Skip to main content
Log in

Autonomous sets for the hypergraph of all canonical covers

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We present a method for decomposing a hypergraph with certain regularities into smaller hypergraphs, in a “direct product”-like fashion. By applying this to the set of all canonical covers of a given set of functional dependencies, we obtain more efficient methods for solving several optimization problems in database design. These include finding one or all “optimal” covers w.r.t. different criteria, which can help to synthesize better decompositions, and to reduce the cost of constraint checking. As a central step we investigate how the hypergraph of all canonical covers can be computed efficiently. Our results suggest that decomposed representations of this hypergraph are usually small and can be obtained rather quickly, even if the number of canonical covers is huge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, pp. 580–583 (1974)

  2. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. Elsevier Science Pub. Co. (1989)

  3. Biskup, J., Dayal, U., Bernstein, P.A.: Synthesizing independent database schemas. In: SIGMOD Conference, pp. 143–151 (1979)

  4. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottlob, G.: On the size of nonredundant FD-covers. Inf. Process. Lett. 24(6), 355–360 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gottlob, G., Pichler, R., Wei, F.: Tractable database design through bounded treewidth. In: Vansummeren, S. (ed.) PODS, pp. 124–133. ACM (2006)

  7. Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposition algorithm for graphs, using order extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT, Lecture Notes in Computer Science, vol. 3111, pp. 187–198. Springer (2004)

  8. Köehler, H.: Finding faithful Boyce–Codd normal form decompositions. In: Cheng, S.W., Poon, C.K. (eds.) AAIM, Lecture Notes in Computer Science, vol. 4041, pp. 102–113. Springer (2006)

  9. Köhler, H.: Autonomous sets—a method for hypergraph decomposition with applications in database theory. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS, Lecture Notes in Computer Science, vol. 4932, pp. 78–95. Springer (2008)

  10. Lechtenbörger, J.: Computing unique canonical covers for simple FDs via transitive reduction. Inf. Process. Lett. 92(4), 169–174 (2004)

    Article  MATH  Google Scholar 

  11. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer (1999)

  12. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2), 270–279 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maier, D.: Minimum covers in the relational database model. J. ACM 27(4), 664–674 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)

  15. Mannila, H., Räihä, K.J.: The Design of Relational Databases. Addison-Wesley (1987)

  16. Osborn, S.L.: Testing for existence of a covering Boyce–Codd normal form. Inf. Process. Lett. 8(1), 11–14 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saiedian, H., Spencer, T.: An efficient algorithm to compute the candidate keys of a relational database schema. Comput. J. 39(2), 124–132 (1996)

    Article  MATH  Google Scholar 

  18. Zaniolo, C.: A new normal form for the design of relational database schemata. ACM Trans. Database Syst. 7(3), 489–499 (1982). doi:10.1145/319732.319749

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Köhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, H. Autonomous sets for the hypergraph of all canonical covers. Ann Math Artif Intell 63, 257–285 (2011). https://doi.org/10.1007/s10472-012-9276-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9276-z

Keywords

Mathematics Subject Classifications (2010)

Navigation