, time windows, pick up

and delivery, heterogeneous fleets or multi-depot problems.

From the industrial applicability perspective, the VRP characterizes a family of

different distribution problems which, one way or another, are present in real industrial

problems. However, in most of the application cases none of the classical VRP variants

can represent uniquely the real problem. That is, a combination of different operational

constraints are present in many realistic cases. In this scenario, it becomes evident the

need of developing new methods, models and systems to give support to the decision-

making process so that optimal strategies can be chosen in physical distribution, in

particular, in road transportation.

This paper presents an original hybrid approach to solve the VRP. This method-

ology has been especially designed for being flexible in the sense that it can be used,

with minor adaptations, for solving different variants of the VRP present in industrial

application cases. The approach is based on the classical decomposition into two sub-

problems: a resource allocation problem (to fit operational constraints), and a routing

problem (to minimize the associated traveling costs).

The Capacitated version of the VRP (CVRP) has been chosen in order to illustrate

the benefits of the proposed methodology. The CVRP is the most basic VRP variant,

which assumes a fleet of vehicles of homogeneous capacity housed in a single depot. The

CVRP is a generalization of the Traveling Salesman Problem (TSP) and is therefore

NP-hard [Savelsbergh(1985)]. The CVRP is defined over a complete graph G = {I, E},
where I = {1, 2, . . . , n} is the node set representing clients to be served plus the depot

(node 1), and E = {eij = (i, j)|i, j ∈ I} is the edge set representing connecting roads,

streets, etc. Edges eij in E have an associated cost cij > 0, which is the traveling cost

from node i to node j. It is usual to consider symmetric costs (i.e. cij = cji, ∀i, j ∈ I).

Moreover, each node i in I has a demand qi ≥ 0. A fixed fleet of m identical vehicles,

each one with capacity Q � max{qi}, is available at the depot to accomplish the

required delivery task. Solving the CVRP consists of determining a set of k ≤ m
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routes with minimum total traveling cost and such that (a) each customer is visited

exactly once by a single vehicle, (b) each route starts and ends at the depot, and (c)

the total demand of the customers assigned to a route does not exceed the vehicle

capacity Q. Therefore, a solution of a given CVRP instance is a set of k routes sharing

a common starting and finishing node (the depot).

The CVRP has been selected mainly because there are huge amounts of models,

techniques, benchmarks, and research on this topic. Hence, the proposed methodology

can be easily compared —in terms of computational efficiency and solution quality—

with previously existing approaches. Nevertheless, from the perspective of its indus-

trial applicability, the basic CVRP model can be extended to tackle different realistic

cases by means of the proposed optimization scheme. These cases include operational

constraints beyond the basic vehicle capacity. Affordable examples are limitations on

the total driving time of each route, incompatible customer-driver associations or con-

straints on the customer visiting periods (e.g. customer forbidden visit day when build-

ing daily routes for a distribution problem). The proposed optimization approach, as

presented in this paper, is specifically designed to deal with those operational con-

straints that involve the allocation part of the VRP.

This work proposes a Multi-Start Variable Neighborhood Descent (VND) [Hansen and Mladenovic(2003)]

structure whose local search process is supported by Constraint Programming (CP)

[Rossi et al(2006)Rossi, van Beek, and Walsh] and Lagrangian Relaxation (LR) [Fisher(1981)].

Using the CP paradigm provides the required flexibility to model those operational con-

straints, beyond vehicle capacity, that are usually present in most real application cases.

Due to this approach, adding these constraints is just a constraint modeling issue, i.e.

no change on the solving strategy is required to deal with more realistic problems.

The LR based algorithm is used to efficiently find the optimal routing solution for

each transportation resource. A probabilistic (Randomized) Clarke and Wright Sav-

ings (RCWS) [Juan et al(2010a)Juan, Faulin, Jorba, Riera, Masip, and Barrios] con-

structive method is used to generate initial solutions. This algorithm provides different

good quality solutions that are used as seeds to launch the exploration of different

regions of the search space. Therefore, the RCWS probabilistic behavior introduces a

natural diversification mechanism and turns the scheme into an approach likely to be

parallelized.

The main goal of the work presented in this paper is to introduce a general algo-

rithmic framework that integrates randomization, CP, LR, and VNS to efficiently solve

industrial VRPs with realistic constraints.

The remainder of this article is structured as follows. The next section provides

a literature review on the topic. Section 3 presents the technologies used in this re-

search, while Section 4 explains the adopted approach in detail. Section 5 contains some

numerical experiments and the corresponding discussion. Section 6 discusses some of

the main benefits of the presented approach. Finally, Section 7 summarizes the main

contributions of the paper.

