Noname manuscript No.
(will be inserted by the editor)

Data model descriptions and translation signatures in a
multi-model framework

Paolo Atzeni - Giorgio Gianforme - Paolo
Cappellari

Abstract We refer to the problem of translating schemas from a data model to
another, in a multi-model framework. Specifically, we consider an approach where
translations are specified as Datalog-like programs. In this context we show how
it is possible to reason on models and schemas involved as input and output for a
translation. The various notions are formalized: (i) concise descriptions of models
in terms of sets of constructs, with associated propositional formulas; (ii) a notion
of signature for translation rules (with the property that signatures can be auto-
matically computed out of rules); (iii) the application of signatures to models. The
main result is that the target model of a translation can be completely charac-
terized given the description of the source model and the signatures of the rules.
This result is being exploited in the framework of a tool that implements model
generic translations, as the basis for the automatic translations out of a library of
elementary ones.

1 Introduction

The translation of schemas from a data model' to another has received attention
for decades [1,19-21]. An ambitious goal is to consider translations in a model-
generic setting [9,11], where the major problem can be formulated as follows:

P. Atzeni supported by MIUR, within the FIRB-MAIS project, and by an IBM Faculty Award.

G. Gianforme supported by Microsoft Research through its European PhD Scholarship Pro-
gramme. Currently with Almawave.

P. Cappellari supported by MIUR, within the FIRB-MAIS project. Currently with Dublin
City University.

Dipartimento di Informatica e Automazione
Universita Roma Tre, Italy
[atzeni,cappellari]@dia.uniroma3.it, giorgio.gianforme@gmail.com

L In the database field, a data model is a set of constructs used to describe the structure of
the data of interest. Following common practice in the field, we often abbreviate, and write
simply model, instead of data model. Clearly, we use the term with a meaning that is different
from that used in logic.

2 Paolo Atzeni et al.

“given two data models M1, M2 (from a set of models of interest) and a schema
S1 of My, translate S; into a schema Sy of My that properly represents S;.”

The goal of this paper is to give formal grounds to the notion of data model and
to the management of translations of schemas with reference to a recent approach
to this problem, the MIDST proposal [5-7]. Following the MDM approach [9]
(which in turn was inspired in this respect by an observation of Hull and King [17]),
MIDST assumes that there is a set of generic constructs, each with a number of
possible variations. Constructs with the “same” meaning in different models are
defined in terms of the same generic construct; for example, “entity” in an ER
model and “class” in an object model both correspond to the abstract construct.
Then, a data model is defined by specifying the constructs it includes. The notion
of a supermodel is introduced: it is a model that includes all constructs (each in its
most general version) and so generalizes all the other models (modulo renaming
of constructs). The supermodel is not significant in practice as a model, but it
plays a major role in our approach as it provides a common framework for the
description and comparison of models and for the translation process.

In this framework, the set of models can become very large: each construct
has many variations, with many possible combinations. For example, binary re-
lationships (in the family of ER models) can be many-to-many or be limited to
one-to-many; they might allow attributes or not; they might involve external iden-
tification of entities (and give rise to “weak” entities [24]), or not, and so on. With
more constructs (for example nested structures, as appearing in object models or in
XML contexts) it is easy to reach hundreds or thousands of different models.? With
this size for the space of data models, it would be hopeless to have translations
between every pair of models. If we refer to the supermodel, then we would need
one translation for each model (from the supermodel to it), but with many models
this would still be impractical. In order to tackle this problem, MIDST (following
MDM [9], and concurrently with other proposals [12,22]) has complex translations
that are built as composition of elementary ones. The idea is to have basic trans-
lations that perform elementary steps that refer to generic constructs, and so can
be reused. If the number of models grows because of the possible combinations of
constructs, then a relatively small number of basic translations, to be combined,
can provide the basis for building many complex translations on the fly, when they
are needed, without the need for predefining them. For example, both entities in
the ER model and elements in the XSD world can be seen as “abstracts,” and
so both the translation from the ER and that from XSD to the relational model
require the replacement of abstracts with tables. A translation from a model to
another would then be obtained as a sequence of basic translations. For example,
if we want to translate schemas from an ER model with generalizations and n-ary
relationships to an object model with no generalizations, then we would have the
following steps (where, for the sake of clarity, we use the specific names, such as
“entity,” instead of the generic ones, such as “abstract”):

1. replace n-ary relationships with binary ones (adding some entities);
2. eliminate many-to-many relationships (adding entities again);

2 Obviously, all these models need not be defined at the same time. However, even if few
models are used, they are chosen in a very large set. For example, if we have (and we have
implemented this) seven aspects in the ER model over which a choice is possible, and the
choices are independent from one another, then we have 27 variations of the model.

Data model descriptions and translation signatures in a multi-model framework 3

P
S1 schema for My Sy = P(S1)
: ¥ Sa is a schema for Ms
M rp = sia(P)
M; = DESC(M) Mz = rp (M)

Fig. 1 The main result of the paper

3. replace one-to-many and one-to-one relationships with references;
4. eliminate generalizations (in an object model, new references are added).

With this fine-grained approach, the elementary steps can be reused, but care is
needed. For example, steps 1-4 are meaningful in this order, because a step does
not introduce constructs removed by one of the previous steps; moreover, step 2 is
not needed if the source model has no many-to-many relationships; and the fourth
one requires that relationships have been replaced by references, because it does
not care about relationships. On the other hand, if step 2 is omitted and there
are many-to-many relationships, then the latter are not translated, and so the
translated schema would not include concepts corresponding to them. Therefore,
a major issue arises: given a set of basic translations, how do we build the actual
translations we need? How do we verify that a given sequence of basic transla-
tions produces the model we are interested in? And that it does not “forget” any
construct?

The contribution of this paper is a formal approach to answering these ques-
tions, which exploits the use of Datalog® for the implementation of translations, as
it is the case in our project, MIDST [5-7]. Let us give an idea of the result. First,
we associate with each model a description that specifies its constructs. We intro-
duce a similar notion for our Datalog programs, called signature, that describes, in
a concise way, the behavior of a program, in terms of the involved constructs: given
a program, we can derive its signature, and we have defined the application of pro-
gram signatures to model descriptions. Then, the result is that signatures properly
describe the behavior of programs on models, in the sense that the application of
signatures provides a “derivation” of models that is sound and complete (in a sense
to be clarified shortly) with respect to the schemas generated by programs. Let
us describe the main results with the help of Figure 1. Let S; be a schema for a
model M, let P be a Datalog program implementing a translation, and let S
be the schema obtained by applying P to Si. Then, let M; be the description of
M, and rp the signature of P, which corresponds to a function (the application
rp() of rp) from descriptions of models to descriptions of models. Soundness and
completeness (of signatures with respect to Datalog programs) can be claimed as
follows, respectively (the claims will be formalized and proved later in the paper
and synthesized in Theorem 3):

1. the application of P to a schema S; of M; produces a schema Sz = P(S7)
that is legal for the model My whose description My = rp(M37) is obtained by
applying the signature rp of program P to the description M; of Mjy;

2. among the possible schemas of M;, there exists a schema S* such that the
application of P to S* produces a schema P(S*) that (beside belonging to

3 More precisely, as we will clarify, we use a variant of Datalog. However, for the sake of
conciseness, we will always say “Datalog” program or rule, rather than “Datalog-like.”

4 Paolo Atzeni et al.

rp(M1), as stated by the previous claim) does not belong to any model that is
“strictly more restricted” than rp(My).

The two claims together say that the model Mg whose description M2 we derive
by means of the application of signatures is exactly the model that allows the set
of schemas that can be obtained by means of the Datalog programs. Claim (1)
says that the derived model is liberal enough (soundness) and claim (2) says that
it is restricted enough (completeness). This can be seen as a “syntactic” aspect of
the correctness of rules.

The contents of this paper complement those we have recently published on
our MIDST tool [5-7]. In the latter papers, we have shown the overall approach to
the problem and how individual translations can be defined and composed. Here
we show how it is possible to describe the properties of translations and to reason
on them. Various applications are possible for the results we have here. First of all,
they can be used to perform simple but useful tasks on the behavior of Datalog
programs, without the need to run them on specific schemas. Some of these are
(we list them informally here, and we will discuss them in a more technical way
later in the paper):

— test for applicability: given a Datalog rule and a model (schema), is the rule
applicable to the model (schema)?

— test for membership of a schema to a model: given a schema and a model, does
the schema belong to the model?

— inclusion test between schemas and/or models: given two schemas (models), is
the first included in the latter or is the second included in the first or neither?

