Skip to main content
Log in

Numerical treatment of nonlinear Emden–Fowler equation using stochastic technique

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The article is based on the approximate solution of a well known Lane–Emden–Fowler (LEF) equation. A trial solution of the model is formulated as an artificial feed-forward neural network containing unknown weights which are optimized in an unsupervised way. The proposed scheme is tested successfully on various test cases of initial value problems of LEF equations. The reliability and effectiveness is validated through comprehensive statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Introduction to the Study of Stellar Structure. Dover, New York (1967)

    Google Scholar 

  2. Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover, New York (1962)

    MATH  Google Scholar 

  3. Richardson, O.W.: The Emission of Electricity from Hot Bodies. London (1921)

  4. Wazwaz, A.M.: A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118, 287–310 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shawagfeh, N.T.: Nonperturbative approximate solution for Lane–Emden equation. J. Math. Phys. 34, 4364–4369 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wazwaz, A.M.: The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 173:165–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Appl. Math. Comput. 161, 543–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guedda, M.: Multiple positive solutions of a singular boundary value problem for a superliner Emden–Fowler equation. J. Math. Anal. Appl. 352, 259–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, Z., Sun, S., Shi, B.: Oscillation criteria for a class of second order Emden–Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 334, 847–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical solutions of the nonlinear integro-differential equations. Int. J. Open Problems Compt. Math. 1(1) (2008)

  11. Dehgham, M., Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic field using He’s Homtopy perturbation method. Prog. Electromagn. Res. 78, 361–376 (2008)

    Article  Google Scholar 

  12. Wazwaz, A.M.: Analytical solution for the time-dependent Emden–Fowler type of equations by Adomian decomposition method. Appl. Math. Comput. 166, 38–651 (2005)

    Google Scholar 

  13. Chowdhury, M.S.H., Hashim, I.: Solutions of time-dependent Emden Fowler type equations by homotopy-perturbation method. Phys. Lett. A 368, 305–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D. dissertation, Shanghai Jiao Tong University, Shanghai (1992). In English

  15. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  16. Sun, Y.G., Wong, J.S.W.: Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities. J. Math. Anal. Appl. 334, 549–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meada, A.J., Fernandez, A.A.: The numerical solution of linear ordinary differential equation by feedforward neural network. Math. Comput. Model. 19, 1–25 (1994)

    Article  Google Scholar 

  18. Raja, M.A.Z., Khan, J.A., Qureshi, I.M.: A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell. 60(3–4), 229–250 (2011). doi:10.1007/s10472-010-9222-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Sivanandam, S.N., Visalakshi, P.: Multiprocessor scheduling using hybrid particle swarm optimization with dynamically varying inertia. Int. J. Comput. Sci. Appl. 4(3), 95–106 (2007)

    Google Scholar 

  20. Monterola, C., Saloma, C.: Characterizing the dynamics of constrained physical systems with unsupervised neural network. Phys. Rev. E 57, 1247R–1250R (1998)

    Article  Google Scholar 

  21. Junaid, A.K., Raja, M.A.Z., Qureshi, I.M.: Swarm intelligence for the solution of problems in differential equations. In: Second International Conference on Environmental and Computer Science, pp. 141–147. ICECS (2009)

  22. Rarisi, D.R. et al.: Solving differential equations with unsupervised neural networks. J. Chem. Eng. Process. 42, 715–721 (2003)

    Article  Google Scholar 

  23. Lewis, A., Mostaghim, S., Randall, M. (eds.): Biologically-Inspired Optimization Methods, Parallel Algorithms, System and Application, Studies in Computational Intelligence, vol. 210 (2009)

  24. Junaid, A., Raja, M.A.Z., Qureshi, I.M.: Evolutionary computing approach for the solution of initial value problems in ordinary differential equations. WASET 55, 578–581 (2009)

    Google Scholar 

  25. Raja, M.A.Z., Khan, J.A., Qureshi, I.M.: Swarm intelligent optimized neural networks for solving fractional differential equations. Int. J. Innov. Comput. I 7(11), 6301–6318 (2011)

    Google Scholar 

  26. Raja, M.A.Z., Junaid, A.K., Qureshi, I.M.: Evolutionary computation technique for solving Riccati differential equation of arbitrary order. WASET 58, 303–309 (2009)

    Google Scholar 

  27. Hetch-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In: 1st IEEE Inter. Conf. on Neural Networks, vol. 3, p. 11. San Diego, CA (1987)

  28. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2, 183 (1989)

    Article  Google Scholar 

  29. Hornik, K., Stichcombr, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks. Neural Netw. 3, 551–560 (1990)

    Article  Google Scholar 

  30. Cybenko, G.: Approximation by superposition of a sigmoidal function. Math. Control. Signal. Syst. 2, 303 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning, p. 41. Addison Wesley. ISBN 0201157675 (1989)

  32. Srinivas, M., Patnaik, L.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  33. Zhang, J., Chung, H., Lo, W.L.: Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Trans. Evol. Comput. 11(3), 326–335 (2007)

    Article  Google Scholar 

  34. Raja, M.A.Z., Khan, J.A., Qureshi, I.M.: Solution of fractional order system of Bagley–Torvik equation using evolutionary computational intelligence. Math. Probl. Eng. Article ID. 765075, 1–18 (2011)

    Google Scholar 

  35. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science. New Series 220(4598), 671–680 (1983).

    MathSciNet  MATH  Google Scholar 

  36. Cerny, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. Optim. Theor. Appl. 45, 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  38. Granville, V., Krivanek, M., Rasson, J.-P.: Simulated annealing: a proof of convergence. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994). doi:10.1109/34.295910

    Article  Google Scholar 

  39. De Vicente, J., Lanchares, J., Hermida, R.: Placement by thermodynamic simulated annealing. Phys. Lett. A 317(5–6), 415–423 (2003)

    Article  MATH  Google Scholar 

  40. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chowdhury, M.S.H., Hashim, I.: Solutions of Emden–Fowler equations by homtopy perturbation method. Nonlin. Anal.: Real World Appl. 10, 104–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, J.A., Raja, M.A.Z. & Qureshi, I.M. Numerical treatment of nonlinear Emden–Fowler equation using stochastic technique. Ann Math Artif Intell 63, 185–207 (2011). https://doi.org/10.1007/s10472-011-9272-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-011-9272-8

Keywords

Mathematics Subject Classifications (2010)

Navigation