2 Previous work on the Capacitated Vehicle Routing Problem

The Clarke and Wright’s Savings (CWS) constructive algorithm [Clarke and Wright(1964)]

is probably the most cited heuristic to solve the CVRP. The CWS is an iterative method

that starts out by considering an initial dummy solution in which each customer is

served by a dedicated vehicle. Next, the algorithm initiates an iterative process for
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merging some of the routes in the initial solution. Merging routes can improve the ex-

pensive initial solution so that a unique vehicle serves the nodes of the merged route.

The merging criterion is based upon the concept of savings. Roughly speaking, given a

pair of nodes to be served, a savings value can be assigned to the edge connecting these

two nodes. This savings value is given by the reduction in the total cost function due to

serving both nodes with the same vehicle instead of using a dedicated vehicle to serve

each node —as proposed in the initial dummy solution. This way, the algorithm con-

structs a list of savings, one for each possible edge connecting two demanding nodes.

At each iteration of the merging process, the edge with the largest possible savings

is selected from the list as far as the following conditions are satisfied: (a) the nodes

defining the edge are adjacent to the depot, and (b) the two corresponding routes

can be feasibly merged —i.e. the vehicle capacity is not exceeded after the merging.

The CWS algorithm usually provides relatively good solutions, especially for small and

medium-size problems, but it also presents difficulties in some cases [Gaskell(1967)].

Many variants and improvements of the CWS have been proposed in the literature.

For a comprehensive discussion on the various CWS variants, the reader is referred to

Toth and Vigo [Toth and Vigo(2002)] and Laporte [Laporte(2007)].

Monte Carlo Simulation (MCS) can be defined as a set of techniques that make use

of random numbers and statistical distributions to solve certain stochastic and deter-

ministic problems [Law(2007)]. MCS has proved to be extremely useful for obtaining

numerical solutions to complex problems that cannot be efficiently solved by using

analytical approaches. Buxey [Buxey(1979)] was probably the first author to combine

MCS with the CWS algorithm to develop a procedure for the CVRP. This method was

revisited by Faulin and Juan [Faulin and Juan(2008)], who introduced an entropy func-

tion to guide the random selection of nodes. MCS has also been used by Fernández de

Córdoba et al. [Fernández et al(2000)Fernández, Garćıa, Mayado, and Sanch́ıs], Juan

et al. [Juan et al(2008)Juan, Faulin, Jorba, Grasman, and Barrios], Faulin et al. [Faulin et al(2008)Faulin, Gilibert, Juan, Ruiz, and Vilajosana]

and Juan et al. [Juan et al(2009)Juan, Faulin, Ruiz, Barrios, Gilibert, and Vilajosana]

to solve the CVRP. In this last paper, the authors make use of MCS to develop an

efficient randomized version of the CWS heuristic, which we use in our approach to

efficiently generate initial solutions.

Another way to address the VRP has been the use of complete methods, which

ensure not only to find the solution but also, to prove its optimality. The main draw-

back of these techniques is that they may only deal with small instances, up to

100 customers [Cordeau et al(2007)Cordeau, Laporte, Savelsbergh, and Vigo]. Numer-

ous heuristics (like the ones mentioned above) and metaheuristics have also been stud-

ied for different VRP variants. In most cases, these methods may solve larger instances

but loosing optimality guarantees.

Using constructive heuristics as a basis, metaheuristics became popular for the VRP

during the nineties. Some early examples are the Tabu Route method by Gendreau et

al. [Gendreau et al(1994)Gendreau, Hertz, and Laporte] or the Boneroute method of

Tarantilis and Kiranoudis [Tarantilis and Kiranoudis(2002)]. Tabu search algorithms,

like those proposed by Taillard [Taillard(1993)] or Toth and Vigo [Toth and Vigo(2003)]

are among the most cited metaheuristics. Genetic algorithms have also played a ma-

jor role in the development of effective approaches for the VRP. Some examples are

the studies of Berger and Barkaoui [Berger and Barkaoui(1996)], Prins [Prins(2004)],

Mester and Braysy [Mester and Bräysy(2007)] or Nagata [Nagata(2007)]. Another im-

portant approach to the VRP is given by the Greedy Randomized Adaptive Search Pro-

cedure or GRASP [Feo and Resende(1995),Resende(2008),Festa and Resende(2009)].
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A GRASP algorithm is a multi-start or iterative process in which each GRASP it-

eration consists of two phases: a construction phase —in which a feasible solution is

produced— and a local search phase —in which a local optimum in the neighborhood

of the constructed solution is sought. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at

a time. At each construction iteration, the choice of the next element to be added is

determined by ordering all candidate elements in a candidate list according to a greedy

function. This function measures the (myopic) benefit of selecting each element. The

heuristic is adaptive because the benefits associated with every element are updated at

each iteration of the construction phase to reflect the changes brought on by the selec-

tion of the previous element. The probabilistic component of a GRASP is characterized

by the random choice of one of the best candidates in the list, but not necessarily the

top candidate. This choice technique allows for different solutions to be obtained at

each GRASP iteration.