— computation of the result of the application of a Datalog program to a schema
(model): we can apply the signature of the program to the description of the
schema (model) rather than applying the Datalog program itself.

Moreover, they can be the basis for the automatic generation of complex transla-
tions given a library of elementary steps.

The rest of the paper is organized as follows. The main results are in Section 5;
they are preceded by an overview of MIDST and an informal presentation of the
results (Section 2) and by a formalization of the approach, both for descriptions of
models (Section 3) and signatures of rules (Section 4). Then we discuss in Section 6
the interesting consequences of the results in the context of a tool. In Section 7 we
extend our approach to a more expressive but concise version of the supermodel.
We also discuss some related work (Section 8) and draw our conclusions (Section 9).

2 Context and goals

We set the context for our approach, by discussing the features of the MIDST [5,
7] project that are of interest, together with a running example that will be used
to illustrate the technical development.

We assume the availability of a set of constructs, called the universe. Each
construct in the universe has a set of references (which relate its occurrences to
occurrences of other constructs; references are acyclic) and Boolean properties.
Occurrences of constructs also have names and possibly types (for example, in the
ER model each entity, relationship, and attribute has a name, and each attribute

Data model descriptions and translation signatures in a multi-model framework 5

has a type), but we need not refer to them here. Let us explain the basic idea
by means of the universe we will use in our running example. This universe has
the following constructs (just a subset of the universe we are using in the MIDST
tool, which allows to handle many versions of the XSD, ER, OO and relational
models):

Construct References Boolean properties
ENTITY
ATTRIBUTEOFENT. Entity isKey, isNullable
RELATIONSHIP Entityl, Entity2 | isOptl, isFunctl, isldent, isOpt2, isFunct2
ATTRIBUTEOFREL. Relationship isNullable
TABLE
COLUMN Table isKey, isNullable

Let us comment on the various aspects. References in the example are rather
intuitive: each attribute and column has a reference to the construct it is associated
with; each relationship (binary here for the sake of simplicity) has references to the
two involved entities. Properties require some explanation: for each attribute of an
entity, we can specify, with isKey, whether it belongs to the primary key and, with
isNullable, whether it allows null values; each relationship has five properties: isOpt1
(isOpt2) tells us whether the participation of the first (second) entity is optional or
compulsory, that is, whether its minimum cardinality is 0 or 1, isFunctl (isFunct2)
tells whether its maximum cardinality is 1 or is unbounded (‘N’, as we usually
write), isldent tells us whether the first entity has an external identifier to which
this relationship contributes (a “weak” entity [24]). In this way, we are able to
describe the major aspects of a relationship with respect to its cardinality and
external identification (as suggested in major texts on conceptual design, such as
Batini et al. [10]).

It is important to note that we have shown this set of constructs to give an
idea of how schemas can be described in a model independent way, that is, in a
framework that allows for the definition of various models and relates constructs
to the framework, rather than to the specific model. Details on how a dictionary
that describes data models and schemas in a coherent way can be found in Atzeni
et al. [4]. Here the importance is not really in the set of models, but just on the
fact that in this way we can describe models in a flexible way and we can reason
on them. Indeed, the technical development of this paper is independent of the
actual sets of constructs and of their properties—it is generic and extendible.

In this framework, given a set of constructs, references are required to build
schemas for meaningful models: in fact, it is often the case that a construct is
“subordinate” to another, for example we have columns only if we have tables
and relationships only if we have entities. In order to simplify the technical devel-
opment, we assume here, throughout Section 6,% that each construct has a fixed
set of required references (in the example, those in the table above). We will use
the term referential constraint for the requirement that we have in our schemas
that each occurrence of a construct does have references to occurrences of other
constructs: for example, each occurrence of the construct relationship is required
to have references to two occurrences of the construct entity .

4 In Section 7 we will remove this assumption, in order to allow for more flexibility, and
discuss how the approach maintains its validity.

6 Paolo Atzeni et al.

StartDate
(@]

EmpNo e— ©ON) ()] —e PCode
Name 0— Employee Project 0 Title

Fig. 2 A schema in the ER model MgR

StartDate

O (0.N)

Employee Partic. Project

Fig. 3 A schema in the ER model with no many-to-many relationships MpgRryoM2N

Employee Participation Project
EmpNo | Name | ... EmpNo | PCode | StartDate PCode | Title

Fig. 4 A relational schema

On the other hand, properties could be restricted in some way. For example,
we can think of models where all cardinalities for relationships are allowed and
models where many-to-many relationships are not allowed.

Therefore, we can think that models are defined by means of the constructs,
each with a condition on its properties; this idea will be formalized in Section 3.
Let us list a set of models to be used in the discussion:

— Mgg.: a relational model, with tables and columns (and no restrictions);

— MRrLNon: a relational model with no null values: all columns must have a value
false for property isNullable;

— Mggr: an ER model with all the available features;

— MeEgRrsnreee: an ER model with no null values on attributes (all attributes have
a value false for isNullable) and no attributes on relationships;

— MeEggryomon: an ER model with no many-to-many relationships (all relation-
ships have a value true for isFunctl or isFunct2).

As we said in the introduction, translations in this approach are specified by
means of sequences of elementary steps. A translation from the ER model Mggr
to the relational model Mgy, could be composed of the basic translations:

— Py: eliminate many-to-many relationships;
— Pa: translate (i) entities into tables, (ii) attributes and one-to-many (and one-
to-one) relationships into columns.

For example, given the ER schema sketched in Figure 2, program P; translates
it into the schema in Figure 3 and then program Pg translates the latter into
the relational schema sketched in Figure 4, by using well known techniques, as
follows. First program P; eliminates the many-to-many relationship Participation
by replacing it with an entity, connected to Employee and Project by one-to-many
relationships. The new entity is a weak one, identified by means of the participation

Data model descriptions and translation signatures in a multi-model framework 7

to the two relationships. Then program Ps translates from the ER world to the
relational one, by introducing a table for each entity and an attribute for each
one-to-many relationship. In this case, the two attributes EmpNo and PCode form
the key for Participation (Figure 4) because of the weakness of the corresponding
entity.

In MIDST translations are specified in a Datalog variant with OID invention,
with ideas from ILOG [18]. The predicates correspond to constructs and their
arguments may be (beside OIDs, names and possibly types) references and prop-
erties. The variant we adopt with respect to standard Datalog consists in the use
of Skolem functors for OID invention, due to the fact that we need to generate
new (occurrences of) constructs at each step of the translation, each identified by
a newly created OID.

A Datalog program for P; includes eight rules (shown in Figure 5). Let us
briefly comment on the rules (while we refer to our previous work for more de-
tails [7]). We use a non-positional notation for them, so we indicate the names of
the fields, and omit those that are not needed (rather than using anonymous vari-
ables). Rules generate constructs for a target schema (tgt) from those in a source
schema (src), and we may assume that variables tgt and src are bound to constants
when the rule is executed. Each predicate has an OID argument, used for unique
identification of its occurrences. For each schema we have different identifiers, and
so, when a construct is produced by a rule, it has to have a “new” identifier, which
is generated by means of a Skolem functor (denoted by the # sign in the rules).
Skolem functors are also used for references, in order to correlate newly created oc-
currences of constructs. In general, there are several functors (with disjoint ranges)
for each construct.

Let us comment on the specific rules in the figure. The first four rules copy,
from the source schema to the target one, entities and (if there are any) one-to-one
and one-to-many relationships, with their respective attributes. Indeed, in most
of our programs we have many “copy” rules, because each translation is usually
concerned with a very specific task, such as eliminating a construct or some of its
variants. In our example above, this happens for entities Employee (with EmplINo,
Name, ...) and Project (with PCode, Title, ...). In the example, the only relationship
is many-to-many, so rules Ry 3 and R 4 are not used.

Then, the rules that actually perform the translation are the last four. Let
us comment on them, especially R1 5, R1,6 and Ri,7, in order to discuss a few
important issues:

— These rules are applied only if both isFunctl and isFunct2 are false: so, if the
source model has no many-to-many relationships (for example, MgryomM2N),
they have no effect, that is, they generate no elements in the target schema.

— Ri,6 and Ry, always generate relationships with isFunctl = true (because of
the true value for isFunctl in the head); so, they do not generate many-to-many
relationships; constants in the head tell us some restrictions on the construct
that is generated; in the example, these rules generate, from the schema in
Figure 2, the two relationships E-P and P-P in Figure 3, which are both one-
to-many.