Among metaheuristics, Variable Neighborhood Search (VNS), introduced for the

first time by Mladenovic and Hansen [Mladenovic and Hansen(1997)], is a quite re-

cent method with far less application examples in VRP research. However, inter-

esting results have been obtained even applying the simplest VNS algorithms, e.g.

[Hasle and Kloster(2007)]. Embedding CP and LR approaches into a general VNS

framework has also demonstrated to be an effective yet slow method to solve medium

and large instances [Guimarans et al(2011)Guimarans, Herrero, Ramos, and Padrón].

Combining these techniques provided a methodology able to reach good quality re-

sults and even to overcome some best-known solutions. However, the computational

efficiency of this methodology is far from state-of-the-art algorithms and becomes an

important issue to be addressed.

In this paper we present a hybrid approach combining a randomized version of the

CWS savings heuristic, the VNS metaheuristic, CP, and LR. Our approach aims at be-

ing an efficient procedure for obtaining quasi-optimal solutions in small- and medium-

size CVRP instances and, at the same time, offers some additional advantages over

other existing metaheuristics, namely: (a) it is a robust and flexible methodology that

can be easily adapted to consider additional constraints and costs; (b) it is able to gen-

erate a set of alternative good solutions in a reasonable time period; and (c) it can be

easily executed in parallel. As mentioned, we already combined VNS with CP and LR in

some previous work [Guimarans et al(2011)Guimarans, Herrero, Ramos, and Padrón],

but the algorithm presented in this paper is much more competitive with state-of-

the-art metaheuristics. Its efficiency has been significantly enhanced by including a

multi-start procedure which makes use of a randomized CWS heuristic in order to

quickly provide a set of different “good” initial solutions, over which a flexible local-

search process is applied. Thus, the VNS diversification procedure is substituted by a

multi-start approach, where different regions are explored thanks to the diversity of

solutions provided by the randomized CWS algorithm. The local search process has

also been enhanced with respect to the previous work by incorporating new data struc-

tures, which permit reducing the computational complexity. Finally, the methodology

described in the present work has been parallelized to improve its efficiency.
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3 Technologies used

3.1 Probabilistic Clarke and Wright Savings Algorithm

As discussed in Section 2, in the classic CWS algorithm, the edge with the largest pos-

sible savings is selected from the list at each iteration of the merging process, as far as

the following conditions are satisfied: (a) the nodes defining the edge are adjacent to the

depot, and (b) the two corresponding routes can be feasibly merged —i.e. the vehicle ca-

pacity is not exceeded. The approach presented in [Juan et al(2010b)Juan, Faulin, Ruiz, Barrios, and Caballe],

instead, assigns a selection probability to each edge in the savings list. This probability

should be coherent with the savings value associated with each edge, i.e. edges with

larger savings will be more likely to be selected from the list than those with smaller

savings. In addition, this approach adds this biased random behavior without intro-

ducing too many parameters in the algorithm. Basically, different geometric statistical

distributions during the randomized CWS solution-construction process are employed:

every time a new edge is selected from the list of available edges, a value α is randomly

selected from a uniform distribution in (a, b), where 0 < a ≤ b < 1. The α parameter

defines the specific geometric distribution that will be used to assign exponentially di-

minishing probabilities to each eligible edge according to its position inside the sorted

savings list. This way, edges with higher savings values are always more likely to be

selected from the list, but the exact probabilities assigned are variable and they depend

on the concrete distribution selected at each step.

3.2 Constraint Programming

CP is a powerful paradigm for representing and solving a wide range of combinatorial

problems. Problems are expressed in terms of three entities: variables, their corre-

sponding domains and constraints relating them. The problems can then be solved

using complete techniques such as depth-first search for satisfaction and branch and

bound for optimization, or even tailored search methods for specific problems. Rossi et

al. [Rossi et al(2006)Rossi, van Beek, and Walsh] present a complete overview of CP

modeling techniques, algorithms, tools, and applications.

3.3 Lagrangian Relaxation

LR is a well-known method to solve large-scale combinatorial optimization problems.

It works by moving hard-to-satisfy constraints into the objective function associating

a penalty in case they are not satisfied. An excellent introduction to the whole topic

of LR can be found in [Fisher(1981)].

LR exploits the structure of the problem, so it reduces considerably problem’s com-

plexity. However, it is often a major issue to find optimal Lagrangian multipliers. The

most commonly used algorithm is the Subgradient Optimization (SO). Its main diffi-

culty lays on choosing a correct step-size λk aiming to ensure algorithm’s convergence

[Reinelt(1994)].

In order to address this limitation, the method introduced in [Herrero et al(2010)Herrero, Ramos, and Guimarans]

combines the SO algorithm with a heuristic to obtain a feasible solution from a dual

solution. It can get a better upper bound (UB), so it improves the convergence on the
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optimal solution starting at an initial UB obtained with a Nearest Neighbor Heuristic.