— The repeated variable isOpt in R transfers the value of isOptl in the source
to the value of isOpt2 in the target; similarly, the variable with the same name
in Ry,7 transfers the value of isOpt2 in the source to the value of isOpt2 in the

8 Paolo Atzeni et al.

Rule Ry 1: copy entities
ENTITY(OID: #entity_0(eOid), sOID: tgt, Name: n)
<—ENTITY(OID: €0Oid, sOID: src, Name: n)

Rule R12: copy attributes of entities
ATTRIBUTEOFENT(OID: #attribute_0(aOid), sOID: tgt, Name: n, IsKey: isK,
IsNullable: isN, EntityOID: #entity_0(eQOid))
< ATTRIBUTEOFENT(OID: aOid, sOID: src, Name: n, IsKey: isK,
IsNullable: isN, EntityOID: eQOid)

Rule R1 3: copy one-to-one and one-to-many relationships
RELATIONSHIP(OID: #relationship_0(rOid), sOID: tgt, Name: n,
Entityl: #entity_0(eOidl), isOptl: isO1, isFunctl: true, isldent: isld,
Entity2: #entity_0(eOid2), isOpt2: isO2, isFunct2: isF2)
<RELATIONSHIP(OID: rOid, sOID: src, Name: n, Entityl: eOidl, isOptl: isO1,
isFunctl: true, isldent: isld Entity2: eOid2, isOpt2: isO2, isFunct2: isF2)

Rule Ry 4: copy attributes of one-to-one and one-to-many relationships
ATTRIBUTEOFREL(OID:#attributeOfRel_0(arOid), sOID: tgt, Name: n,
IsNullable: isN, RelationshipOID: #relationship_0(rOid))
< ATTRIBUTEOFREL(OID: arOid, sOID: src, Name: n,
IsNullable: isN, RelationshipOID: rOid),
RELATIONSHIP(OID: rOid, sOID: src, isFunctl: true)

Rule Ry 5: generate an entity for each many-to-many relationship
ENTITY(OID: #entity-1(rOid), sOID: tgt, Name: n)
+RELATIONSHIP(OID: rOid, sOID: src, Name: n, isFunctl: false, isFunct2: false)

Rule Rj g: for each entity generated by R1 5, generate a relationship between it and the
copy of the first entity involved in the many-to-many relationship
RELATIONSHIP(OID: #relationship_1(eOid,rOid), sOID: tgt, Name: eN+rN,
Entityl: #entity_1(rOid), isOptl: false, isFunctl: true, isldent: true,
Entity2: #entity_0(eOid), isOpt2: isOpt, isFunct2: false)
+RELATIONSHIP(OID: rOid, sOID: src, Name: rN, Entityl: eOid, isOpt1: isOpt,
isFunctl: false, isFunct2: false),
ENTITY(OID: €Oid, sOID: src, Name: eN)

Rule Ry 7: for each entity generated by R1 5, generate a relationship between it and the
copy of the second entity involved in the many-to-many relationship
RELATIONSHIP(OID: #relationship_1(eOid,rOid), sOID: tgt, Name: eN+rN,
Entityl: #entity_1(rOid), isOptl: false, isFunctl: true, isldent: true,
Entity2: #entity_0(eOid), isOpt2: isOpt, isFunct2: false)
<RELATIONSHIP(OID: rOid, sOID: src, Name: rN, Entity2: eOid,
isOpt2: isOpt, isFunctl: false, isFunct2: false),
ENTITY(OID: €Oid, sOID: src, Name: eN)

Rule R;13: for each attribute of each many-to-many relationship, generate an attribute
for the entity generated by R1 5
ATTRIBUTEOFENT(OID: #attributeOfEnt_1(arOid), sOID: tgt, Name: n,
IsKey: false, IsNullable: isN, EntityOID: #entity_1(rOid))
+ATTRIBUTEOFREL(OID: arOid, sOID: src, Name: n, IsNullable: isN,
Relationship: rOid)
RELATIONSHIP(OID: rOid, sOID: src, isFunctl: false, isFunct2: false)

Fig. 5 The rules that form program P;

Data model descriptions and translation signatures in a multi-model framework 9

target. Let us recall that properties isOptl and isOpt2 describe the minimum
cardinality of a relationship. Indeed, in the example, for the relationship Par-
ticipation in the source, we would have isOptl = true (because of the minimum
cardinality set to O for Employee) and isOpt2 = false (minimum cardinality set
to 1 for Project). Then, R; ¢ generates isOpt2 = true for E-P (minimum cardi-
nality O for Employee, as shown in Figure 3) and R; 7 generates isOpt2 = false
for P-P (minimum cardinality 1 for Project).

It turns out that, if we apply program P; to a schema in model Mggryonmon (that is,
ER with no many-to-many relationships), we obtain the same schema,® because
only copy rules are applicable, and so, if we want to translate a schema from
MEgRnoM2N t0 MRyg, then it suffices to apply program Ps. In this paper we show
that it is possible to formalize these ideas, by means of the notions of descriptions
of models and signatures of programs mentioned in the introduction. In fact, if,
for each of the models listed above, M is the description of model My and rp,
and rp, are the signatures of programs P; and P2, respectively, then:

(i) 7p, (MERNoM2N) = MERNOM2N;
(ii) rp, (MER) = MERNOM2N;
(iii) P, (TPl (MERSIMPLH)) = MRgLNON-

The results in Section 5 guarantee that the “syntactic” properties (i)-(iii) cor-
respond indeed to the “semantics”: for example, from (iii) we will be able to
know that the application of the sequence of programs P; and P2 to a schema of
MeEgrsivpLe Produces a schema of Mgy non. Moreover, the technical development
will allow us to say that if we apply program P3 to a schema of Mggrgwpre O MER
that contains many-to-many relationships, which are allowed for them, then some
constructs (in fact, many-to-many relationships) are ignored® and so get lost.

Before concluding the section, let us mention that we have a number of re-
strictions on our rules, for which we give the main ideas, as needed for stating
the hypotheses we use for proving the main results of this paper. It is important
to observe that all these assumptions can be checked automatically (actually, we
have built a rule editor that guarantees that they are satisfied) and they are all
satisfied in our tool, so they do not limit the significance of the approach. First of
all, we have the standard “safety” requirements [24]: every variable that appears
in a rule has to appear in the body in a (positive) atom that is not a comparison.
Second, we assume that Boolean variables for properties cannot be repeated in
the head nor in the body (the only allowed repetition is: once in the body and
once in the head). Third, repeated variables for oids are allowed only in fields
that are subject to referential constraints and in comparison atoms, which may
contain only inequality comparisons (equalities are handled by means of repeated
variables).

It is also important to observe that we refer to rules without negation. Indeed,
negations arise only in a few cases in the translation process, with a restriction

5 More precisely, we obtain an isomorphic copy of the source schema.

6 Strictly speaking, such a schema need not contain many-to-many relationships, we just
say that it may contain, so we are not guaranteed that everything is kept.

10 Paolo Atzeni et al.

over positive conditions which can be reduced to the positive case (possibly with
some growth in the number of rules”).

Moreover, our programs are coherent with respect to referential constraints:
if there is a rule that produces a construct C that refers to a construct C’, then
there is another rule that generates a suitable C’ that guarantees the satisfaction
of the constraint. This property can be checked by analyzing the rules. In the
example, rule Ry ¢ is acceptable because rules R1,1 and Ri 5 produce entities and
so guarantee that references of relationships generated by Ri ¢ are not dangling.

A final comment on recursion is useful. Most of our rules, such as R ¢ above,
are recursive according to the standard definition. However, recursion is only “ap-
parent”: a literal occurs in both the head and the body, but the construct generated
by an application of the rule belongs to the target schema, so the rule cannot be
applied to it again, as the body refers to the source schema. A really recursive
application happens only for rules that have atoms that refer to the target schema
also in their body. In the following, we will use the term strongly recursive for
these rules. Indeed, in our experiments with MIDST we have needed few strongly
recursive rules, the most notable of which are for resolving unbounded chains of
external identification (for example a department number is unique within a com-
pany, a sub-department number is unique within a department, and so on) and
for unnesting complex structures.

3 Descriptions of constructs and models

In this section we formalize the description of models. We define models in terms
of their descriptions, blurring the distinction between a model and its description,
as descriptions are sufficient for the purpose of this paper. Indeed, there could be
different ways to define models within a metamodel framework, but once one is
fixed, then it can be used as a formal description.

As we illustrated in the previous section, each construct has a number of prop-
erties and references. References are tightly bound to the construct, with no vari-
ations. Properties, instead, can be subject to restrictions. Therefore we can give a
synthetic description of a model by listing the constructs it involves, each with a
propositional formula over its Boolean properties, and ignoring references.

In detail, as we anticipated in Section 2, we fix a universe of constructs, each
with a set of associated properties:

U={C1(P1),C2(P2),...,Cu(Pu)}

In the examples we will refer to the constructs in the previous section, in abbre-
viated form as follows (the abbreviation denotes the short name of each construct
with the associated properties, as it will be used in the sequel for the sake of
compactness):

7 The growth could be at most quadratic in the number of explicit conditions in the negated
literals. We say that it is small because in all practical cases we have considered we have at
most one or two rules with negated literals and each with one or two conditions.

Data model descriptions and translation signatures in a multi-model framework 11

Construct Boolean properties Abbreviation
ENTITY E()
ATTRIBUTEOFENT isKey,isNullable A(K,N)
RELATIONSHIP isOpt1,isFunctl,isldent,isOpt2,isFunct2 | R(01,F1,1,02,F2)
ATTRIBUTEOFREL isNullable AR(N)
TABLE T()
COLUMN isKey,isNullable ¢(k,N)

Then, (the description of) a model is a mapping that associates a proposition
(over the associated properties) with each construct in the universe:

M ={Ci(f1),C2(f2),...,Cu(fu)}

We will use the term construct description to refer to C(f), where C is the name
of a construct and f a proposition (over the associated properties).

In the definition above, we have that all constructs are mentioned in every
model, possibly with a false proposition, which would mean that the construct
does not belong to the model. In practice, we describe a model by listing only the
constructs that really belong to it—those that have a proposition that is satisfiable,
that is, not identically false; in this way, the models discussed in Section 2 would
be as follows (with the propositions that specify the restrictions we have informally
described there):

— Mgy = {1(true), c(true)}

— MgrgNon = {T(true), ¢(-N)}

— Mgr = {E(true), A(true), R(F1 V =F2), AR(true)}®
— Mggrsure = {E(true), A(-N), R(F1 V —F2)}

— Mgryoman = {E(true), A(true), R(F1), AR(true)}

We can define a partial order on models, as follows:

— My C My (read M; is subsumed by Mp) if for every C' € U it is the case
that fi A f2 is equivalent to f1 (that is, f1 implies f2), where C(f1) € M7 and
C(f2) € M2

It can be shown that C is a partial order (modulo equivalence of propositions), as
it is reflexive, antisymmetric® and transitive.

If models are described only in terms of the constructs that have satisfiable
properties, then the partial order can be rewritten as:

— My E My if for every C(f1) € Mi there is C(f2) € M2 such that f1 A fo is
equivalent to f1

In words, M1 T M, means that M, has at least the constructs of M; and, for
those in Mi, it allows at least the same variants (that is, the same configuration
of values for its properties). For the example models:

8 Without loss of generality, we assume that in a one-to-many relationship, it is the first
entity that has a functional role, and so F1 = true and F2 = false.

9 Antisymmetry holds if we consider two models to be the same if their respective proposi-
tions are equivalent, which is clearly reasonable in our case. If not, we should say that C is a
preorder.

12 Paolo Atzeni et al.

— MRggNoN E Mgy, (and Mgy, Z MgreiNon): they have the same constructs, but
MgpreiNoN has a more restrictive condition on construct ¢ than Mgy, ;

— MggryoMmaN T Mgr (and Mgr Z MgryoMmeN): they have the same constructs,
but MgryoMon has a more restrictive condition on construct R than Mgg;

— Mggrsiwere E MER (and Mgr £ MgRrsnpee): the constructs in Mprsppre are a
proper subset of those in Mgy and, for each of them, the condition in MgrgpLe
is at least as restrictive as the respective one in MgR;

— MgRrnoM2N 2 MEgRsiures MERsivee £ MERnoM2N: in fact MErnoman has AR
which is not in Mgrgwpere, but has a more restrictive condition on R.

We can define two binary operators on the space of models as follows:

MiUMy ={C(f1V f2) | C(f1) € M1 and C(f2) € M2}
My MMz = {C(f1 A f2) | C(f1) € M1 and C(f2) € M2}

If we refer only to the constructs that have a satisfiable proposition, then we write:

My UMy = {C(f) | C(f) € M1 and there is no C(f') € Ma} U
{C(f) | C(f) € Mz and there is no C(f') € M1} U
{C(f1V f2) | C(f1) € My and C(f2) € Ma}
MinMe={C(fi A f2) | C(f1) € M1,C(f2) € M2 and f1 A f2 is satisfiable }

It can be shown that the space of models forms a lattice with respect to these
two operators (modulo equivalence of propositions). The proofs of the claims that
guarantee the lattice structure follow the definitions and the fact that the Boolean
operators in propositional logic form a lattice. The supermodel (the fictitious most
general model mentioned in the Introduction) is the top element of the lattice (with
the true proposition for every construct). It is worth noting that models obtained
as the result of these operations, especially 1M, could have, in some extreme cases,
little practical meaning. For example, the bottom element of the lattice is the
(degenerate) empty model, which has all false propositions (or, in other words, no
constructs).

We can also define a difference operator on models

My — My ={C(f2 A=f1) | C(f1) € My and C(f2) € Ma}
If we refer only to the constructs that have a satisfiable proposition, then we write:
Mo — M7 = {C(fQ A —|f1) | C(fl) € M, and C(fz) S Mg} @]
C(f2) | C(f2) € M2 and there is no C(f1) € M1}
This operator can also generate models with meaningless conditions, and in-

deed we will see in Section 6 that we use it only for technical steps in the search
for translations.

Data model descriptions and translation signatures in a multi-model framework 13

4 Signatures of Datalog rules and their application

In order to handle rules and to reason on them, in an effective way, we introduce
the notion of signature of a Datalog rule. The definition gives a unique construction,
so the signature can be automatically computed for each rule.

As a preliminary step, let us define the description of an atom in a Datalog
rule. An atom in Datalog has the form C(ARGS), where C' is a construct name and
ARGS is a list of arguments (each of which is a pair composed of a field and a
Skolem term or a constant or a variable). For example, the following are the two
atoms in the body of rule Ry ¢

RELATIONSHIP(OID: rOid, sOID: src, Name: rN, Entityl: eOid, isOpt1: isOpt,
isFunctl: false, isFunct2: false)
ENTITY(OID: €Oid, sOID: src, Name: eN)

Given an atom C(ARGS), consider the fields in ARGs that correspond to properties
(ignoring the others); let them be pi:v1,. .., privy; each v; is either a variable or a
Boolean constant true or false. Then, the description of C'(ARGS) is a construct de-
scription C(f), where the proposition f is the conjunction of literals corresponding
to the properties in p1, ..., p; that are associated with a constant; each of them is
positive if the constant is true and negated if it is false. If there are no constants,
then the proposition is true. For example, the descriptions of the two atoms in the
body of rule R1 ¢ are R(—F1 A —F2) and E(true), respectively.

Let us now define the signature of a Datalog rule. Let R be a rule, with a
head C(arGs) and a body with a list of atoms referring to constructs which need
not be distinct (C}, (ARGS1), Cj, (ARGS2), ..., Cj, (ARGSy)); comparison terms (with
inequalities, according to our hypotheses) do not affect the signature, and so we
can ignore them. The signature rg of R is a triple (B, H,MAP) where:

- B (the body of rg) describes the applicability of the rule, by referring to the
constructs in the body of R.

- H (the head of rp) indicates the conditions that definitely hold on the result of
the application of R, because of constants in its head.

- MAP (the mapping of rg) is a partial function that describes where values of
properties in the head of the rule originate from.

More formally:

- B is a list of atom descriptions, (C}, (f1), Cj,(f2),-..,Cj, (fn)), where Cj,(f;) is
the description of the atom Cj, (ARGS;).

- H is defined as the description C(f) of the atom C(ARas) in the head.

- MAP is a partial function whose domain is the set of properties of the construct
in the head; MaP is defined for the properties that are associated, in the head,
with a variable (for our assumptions, each variable in the head appears also in
the body, and only once). If a variable appears for a property p’ in the head
and for a property p of a construct Cj, in the body, then MAP is defined on P
and MAP(p') = Cj, (p).