Although optimality may not always be reached, this method is able to provide a fea-

sible solution with a tight gap between the primal and the optimal cost in a reasonable

number of iterations.

3.4 Variable Neighborhood Search

A general VNS, as explained in [Hansen and Mladenovic(2003)], is a recent metaheuris-

tic which exploits systematically the idea of neighborhood change. The Variable Neigh-

borhood Descent (VND) method starts from an initial solution x′ and it is improved

by a local search process.

The local search process for each neighborhood N(x′) of x′ performs an exhaustive

exploration. All improving movements are recorded and sorted, so the best neighbor

x′′ ∈ N(x′) is constructed applying all independent changes in descending order. This

way, solution values are improved faster than applying single movements.

If this neighbor is better than the incumbent, the current solution is updated and

neighborhoods’ exploration is restarted. Otherwise, the algorithm keeps x′ as the best

solution found so far and continues exploring the next neighborhood. When the VND

process reaches a local optimum, no solution improvement may be found according to

defined neighborhoods.

3.5 Multi-Start Strategy

The VND-based local search process requires some type of diversification in order

to overcome local optimality. Many techniques have been suggested to avoid getting

trapped into a local optimum and aspire to find a global one. Among others, one

possible way to achieve diversification is using a shaking mechanism within the VNS

procedure. However, as more constraints are introduced in the problem, it usually be-

comes more efficient -in terms of computational time employed- to generate new feasible

solutions from scratch than to apply complex shaking processes that might end in non-

feasible solutions. This is especially certain if we consider that the Randomized version

of the CWS used in this paper is a really fast method for generating different feasible

and good solutions that can serve as initial solutions in our multi-start approach.

Thus, the Multi-Start strategy provides an appropriate framework which achieves

diversification by re-starting the search from a new solution once a region has been

extensively explored. Notice that each iteration includes two phases: a first one in

which a new feasible solution is constructed, and a second one in which the initial

solution is improved through a local search process.

4 The methodology in detail

The CVRP problem has been tackled using a significant modification of the approach

presented in [Guimarans et al(2011)Guimarans, Herrero, Ramos, and Padrón]. There,

the authors introduced a first methodology which combined CP and LR within a VNS

framework. The methodology presented in this paper builds upon the aforementioned

one, but it is significantly more efficient -both in terms of computational times and
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solutions’ quality- since it also integrates the RCWS-based Multi-Start approach. As it

has been previously discussed, this strategy allows to ensure an efficient diversification

of the search space in order to: (a) avoid local minima, and (b) reach near-optimal

solutions in reasonable times.

CP and LR are used in the local search process within a VND structure. CP is used

to check solutions feasibility. This formalism provides a fast and flexible method, able

to model and include complex constraints while keeping a reasonable computational

efficiency. In turn, a tailored LR method is applied to calculate routes every time a

partial solution is generated. Using LR allows reducing the computation time and algo-

rithm’s definition and complexity when compared to other routing post-optimization

methods [Rousseau et al(2002)Rousseau, Gendreau, and Pesant].

4.1 Pseudo-code for the Multi-Start strategy

A simplified scheme of the Multi-Start strategy is presented in Table 1. The RCWS

algorithm is used to find a good initial solution. Then, the VND method helps to reach

a local minimum in the neighborhood of the solution.

The Multi-Start strategy generates TotalThreads tasks within a thread pool. If a

thread is not available for the task, the task waits in a queue for an active task to end.

The algorithm stops when all tasks have been completed, or the maximum execution

time is reached, whichever happens first. Each task executes two phases: find an initial

solution and improve it in the search process. Starting from a different initial solution

ensures certain diversification, overcoming local optimality.

0 Let x be the best solution.
1 Create a thread pool with TotalThreads threads.

2 Repeat the following steps until TotalThreads threads end or

until MaxSeconds time is consumed:
3 Execute MaxThreads simultaneous threads:
4 Generate an initial feasible solution x′ using RCWS.
5 Improve x′ to obtain x′′ by using VND+CP+LR.
6 If x′′ is better than x, let x← x′′.

Table 1 Multi Start Approach

4.2 Pseudo-code for the Variable Neighborhood Descent procedure

A general VND has been implemented embedding CP and LR methods. In the imple-

mented algorithm, outlined in Table 2, all four described moves (see section 4.3) have

been selected to be used in local search neighborhoods.

In the exploration neighborhood (Nk), starting from the solution x′, the kth move

is applied and the new solution’s feasibility is checked using CP. Whenever it is proved

feasible, LR is used to recalculate only modified routes. This approach permits to con-

sider only two routes per solution, reducing the computation time. Improvements are

stored in a sorted list until no more feasible solutions are left in the kth neighborhood.

Then, all those which are independent, i.e. affect different route pairs, are applied in
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0 Initialize the set LastModified← V ; let x′ be the initial solution.
1 Repeat the following sequence until the stopping condition is met:

2 Set k ← 1;
3 Repeat the following steps until k = kmax :

4 Exploration of Neighborhood.

5 Find all neighbors x′′ ∈ Nk(x′, LastModified).
6 Check feasibility of capacity constraints using CP.
7 Calculate the cost of modified routes using LR
8 If the solution x′′ is better than x′, include it in a list of improving changes.
9 Choose the best compatible neighbors.

10 Set LastModified← ∅;
11 Sort the list of improving changes.
12 Apply the first improving changes.
13 Add in descending order the next compatible improvements.
14 Add the modified routes to LastModified.
15 If the list is empty, set k ← k + 1; otherwise set k ← 1.

Table 2 Variable Neighborhood Descent Algorithm

descending order on x′ to get a better solution x′′. This way, solution improvement is

faster than applying a single change at each iteration.

After the first exhaustive exploration of each neighborhood, only those changes af-

fecting routes modified by previous movements are explored in order to reduce the com-

putation time. The modified routes are stored in the set LastModified. A similar ap-

proach may be found in Zachariadis and Kiranoudis [Zachariadis and Kiranoudis(2010)].

4.3 Inter-route Moves

The VNS metaheuristic is based on the exploration of different neighborhoods around

a given feasible solution. In order to establish these neighborhoods, several moves are

defined. In our approach, four different inter-route classical moves [Savelsbergh(1988)]

have been identified to be used within the local search process: (a) Relocate moves a

customer from one route to another, (b) Swapping exchanges two customers belonging

to different routes, (c) Chain is a specialization of 3-opt that swaps sections of two

contiguous customers from different routes, and (d) Ejection chain swaps the end

portions of two different routes.

The use of LR ensures the partial optimality of most solutions from the routing

perspective. The reason is that, since we are considering a relatively small number of

customers per route, the proposed approach can quickly find the optimal solution to

most TSP instances. In effect, the respective lower bounds (LB) and upper bounds

(UB) converge rapidly, keeping their gap between 0 and 10−10, which guarantees the

solution optimality. In addition, LR solves all routes in negligible times. Thus, LR

is an efficient alternative for intra-route optimization processes and avoids defining

intra-route moves.

4.4 Pseudo-code for the Lagrangian Relaxation procedure

The LR-based method is used within the local search process to solve the routing prob-

lem to optimality. It can be considered a specification of the Lagrangian Metaheuristic
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presented in Boschetti and Maniezzo [Boschetti and Maniezzo(2009)]. As mentioned

in Section 3.3, it combines the SO algorithm with a heuristic aiming at improving

algorithm’s convergence to the optimum. The stopping criterion is based on the maxi-

mum number of iterations (k < maxiterations) and also on a floating-point exception

(λk < 10−10). The applied LR-based method procedure is shown in Table 3.

0 Initialization
1 Initialize parameters u0 = 0; δ0 = 2;αL = 1/3
2 Obtain an UB applying Nearest Neighbor Heuristic

3 Initialize L = L(u0) + αL(UB − L(u0))
4 Iteration k, repeat until the stopping condition is met:
5 Solve the Lagrangian function L(uk)
6 Check the subgradient γki = 2−

∑
e∈δ(i) xe

7 if ‖ γk ‖2= 0 then Optimal solution is found ⇒ EXIT
8 if ‖ γk ‖2< ξ then apply a heuristic to improve the UB

9 Check the parameter L

10 Calculate the step-size λk = δk
L−L(uk)

‖γk‖2
11 Update the multiplier uk+1 = uk + λkγ

k

12 k ← k + 1

Table 3 The Applied LR-based Algorithm

The proposed LR relaxes the constraint set requiring that all customers must be

served by weighting them with a multiplier vector u, since all subcycles can be avoided

constructing the solution x as a 1-tree [Held and Karp(1971)]. The Lagrangian Dual

problem obtained is max
u∈Rn

L(u) where L(u) = min
x1−tree

∑
e∈Ev

cexe+
∑
i∈Iv

ui(2−
∑
e∈δ(i)

xe).

The proposed heuristic to improve the UB is applied when the solution is nearly

a Hamiltonian route (step 8), i.e. the solution has few vertices without two incident

edges. This heuristic replaces an edge e = (i, j), where j has some extra edges, for

an edge e = (i, l), where l has one single edge. Before applying the exchange, the

heuristic checks if the new solution is a 1-tree. Otherwise, the heuristic can obtain an

unconnected subtree.

A good estimation of ξ will avoid increasing the computation time excessively.

First, its value may be large, but it should be updated whenever a feasible solution

is found according to ξ =‖ γk ‖2 . If this parameter is not correctly updated, the

heuristic becomes time consuming. Eventually, the heuristic could find the optimal

solution without detecting it, so the method would continue iterating until LB = UB.