Let us see the definition on rule R; 6 in our running example, repeated here
for convenience:

14 Paolo Atzeni et al.

Rule Ry 6:

RELATIONSHIP(OID: #relationship_1(eOid,rOid), sOID: tgt, Name: eN+rN,
Entityl: #entity_1(rOid), isOptl: false, isFunctl: true, isldent: true,
Entity2: #entity_0(eOid), isOpt2: isOpt, isFunct2: false)

+RELATIONSHIP(OID: rOid, sOID: src, Name: rN, Entityl: eOid, isOpt1: isOpt,

isFunctl: false, isFunct2: false),
ENTITY(OID: €Oid, sOID: src, Name: eN)

The body of the signature rg, , of R1,6 is B1,6 = (R(-F1A—F2), E(true)); indeed,
the rule is applicable only to many-to-many relationships, that is, if both ¥1 and
Fo are false. Similarly, for Ri 3 we have By 3 = (R(F1)), which is applied only to
one-to-many relationships, as the body is the following (note the term isFunctl:
true):

RELATIONSHIP(OID: rOid, sOID: src, Name: n, Entityl: eOid1l, isOptl: isO1,
isFunctl: true, isldent: isld Entity2: eOid2, isOpt2: isO2, isFunct2: isF2)

The head of g, ; is Hi6 = R(—01 A F1 ATA —F2): the relationships produced
by the rule all have 0; and F2 equal to false and F; and T equal to true.

The mapping for rule Ry is MAP1,6 = (O2 : R(01)) (we denote the function as
a list of pairs, including only the properties on which it is defined). The name of
the construct in the head is not mentioned, because it is known, but let us note
that it might be different from the one in the body; this is the case for Ry s where
MAP = (N : AR(N)) and the first N is a property of A, the construct in the head:

Rule Ry s:
ATTRIBUTEOFENT(OID: #attributeOfEnt_1(arOid), sOID: tgt, Name: n,
IsKey: false, IsNullable: isN, EntityOID: #entity_1(rOid))
< ATTRIBUTEOFREL(OID: arOid, sOID: src, Name: n, IsNullable: isN,
Relationship: rOid)
RELATIONSHIP(OID: rOid, sOID: src, isFunctl: false, isFunct2: false)

Figure 6 shows the signatures for all the rules in program P; (which we saw
in Figure 5).

Then, we can define the application of the signature of a rule to a model, a
notion that will be essential to show the main results in the paper, as sketched
in Figure 1. We need two preliminary notions. First, we say that the signature
rg = (B, H,MAP) of a rule R is applicable to a model M if, for each Cj,(f;) in B,
there is Cj, (fjj\f) € M such that fJ]\f A f; is satisfiable. In words, each construct in
the body has to appear in the model, and the two propositions must not contradict
one another. For example, R 6 is not applicable to MEryoMmoN because we have
R(=F1 A =F2) in the body of the rule and R(F1) in the model: the conjunction of
—-F1 A =F9 and Fp is not satisfiable.

Second, let us define the transformation pwar() induced by mapping MAP
on literals. In plain words, we use puap to “transfer” constraints on literals over
properties in the body to literals in the head according to the MAP of the rule. Let [
be a literal for a property p of an atom Cj,(...) in the body of rule R. For example,
in rule Ry ¢, we have a literal for each property of atom RELATIONSHIP; let us denote
with o; the literal for property isOptl and with u; the literal for property isFunctl.
Then, if Cj,(p) belongs to the range of Map, with MAP(p') = Cj, (p), we have that
paar(l) is a literal for the property p’ with the same sign as [; if Cj,(p) does not
belong to the range of MAP, then pwap(l) = true. In the example, still referring to

Data model descriptions and translation signatures in a multi-model framework 15

Signature TRy for rule Ry 1: Signature TRy for rule Ry 5:
Hi,1 = (E(true)) Hiy 5 = (E(true))
Bl,l = <E(true)> B175 = (R(ﬁF1 A ﬁF2)>
MAP1,1 = () MAP1 5 = ()
Signature rg, , for rule Ry o: Signature rg, ; for rule Ry ¢:
Hi,2 = (A(true)) Hi6 = (R(—O1 AF1 AIA—F2))
Bi,2 = (A(true)) Bi,6 = (R(—F1 A =F2), E(true))
MAP1 2 = <K : A(K),N : A(N)) MAP1 6 = <02 : R(Ol)>
Signature rg, ; for rule R; 3: Signature TRy 7 for rule Ry 7:
H1’3 = (R(Fl)> H1’7 = <R,(—|01 ANF1 ATA —\F2)>
Bi3= <R(F1)> Bi7 = (R(—F1 A —|F2),E(t7"u€)>
MAP1,3 = <O1 : R(Ol),l : R(I), MAP1,7 = <02 : R(02)>
02 : R(02),F2 : R(F2))
Signature rg, 4 for rule Ry s:
Signature TRy 4 for rule Ry 4: His = (A(-K))
Hyg4 = (AR(true)) B1sg = (AR(true),R(ﬂF1 A —|F2)>
Bia= <AR(t7’uE),R(F1)> MAP1 8 = <N : AR(N)>
MAP1 4 = (N : AR(N))

Fig. 6 The signatures for the rules in program P

Ri1,6, we have (see Figure 6) that MAP1 6 = (02 : R(01)) and so property isFunctl
of RELATIONSHIP does not belong to the range of MmaP (hence, pmar(ui) = true
where u1, as we said, is the literal for property Fi in the source schema) whereas
isOptl (abbreviated as 01) does, with MAP(02) = R(01). Therefore, pmar(01) = 02,
where o2 is the literal for property isOpt2 of the head construct. If the literal were
negated in the source schema (that is, —o01), then the application would have led
to a negated literal as well (that is, pmap(—01) = —02) Let us define puap also on
constants: puap(true) = true and pwar(false) = false. The notion can be extended
to disjunctions and conjunctions: (i) pmar(f1Af2) = pvar (f1) Apnar (f2) (if fiAf2 is
satisfiable, otherwise par (f1A f2) = false); (il) pvar (f1V f2) = paar (f1)Vpnar (f2).

We are now ready for the definition of rz (M), the application of the signature
of arule R to a model M. In practice, such function combines constraints expressed
in the head of the rule (which the rule forces in the result) and constraints of the
source model that could be “transferred” to the output by means of variables in
the body that appear also in the head of the rule. Let us see the details. If rg is
not applicable to M, then we define rg(M) as the empty set {}. The interesting
case is when rg is applicable to M. Let the signatures of the body and of the head
of R be B =(Cj,(f1),Cj,(f2),...,Cj,(fn)) and H = C(f), respectively. For every
atom Cj,(f;) in the body, let fjj\f be the proposition associated with Cj, in the
model.

Let us first give the definition in the special case where all the constructs in
the source model M have propositions that are just conjunctions of literals, with
no disjunctions. In this case,

h
rr(M) = {C(f’)} where ' = f A (/\ pMAp(fj]Y A fi))

i=1

16 Paolo Atzeni et al.

Let us note that (fjjy A f;) is satisfiable, since the rule is applicable, and that
it is just a conjunction of literals, because this is the case for f;, by construction,
and for fﬁ/f , by hypothesis. In words, the condition in the result is obtained as the
conjunction of the proposition in the head, f, with those obtained, by means of
MAP, from those in the source model (the f;7’s) and those in the body of the rule
(the f;’s).

If the fj]y’s include disjunctions, then let us rewrite fﬁ/[A fi in disjunctive
normal form g; 1 V...Vg; 4. Then f’ is built as the conjunction of the disjunctions
of the applications of uyap to the disjuncts: f/ = f A (/\?:1(\/3;1 tiar(9i,e)))-

Let us see three cases of applications of a rule in our running example. First,
we have that g, ;(MgryoM2N) = {}, as the rule is not applicable to the model (as
we already saw).

Second, we have g, ;(Mgr) = {R(—01 A F1 ATA =F2)}. The rule is applicable
since only construct R has an associated proposition and (F1 V—F2) A (=F1 A=F2) is
satisfiable, as it is equivalent to —=F; A =Fa. Then, applying the definition f' = f A
(/\?:1(\/2;1 puar(git))) we have that the conjunction of the disjunctions pap(. . .)
is true, since the only property in the body mapped to the head is 01, which does
not appear in the argument of pyap. Therefore, f’ equals the condition f in the
head of the signature: f' = f = =01 AF1 AT A —Fa.

As a third example, to see MAP and pmap really in action, let us apply Ri
to model M = {E(true), R((F1 V =F2) A =01)}. The rule is applicable and we have
TRy (M) = {R(-01 AF1 AIA =F2 A =02)} as

= A pnar(((F1 V =F2) A =01) A (F1 A =F2)) A piar (true A true)
= f A (pmar(F1 A =01 A =F1 A =F2) V pvapr (—F2 A =01 A =F1 A =F2)) A true
= f A (puar(false) V (pnar (=F2) A paiar (01) A paar (<F2)))
= f A (false V (true A =02 A true))
= —01 AF1 ATA —Fz A =02

We are now ready for our final definition, that of the application of the signature
of a Datalog program (implementing a basic translation) to a model. Let us first
consider programs with no strongly recursive rules; we will remove this assumption
before the end of the section. Given a program P consisting of a set of Datalog
rules Ry, Ro, ..., Rn, the application of P to a model M is the least upper bound
of the applications of the R;’s to M: rp(M) = |_|?:1 rr,(M). In this way, we have
a construct for each applicable rule and, if a construct is generated by more than
one rule, the associated condition is the disjunction of the conditions of the various
rules.