As mentioned, the convergence of the algorithm is critically influenced by the step-

size λk. This value relies on either the LB or the UB, which are normally unknown

or bad estimated. Therefore, convergence may not be assured for all cases. In order to

overcome this limitation, a parameter L, such that LB ≤ L ≤ UB, is introduced. By

definition, this parameter corresponds to a better estimation of the optimum L∗ than

those obtained for LB and UB. The calculation of the step-size turns into:

λk = δk
L− L(uk)

‖ γk ‖2
(1)
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Convergence is guaranteed if the term L−L(uk) tends to zero. In turn, convergence

efficiency can be improved as long as the new L parameter gets closer to the (unknown)

optimal solution. Finally, the parameter δk is initialized to the value 2 and is updated

as suggested by Zamani and Lau [Zamani and Lau(2010)].

5 Computational results

The methodology described in this paper has been implemented in Java and linked to

the open-source CP software system ECLiPSe 6.0 [Apt and Wallace(2007)]. All tests

have been performed on a dedicated server with an Intel i5 processor at 2.66GHz

and 16GB RAM. A total of 91 classical CVRP benchmark instances available at

www.branchandcut.org have been used to test the efficiency of the proposed approach

when dealing with this simple (in terms of constraints) but extensively tested scenario.

In order to ensure fulfillment of the triangular inequality property, only those instances

using Euclidean metrics have been selected. The selected problems also include 7 in-

stances from [Christofides et al(1979)Christofides, Mingozzi, and Toth] (denoted in ta-

bles as C1-C5, C11, and C12) for further comparison with some recent metaheuristics.

As the algorithm has been designed to be run in a parallel computing environment, a

test has been done over the set A of benchmark problems to determine the most suitable

number of simultaneous threads. This parameter is to be fixed mainly according to

computer’s characteristics. In the particular server used in this work, up to 4 threads

may be executed in parallel in order to keep a reasonable computational efficiency.

In the performed test, adopting a parallelized approach permits reducing the total

computation time significantly. In particular, for problems from the set A, the total

computation time is 41% lower, on average, than the total time spent using a sequential

approach. For this reason, all results presented in this paper correspond to a Multi-Start

VND implementation with 4 parallel processes, since this approach has demonstrated

to keep a reasonable balance between the time spent on calculating one single solution

and the total execution time.
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Table 4 Results for 50 classical benchmark instances.

Gap (%)

Problem # nodes BKS OBS BKS-OBS # routes Time (s)

A-n32-k5 31 787.81 787.08 -0.09 5 0.633

A-n33-k5 32 662.76 662.11 -0.10 5 0.842

A-n33-k6 32 742.83 742.69 -0.02 6 0.480

A-n37-k5 36 672.59 673.59 0.15 5 1.948

A-n37-k6 36 952.22 950.85 -0.14 6 1.631

A-n38-k5 37 734.18 733.95 -0.03 5 2.546

A-n45-k6 44 944.88 944.88 0.00 6 1.622

A-n46-k7 45 918.46 918.13 -0.04 7 2.062

A-n54-k7 53 1171.78 1171.78 0.00 7 4.007

A-n55-k9 54 1074.46 1076.85 0.22 9 5.544

A-n63-k9 62 1622.14 1622.14 0.00 9 8.073

B-n31-k5 30 676.76 676.09 -0.10 5 0.657

B-n34-k5 33 791.24 789.84 -0.18 5 0.497

B-n35-k5 34 956.29 958.94 0.28 5 1.174

B-n38-k6 37 809.45 809.45 0.00 6 1.211

B-n39-k5 38 553.27 553.16 -0.02 5 1.577

B-n43-k6 42 747.54 746.98 -0.07 6 1.520

B-n45-k5 44 755.43 753.96 -0.19 5 1.011

B-n50-k7 49 744.78 744.23 -0.07 7 1.721

B-n50-k8 49 1316.20 1319.53 0.25 8 7.069

B-n51-k7 50 1035.71 1037.54 0.18 7 597.915

B-n57-k9 56 1603.63 1604.88 0.08 9 7.653

B-n64-k9 63 869.32 868.31 -0.12 9 287.953

E-n22-k4 21 375.28 375.28 0.00 4 0.337

E-n23-k3 22 568.56 568.56 0.00 3 0.422

E-n33-k4 32 838.72 837.67 -0.13 4 0.819

E-n51-k5 (C1) 50 524.61 527.98 0.64 5 17.164

E-n76-k10 (C2) 75 835.26 843.49 0.99 10 28.941

E-n101-k8 (C3) 100 826.14 841.16 1.82 8 195.271

F-n45-k4 44 724.57 727.75 0.44 4 4.459

F-n135-k7 134 1170.65 1179.09 0.72 7 630.427

G-n262-k25 261 5685.00 5722.00 0.65 25 1651.360

M-n101-k10 (C12) 100 819.81 821.40 0.19 10 51.395

M-n121-k7 (C11) 120 1042.11 1045.14 0.29 7 137.553

M-n151-k12 (C4) 150 1028.42 1052.52 2.34 12 834.642

M-n200-k17 (C5) 199 1291.45 1324.91 2.59 17 243.789

P-n16-k8 15 451.95 451.95 0.00 8 0.019

P-n19-k2 18 212.66 212.66 0.00 2 0.243

P-n20-k2 19 217.42 217.42 0.00 2 0.148

P-n21-k2 20 212.71 212.71 0.00 2 0.275

P-n22-k2 21 217.85 217.85 0.00 2 0.277

P-n23-k8 22 531.17 531.17 0.00 8 1.447

P-n40-k5 39 461.73 461.73 0.00 5 6.189

P-n45-k5 44 512.79 512.79 0.00 5 10.016

P-n50-k7 49 559.86 560.15 0.05 7 5.155

P-n51-k10 50 742.48 742.36 -0.02 10 5.156

P-n55-k10 54 697.81 698.00 0.03 10 5.331

P-n55-k8 54 592.17 581.17 -1.86 7 14.703

P-n76-k5 75 635.04 633.32 -0.27 5 92.627

P-n101-k4 100 692.28 693.54 0.18 4 839.622

Average 0.17
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5.1 Discussion of results

Table 4 shows results obtained for some representative problems from the selected

benchmark sets. Due to algorithm’s probabilistic behavior, the final solutions’ quality

depends on the total number of threads. For this reason, 100 total tasks have been

considered for each problem, i.e. 100 pseudo-optimal solutions have been generated for

each benchmark instance. Table 4 summarizes information regarding the best solution

found (OBS) for each problem, as well as the time required to reach this solution.

These results are compared to the best known solutions (BKS) so far. Most sources give

these values as integer numbers, obtained by rounding costs, except for the problems

from [Christofides et al(1979)Christofides, Mingozzi, and Toth] where real values are

usually given. From the detailed integer solutions, real costs have been calculated and

reported. It should be remarked that the real cost of an integer optimal solution might

not correspond to the optimal solution considering real costs. For this reason, negative

gaps appear on this table. Thus, it can be deduced that the Multi-Start VND is able to

match, and in many cases improve, the real value associated to the best known integer

solutions. Concretely, the presented approach has been able to improve 23 best known

solutions, considering real costs, out of the 91 tested instances. In addition, the gap

is kept reasonably low for all considered instances, being the average gap 0.65 %. It

remains lower, 0.17 %, for the problems selected in Table 4, which include most of the

largest instances.

Furthermore, it should be remarked that these results have been obtained in com-

petitive times even for some large instances. As shown in Table 4, most solutions for

small problems are obtained in less than a second, while larger instances require higher

yet reasonable computational times. In most cases, higher times are closely related to

higher quality solutions, i.e. solutions with a negative gap.

These results are similar to other state-of-the-art metaheuristics. Table 5 provides a

comparison between the proposed approach and some recent publications. The first two

selected metaheuristics correspond to the previous work by the authors: a hybrid VNS

(HVNS) presented in [Guimarans et al(2011)Guimarans, Herrero, Ramos, and Padrón]

and the randomized Clarke and Wright Savings (SR-GCWS) algorithm by [Juan et al(2010b)Juan, Faulin, Ruiz, Barrios, and Caballe].

The next three metaheuristics are a hybrid algorithm of Simulated Annealing and

Tabu Search (SA-TS) introduced in [Lin et al(2009)Lin, Lee, Ying, and Lee], a hybrid

Electromagnetism-like heuristic (HEMA) proposed by [Yurtkuran and Emel(2009)],

and a Particle Swarm algorithm (SR-2) described in [Jin Ai and Kachitvichyanukul(2009)].

Most publications only report results corresponding to the 14 instances from [Christofides et al(1979)Christofides, Mingozzi, and Toth].

For this reason, few results corresponding to other problem sets are reported for

the latter three metaheuristics in Table 5. Moreover, some of the instances from

[Christofides et al(1979)Christofides, Mingozzi, and Toth] include an additional con-

straint on the maximum route length that is not handled in the proposed version of

the algorithm. Therefore, results for these instances have been omitted in this table.

It may be observed that the proposed approach is comparable in terms of qual-

ity and computational efficiency to these recent metaheuristics. Times needed by our

approach to reach a pseudo-optimal solution are in most cases lower than those re-

quired by means of the other algorithms. It should be remarked that the proposed

approach clearly improves the efficiency of the previous algorithms HVNS and SR-

GCWS. Furthermore, the Multi-Start VND provides the lowest gap among all selected

metaheuristics, only beated by the SR-GCWS approach. However, most of the higher
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gaps obtained with the proposed approach correspond to some of the largest instances,

whose results are not reported for the SR-GCWS algorithm.