If we apply the program P; in our running example to the ER model Mgg, then
all constructs get copied and maintain the true proposition, except relationships,
for which rules Ry 3, R1,6 and Ry 7 generate, respectively, R(F1), R(—O1 AF1 AIA—F2)
(as we saw above) and R(—01 A F1 ATA —Fg). Therefore, as the disjunction of the
three formulas is ¥1, the target model will have R(F1) and so we can say that
the application of the signature of the program to Mggr produces Mggryonan- The
results in Section 5 will tell us that, as a consequence, the application of P; to
schemas of Mg produce schemas of MgryoMaN-

Let us now consider also strongly recursive rules, that is, according to our
definition, rules whose body includes atoms referring to the target schema. These

Data model descriptions and translation signatures in a multi-model framework 17

rules may be applied on the basis of constructs generated by previous applications
of other constructs. As a consequence, the application of signatures is also defined
recursively, as a minimum fixpoint. We can redefine rp to have two arguments, the
source model and the target one, and its recursive application to a model My is the
fixpoint of the recursive expression M = rp(Mo, M). Since it turns out that rp()
is monotonic, then, by Tarski’s theorem [23], we have that the minimum fixpoint
exists and can be obtained by computing My = rp(Mo, L) (where L is the empty
model), M; 1 = rp(Mo, M;) and stopping when M; 1 = M;.

5 Inferring models from rules

In this section we show the main results of this paper, namely the fact that we
can characterize the models obtained by applying Datalog rules by means of the
syntactical notion of application of the signature of a rule to a model.

We need a few preliminary concepts. A pseudoschema is a set of ground
atoms (called ground constructs hereinafter) each of which has the form C(o1p:o,
PLiV1, «.., PgiVk, T1:01, ..., Tz:0z), where C' is the name of a construct that has
exactly the properties p1,...,pr and the references rq,...,r,, each v; is a Boolean
constant and each o; is an identifier. A schema is a pseudoschema that satisfies
the referential constraints defined over constructs (see Section 2): that is, if a
schema includes a ground construct C(...) with a reference r: o0 (for example, a
ground construct RELATIONSHIP(. . ., Entityl: o, ...)) and r is subject to a referential
constraint to a construct C’ (in the example, Entityl has to refer to ENTITY), then
the schema has to include a ground atom of the form C’(01D:0,...) (in the example,
ENTITY(OID: 0, ...) has to be in the schema).

Given a pseudoschema Sy, a schema S that contains all ground constructs in Sp
is called a closure of Sp. It can be shown that a closure of a pseudoschema can be
obtained by applying procedure similar to the chase for inclusion dependencies [14],
as follows: the procedure considers in turn each ground construct subject to a
referential constraint and, if the constraint is violated, adds to the pseudoschema
a new ground construct that repairs the violation (in the example in the previous
paragraph, if the constraint is violated, then a ground construct ENTITY(OID: O, .. .)
is added, with variables for all properties; in general there can also be references,
not here as ENTITY does not have any); the procedure terminates as we have acyclic
referential constraints; at the end, variables can be replaced with Boolean values
(somehow chosen, details are not relevant here) for all properties and with distinct
integers not already appearing in the schema for identifiers.

A schema belongs to a model if its predicate symbols (that is, its constructs)
belong to the model and, for each ground atom C(...), the Boolean values for its
properties satisfy the proposition associated with C' in the model.

Given a ground construct ¢ = C(OID: 0, p1:v1, ..., PriVE, T1:01, ..., Tz:0z),
we define the description of ¢, denoted with sia(c), as C(f) where f =11 A... Alg,
and each [; is a literal with the symbol p;, positive if v; = true and negated if
v; = false.

As an example, R(0ID: 0, O1: false, F1:false, 1: false, O2:true, Fa: false, ...) is a
ground construct (with references omitted as not relevant) describing a many-to-
many relationship, optional on one side and not optional on the other and without
external identification. Its description is R(—=O1 A =F1 A I A O2 A —F2).

18 Paolo Atzeni et al.

The notion of description can be extended to schemas: given a schema S, we
define s1G(S) = | | cg{s1G(c)}. It is interesting to note (even if we will not use
this property) that sic(S) = M{M|S belongs to M} (that is, sia(S) is the greatest
lower bound of the models to which S belongs). Therefore, sic(S) C M if and only
if S belongs to M.

We are now ready to show our results.

Lemma 1 Let M be (the description of) a model and R a Datalog rule. For each
ground construct ¢ in the pseudoschema R(S) produced by the application of R to a
schema S that belongs to M, it is the case that {s1G(c)} C rr(M).

Proof The proof is trivial if R is not applicable to S, because in this case the

pseudoschema R(S) is empty and so there is no ground construct ¢ in R(S).

If it is the case that R is applicable to S, let ¢ = C(0ID: 0,p1: v1,p2: V2,...,Pk:

Vg, T1:01,72:02,...,72:0z) be a ground construct in R(S) (that is, generated by the

application of R to S).

The proof proceeds by first showing that rg is applicable to M: the idea is that

if the rule generates a new ground construct, then, for each of its body literals

there is some construct in the schema that unifies!® with it; therefore the schema

element satisfies both the condition in the body and that in the model and so their

conjunction is satisfiable.

Let R be the rule C() — C]l() Cjz() Jh() and let <Cj1 (f1)7 Oj2 (fQ)»
Cj, (fr)) be the body B of the 51gnature rR of R. As ¢ was generated, then

the rule R was applicable, hence S contains at least h ground constructs ¢; of the

form Cj,(...) (for ¢ = 1,2,...,h) such that each of them unifies with an atom of

body of R.

Let be ¢; the assignment of values to properties corresponding to ¢;, for each 4 in

[1,h]. We have:

— ; satisfies f; because ¢; unifies with the ground constructs Cj, (...), as we said
above;

— p; satisfies fJM (remember that ij is the formula associated to Cj, in the
model M) because the schema S belongs to M and ¢; belongs to S.

So we have an assignment of values to properties that satisfy f; and fj]\f both,
therefore fjjy A fi # F; this implies rg is applicable to M.

Then, since rg is applicable to M, we have that rr(M) = C(f'), with f' = f A
(AL e (F A 1),

Then, the proof shows that the assignment ¢ : (p1 = vi,p2 = v2,...,pp = vg)
(that is, the one with the constants in c) satisfies proposition f’, by showing that
it satisfies both f and /\?:1 ph,mp(fﬁ/[A fi):

— ¢ satisfies f because constants in the head of rule R are present also in ground
construct generated ¢ by construction (in fact f is generated using such con-
stants of the head) and therefore in ¢;

10 This is the usual notion of unification in logic programming: here it means that there is
an occurrence of a construct of the involved type with properties that agree with those that
are constrained in the literal.

Data model descriptions and translation signatures in a multi-model framework 19

— ¢ satisfies /\?:1 tniap ff‘f A fi); we show this by proving that ¢ indeed satisfies
ul\,lAp(fﬁ/[A fi), for every i =1,...,h.

Since R is applicable to S (and remembering R has h atoms in the body), there

exist h assignments @1, 2, ..., yp, to properties of constructs Cy,, Cj,, ...,Cj,

that satisfy formulas f;\f A f1, ff‘z/[A fa, ..o, fj]’VL[A fr, respectively.

Let us consider an assignment ¢; satisfying fj\b/[A f; and rewrite this formula

in disjunctive normal form (if necessary), obtaining g; 1 V gi2 V...V g q,; SO

we have f;‘f A fi = VL, 9+, hence pl\qu(f;‘i/I A fi) = Vi pnar(gi¢) and there
exists at least one term g; , satisfied by ;.

Now we show that ¢ satisfies pvar(gi,r) = pmar(l1) A pvar(l2) A oo A pinaar (lw)

because it satisfies all terms puar(ly) for v =1,2,..., w. We have the following

two cases:

1. if Cj,(pv) (where py is the property associated with literal I,) does not
belong to the codomain of the map of the rule, then pmar(lv) = true and
S0 ¢ satisfies it;

2. if Cj, (pv) belongs to the codomain of the map of the rule, then ¢ assigns
to the property p* associated with p, via the map (MaP(p*) = Cj,(pv)), by
means of repeated variables in the head and the body of the rule R, the
same value that ¢; assigns to pu; ¢; satisfies I, (because it satisfies g;)
and pwmar(ly) has the same sign of I, (by definition of pmar(l)), therefore ¢
satisfies paar (lv).