As a final remark, it can be observed that the lowest gap (-1.86 %) corresponds

to the problem P-n55-k8, where a solution considering only 7 vehicles (# routes) has

been obtained. Although the best known solution for this problem uses 8 vehicles,

feasible solutions with 7 vehicles and lower costs may be reached, as the one obtained

with this approach. However, if only 7 vehicles are considered, the Multi-Start VND

has finished slightly over the value 580.96 (576 considering integer costs), published

for this problem in [Guimarans et al(2011)Guimarans, Herrero, Ramos, and Padrón],

[Alba and Dorronsoro(2008)], and [Altinel and Oncan(2005)].

6 Scope and limitations of our approach

The described hybrid algorithm embeds CP and LR within the VND metaheuristics

framework by decomposing the CVRP into two subproblems concerning customers’

allocation and routing optimization separately. A fast and efficient algorithm such as

the RCWS is used to feed the multi-start scheme by generating good initial solutions.

Thus, the proposed optimization approach implements a flexible, efficient and robust

optimization algorithm able to deal with some realistic problems, which means both

the ability to tackle large instances and to represent real operational constraints. The

characteristics of the resulting algorithm can be explained in the following way: flexi-

bility involves the quality of the algorithm to be adapted to real problems; efficiency

is related to the easiness of the algorithm to obtain optimal or quasi-optimal solutions

in reasonable computation times; and robustness is related to the fact that the algo-

rithm performs well even when no extense fine-tuning processes are carried out on its

parameters.

Regarding flexibility, this approach benefits from the CP capabilities to model dif-

ferent operational constraints. This constraints are present in most of the real applica-

tion cases and, in general, affect to the allocation decisions. CP, which is not restricted

by modeling limitations such as constraint linearity, facilitates the representation of

allocation constraints without requiring any specific action on the solving method.

Hence, the hybrid scheme can be easily adapted to different CVRP variants by sim-

ply adding the allocation constraints which properly model the feasible solutions of the

problem. Since the VND optimization scheme is able to reach feasible solutions starting

from non-feasible initial solutions, e.g. not fulfilling the maximum number of vehicles

[Guimarans et al(2010)Guimarans, Herrero, Riera, Juan, and Ramos], the RCWS al-

gorithm does not need to be modified in order to include operational constraints other

than capacities. However, other capacity-like constraints, such as total driving time of

each route, can be translated to a capacity constraint in order to obtain feasible so-

lutions by means of the RCWS algorithm. Additional operational constraints may be

added to the CP model, which will ensure solutions’ feasibility along the local search

process. Thus, this hybrid approach will be able to tackle complex instances related

to real application cases by adding little modifications into the problem modeling, but

neither into the optimization scheme nor algorithms.

The efficiency of the proposed algorithm is supported by the results presented in the

previous section. As discussed, the presented approach is able to match the best known

solutions for benchmark problems of different sizes in reasonable computation times.
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The provided comparison proves that its efficiency is similar to other state-of-the-art

metaheuristics, both in terms of time and solutions’ quality.

The robustness of the algorithm is a consequence of the light requirements for fine

tuning. The LR-based algorithm does not require any specific adjustment since all the

convergence parameters are self-tuned. The CP-based subproblem depends just on the

quality of the defined constraint model to properly describe the feasible solutions. The

RCWS does not require any adaptation either. Only the VND movements could require

different prioritization depending on the problem being solved in order to get a better

solution quality.

Facing other relevant VRP variants, such as those involving Pick-Up & Delivery

or Time-Windows, would imply the modification of the LR-based method (in addition

to the constraint model modification) and the implementation of new neighborhoods

in the VND metaheuristic. The RCWS-based algorithm should be also adapted and

would require a proof of its efficiency. Authors are currently working on these new

implementations.

7 Conclusions

This paper has presented a hybrid methodology which combines a randomized version

of the CWS heuristic with Constraint Programming and Lagrangian Relaxation to

efficiently solve CVRP instances. These techniques have been embedded into a Multi-

Start Variable Neighborhood Descent framework. According to the tests performed,

the proposed algorithm is competitive with state-of-the-art metaheuristics.

In the proposed approach, the CVRP has been decomposed into two separate sub-

problems, where CP and LR techniques are combined to ensure capacity constraints

fulfillment and calculate all involved routes. This approach allows reducing the com-

putation time during local search processes, since problems to be solved are far less

complex than the original CVRP. The randomized CWS algorithm is used to quickly

provide several “good” initial solutions to start the search in a multi-start environment.

This algorithm has shown to be an efficient alternative to other existing approaches

due to its capability to generate quasi-optimal solutions in a reasonable time. In addi-

tion, it is a robust algorithm, since it is almost parameter-free and only requires a light

fine tuning. Finally, it should be noticed that due to its modular design, the proposed

approach is flexible and can be easily adapted to solve other VRP with additional

constraints or multi-criteria objective functions.
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