O

Lemma 2 Let M be a model and R a Datalog rule. If s is a construct description such
that {s} C rgr(M) then there is a schema S that belongs to M such that the application
of R to S produces a pseudoschema R(S) that contains exactly one construct ¢ such
that sia(c) = s.

Proof The proof proceeds by considering a construct ¢ with description s = sic(c)
and showing that there is a set of ground constructs belonging to S corresponding
to the atoms in the body of R out of which ¢ can be produced.

Let R=C(...) < Cj,(-..),Cj,(...),...,Cj,(...). Consider a pseudoschema So that
contains h ground constructs (one for each atom of the body of the rule R), with
repeated oids for repeated variables in the body of R and distinct ones elsewhere.
The values of Boolean properties of these ground constructs are copied (extracted)
from constants in the body of R or traced back from the formula in s, by means
of MAP (which gives no ambiguity, as there are no repeated Boolean values in the
head); if these constructs have other properties, such properties can have arbitrary
values.

The values of properties induced by the body are required to guarantee applicabil-
ity of R to Sg. So, given an atom Cj, (f;) of the body of rr, we use f; to initialize
values of properties of ground constructs ¢; corresponding to such atom. In par-
ticular we assign a true value to properties corresponding to literals positive in f;
and false value to ones corresponding to literals negated.

Let us consider values induced by MAP; the assignment ¢ of values to properties
induced by s satisfies the formula f’' of {C(f")} = rr(M) and, in particular, it
satisfies the conjunction /\?:1 pnar fJM A fi). Let us remember that each formula

fj]\j[A f; of the conjunction corresponds to an element of the body of the rule and
so it is associated with one of the h ground constructs of Sy previously introduced,

20 Paolo Atzeni et al.

and let us consider a generic formula pap(fﬁ/l A f;) and corresponding ground
construct c;.

If we rewrite ffi” A fi in disjunctive normal form, we have [L]y[Ap(fjg\iJ Af) =
Vi, par(git) and @, obviously, satisfies at least one element piar(gs 7). Let us
consider a generic g; » satisfied by ¢ and let g; - =11 Al2 A ... Alw; S0 ¢ satisfies
all the terms pnap(ly) for v = 1,2,...,w and we can use value assigned to literal
tnar (lv) by ¢ to initialize value of property of ground construct ¢; corresponding
to literal I, using /,l,MApil.

Then let us assign arbitrary values to other properties of ¢; not initialized yet:
this is possible because it means these properties are not directly involved in rule
R; therefore we found h ground constructs ¢; and each of these satisfies a formula
fﬁ/f A fi (because they satisfy at least one element g; » by construction) and so
pseudoschema Sp, made of these ground constructs, belongs to the model M (be-
cause of the fjjy ’s) and rule R is applicable to Sp.

Then, consider a closure S = Sg' of Sp, which is a schema. Applying R to S, we
obtain exactly a construct ¢’ such that s = SIG(¢') = SIG(c), that is the only
element of the pseudoschema R(S). o

Let us briefly comment on the latter lemma. Given our example model Mggr
and rule R16, we have that (as we saw) rg, ((Mgr) = {R(-01 A F1 ATA —F2)}.
The lemma says that all construct descriptions s such that {s} C rg, ,(Mgr) can
be obtained as a result of Ri ¢ applied to some schema of Mgg. For example,
description s = {R(—01 AF1 ATA =02 A —=F2)}, which satisfies {s} C 7, ,(Mgr) can
be obtained by applying rule R to a schema which includes (together with other
constructs) at least a many-to-many relationship, and all of them with 01 = false;
this follows from MAP1,6 = (02 : R(01)).

Lemmas 1 and 2 can be synthesized as the following theorem, which describes
the behavior of individual Datalog rules with respect to models and descriptions
of schemas. It says that using the signature of a rule we can characterize the
descriptions of the constructs that can be generated out of a given model.

Theorem 1 Let M be a model, R a Datalog rule and s a construct description. Then
{s} C rr(M) if and only if there is a schema S that belongs to M such that R(S)
contains exactly one construct c such that SIG(c) = s.

Let us now extend the results to Datalog programs.

Lemma 3 Let M be a model and P a Datalog program. For every schema S that
belongs to M, the application of P to S produces a schema P(S) that belongs to rp(M).

Proof Let S be a schema that belongs to model M. The result of the application
of P to S produces a pseudoschema that is indeed a schema because the program
is coherent with respect to referential constraints by hypothesis.

Then, the fact this schema belongs to rp(M) is a consequence of:

— Lemma 1;

— the definition of rp(M) as | |I_, rgr, (M) where n is the number of rules com-
posing P;

— the fact that, obviously, rg, (M) C | |, rr,(M) with j in [1,n].

Data model descriptions and translation signatures in a multi-model framework 21

Let us see the details. If a ground construct ¢ = C;(f) = rg, (S) is generated by one
of the rules R; of the program P applied to a a schema S that belongs to M, then,
by Lemma 1, {s1G(c)} C rg, (M). But, as we said, R; is one of the rules of program
P, and so, since rp(M) = ||, rr,(M), we have that rg, (M) C | | rg,(M),
and so {s1c(c)} C rp(M). This implies that the assignment of values to properties
induced by the formula f of ¢ = C;(f) satisfies rp (M). Therefore as c is a generic
construct generated by P, we have that all constructs generated by rules of P
satisfy rp(M) and so P(S) belongs to rp(M).]

Lemma 4 Let M be a model and P a Datalog program. If S’ is a schema that belongs
to rp(M), then there is a schema S that belongs to M such that sic(S") C sic(P(S)).

Proof Let us first consider non-recursive programs.

The proof is essentially based on Lemma 2: for every ground construct ¢ in S,
we have (partly by hypothesis and partly by definition), that {sic(c)} C sic(S’) C
rp(M); so, there is a construct description C(f) in rp(M) such that ¢ has the
predicate symbol C and its assignment of values to properties satisfies f.

Now, by definition of rp(M), we have that f is obtained as the disjunction of the
formulas associated with the various rules that have C in the head and therefore ¢
(since it satisfies f) has to satisfy one of them. If R is such a rule, it turns out that
{sic(c)} E rg(M) C rp(M) and so, by Lemma 2 we have that there is a schema
S of M such that R(Sc) contains a construct ¢’ such that sic(c) = sia(c’).

Then, for each construct c in S’, let us consider the corresponding schema S. of
M claimed by Lemma 2 and consider the “union” of such schemas for the various
constructs, S = | | g (Sc), and a closure ST of it (as defined in Section 5): ST is
a schema for model M by construction because obtained as the closure of union
of schemas belonging to M and siG(S”) C sic(P(S™)) by construction of S*.

The proof for recursive rules proceeds by induction on the number of steps needed
to reach the fixpoint, with the induction step based on the arguments above. O

Theorem 2 Let M be a model and P a Datalog program. Then a schema S’ belongs
to rp(M) if and only if there is a schema S that belongs to M such that s1G(S’) C
SIG(P(S)).

Theorem 2 synthesizes Lemmas 3 and 4 in a direct way. However, there is
another point of view, which is more interesting, as follows.

Theorem 3 Let M be a model and P a Datalog program. Then,

1. for every schema S that belongs to M, it is the case that s1G(P(S)) C rp(M)
2. there is a schema S that belongs to M such that SIG(P(S)) = rp(M)

Proof By Lemma 3, we have that P(S) belongs to rp(M) and so siG(P(S))
rp (M), which is Claim 1.

In order to prove Claim 2, let us first argue that, given rp (M), there exists a schema
S’ whose description si1G(S’) is exactly rp(M). In fact, we can build a schema S’
as follows: for each construct description C(f) in rp(M) such that the construct
is not subject to a referential constraint, we have a set of ground constructs for C
that show all the possible combinations of properties that satisfy f. Then, for each
of the constructs that are subject to referential constraints, we introduce again a
set of ground constructs that show all the possible combinations of properties that

Im

29 Paolo Atzeni et al.

satisfy the associated proposition, and have references to constructs that have one
of the allowed configuration of properties for the referred construct. Indeed, S’ is
a schema, because it is constructed satisfying the referential constraints and its
description is exactly rp (M) because for each construct all allowed combinations
of properties appear. Then by Lemma 4 we have that there is a schema S such
that sia(S") C sic(P(S)), that is, rp(M) C sic(P(S)) and by Lemma 3 we have
that sic(P(S)) C rp(M). |

Theorem 3 is our main result. It states that the derivation of model descriptions
by means of the application of the signatures of Datalog programs is “sound and
complete” with respect to the models generated by the program, in the sense
that a Datalog program can generate schemas with all and only the descriptions
generated by the application of the signature of rules. In other words, signatures
completely characterize the models that can be generated by means of a Datalog
program.

6 Applications of the results

The technical development of the previous sections can be used in various ways to
support the activities of an actual tool for schema translation, such as the MIDST
tool [5-7] we have developed.

A simple use of the result is the possibility offered to check which is the model
obtained as the result of the application of a Datalog program: the results in
Section 5 allow the “rule designer”!! to know the target model without running
(or inspecting) Datalog rules, but simply generating the signatures of rules and
the description of a schema (model) and running their applications against the
schema (model).

A related use, still in rule specification, is the possibility to check whether
a Datalog program takes into consideration all the constructs of a given source
model, that is whether the application of a Datalog program to a given source
model causes a loss of information. Let us say that the domain of a rule with
respect to a model is the set of constructs of M that are considered by the rule;
formally, given a rule R and a model M, if R is applicable to M, then the domain
poM(rg, M) of R with respect to M is the set of the constructs of M that unify
with the atoms of the body B of the signature of R; if R is not applicable to
M, then poM(rg, M) is the empty model. We can extend this notion to Datalog
programs. Given a program P and a model M, the domain of P with respect to
M, pom(rp, M) is | |pcps DOM(7R, M) where P’ denotes the program that includes
only the rules in P that are applicable to M. Now, constructs (or variant of them)
ignored by a program P when applied to a model M are those that do not unify
with any atom of the body of any Datalog rule of P, that is, those in the dif-
ference between M and pom(rp, M). Clearly, the presence of ignored constructs
is the indication of the fact that a program probably needs additional rules. Our
techniques support the rule designer in discovering these situations. For example,
if we have a program that ignores many-to-many relationships and one applies it

1 The rule designer is a high level user, also called metamodel engineer [7]. The “standard”
user would be a designer, who is interested in translations.

Data model descriptions and translation signatures in a multi-model framework 23

to an ER schema that contains many-to-many relationships, these relationships
would get lost.

A more ambitious goal would involve the automatic selection of rules for the
generation of complex translations out of a library. A general approach for this,
followed also by other authors in similar contexts [12,22], would be based on the
generation of a search tree and on the adoption of heuristics (for example based
on A*-type algorithms) that can be satisfactory. The formal system introduced
in this paper allows the automatic generation of concise description of translation
steps, and then could be the basis for the application of such algorithm but it has
several drawbacks:

— it could be computationally unfeasible, because the number of basic steps can
grow and its termination in general need not be guaranteed, as multiple ap-
plication of rules could arise, with no bounds (i.e. a rule could introduce and
eliminate the same constructs in turn, producing a loop);

— it could produce a translation plan driven for a specific criterion (it depends on
the heuristics adopted) and hence the result plan may differ from the “optimal”
one (provided that a notion of optimality can be given, for example in terms
of the number of steps).

In the remainder of the section, we propose a different algorithm that, under
suitable assumptions, is effective and more efficient. The assumptions are formal-
izations of some observations derived by our experience with the tool, in terms of
both definition of models and specification of rules.

In fact, it can be observed that most translations, when applied to certain
models, return a schema that is more restricted than the input, because they just
eliminate a feature. Eliminations can be performed by dropping a construct or
reducing its variants. We use the term reduction to refer to these translations. The
others are called transformation. They introduce new constructs (or new variants of
constructs), beside eliminations of some constructs. With reference to the example
of Section 1, the elimination of generalizations is a reduction, performed by drop-
ping the constructs devoted to represent generalizations, substituting them with
new references; the elimination of many-to-many relationships is performed adding
constraints to the formula of the construct devoted to represent relationships; the
replacement of relationships with references is an example of a transformation.

A second observation is that we have few “families” of models (according to a
notion to be defined shortly), such as ER, OO and relational, and we manage many
variations for each family. With respect to the previous observation, reductions
allow to move within a family (i.e. they return a schema or model of the same
family), while transformations allow to move toward another family. Again with
reference to Section 1, the elimination of generalizations is a reduction within the
OO family; the elimination of many-to-many relationships is a reduction within
the ER family; the replacing of relationships with references is a transformation
from the ER to the OO family.

Formally, a family of models F is a set of models defined by means of a model
M* (called the progenitor of F) and a set of models My 1, ..., M, ;, (the minimal
models of F) and contains all models that are subsumed by M™* and subsume at
least one of the M, ;’s:

F={M|MCM"and M,;C M, for some 1<i<k}

24 Paolo Atzeni et al.

For example, the model Mgr of our previous examples should be the progenitor
of the ER family, and a model with Entities and Relationships only should be one
of the minimal models of such family.

Let us now formalize the notions of reduction and transformation. A trans-
lation P is a reduction for a family F if, when applied to a schema S of a model
M € F, it generates a schema that is subsumed by the input (P(S) C S). The
translations that are not reductions for a certain family are indeed transforma-
tions for such family (i.e. they typically eliminate one or more constructs of the
input and introduce new ones).

For example, translations P and P5 of Section 2 are a reduction within the ER
family and a transformation from the ER family to the relational one, respectively.

Now we can present our assumptions on the set of basic translations.

Assumption 1 For each pair of families F1, Fa, there are a model My in F1 and a
translation T such that, for each schema S1 of My:

1. T does not ignore any construct of Si;
2. T produces a schema that belongs to the progenitor M3 of Fa.

This hypothesis requires the existence of ¥? translations, if F is the number of
different families. This is not a real problem, as F is reasonably small and, whatever
the approach, these rules would be needed. In general there might even be pairs of
families with more than one translation, but we ignore this issue, as it would not
add much to the discussion. Indeed, these translations could in turn be composed
of various basic ones, but this is also not essential here.

Assumption 2 For each family F, for each minimal model M, ; of F, there is a
translation from the progenitor M™ of F to M, ;, entirely composed of reductions that
do not ignore constructs.

For example, this assumption requires that, in the ER family, there is a set
of reductions to move from a complete ER with generalizations, many-to-many
relationships, attributes on relationships to a minimal ER with entities, attributes
of entities and binary relationships only, without ignoring any construct. If there
were no reduction to transform many-to-many relationships, it would be violated.
The satisfaction of this assumption can be verified by considering the reductions
for the family (that is, the basic translations that are reductions for the progenitor
of the family) and performing an exhaustive search on them. This is in principle
inefficient, but in practice it can be done in a fast way, as the number of reductions
in a family is small, and in fact most of them are commutative, because they
eliminate variants of constructs, which are often independent of one another.

We proved in [7] that, if the set of basic translations satisfies Assumption 1 and
Assumption 2, then, for each family and each pair of models M; and My within
it, there is a translation from M; to My that does not ignore constructs.

On the basis of these assumptions, with the technical machinery developed in
this paper we can give the details of an algorithm that always finds a complete
transformation with the following structure:

1. areduction (composed of a sequence of translations that are reductions) within
the source family;
2. a transformation from the source family to the target family;

Data model descriptions and translation signatures in a multi-model framework 25

3. a reduction within the target family.

On the basis of Assumption 1, the transformation of step 2 always exists. Then
the first set of reductions (step 1) is needed to transform the source schema into
another schema belonging to the model M; mentioned in Assumption 1. Applying
the translations of steps 1 and 2 to the source schema, we obtain a resulting schema
that need not belong to the target model, hence the second set of reductions (step
3) is needed to guarantee it.

The previous assumptions and arguments justify the algorithm shown in Fig-
ure 7. The algorithm has an input that is composed of a source schema S; and a
target model My, and refers to a given set of families and a given set of rules.

FINDCOMPLETETRANSLATION(ST, M2)

Fi = FAMILY(S1)

F2 = FAMILY(M?)

T = GETTRANSFORMATION(F1, F2)
M| = GETSOURCE(T)

Ti = GETREDUCTION(F1, M)

T2 = GETREDUCTION(F2, M2)
return 7107 o7

R

Fig. 7 Algorithm FINDCOMPLETETRANSLATION

Let us comment on the various steps of the algorithm.

Lines 1 and 2 find the families to which the source schema and the target
model belong, respectively. In order to find the family to which a schema (model)
belongs, it is enough to test the “inclusion” of such schema (model) against the
progenitors of the families. This is feasible if the number of families is small, and
we assume this to be the case. Let S be a schema and M™* the progenitor of family
F,if SC M* then S € F.

Line 3 selects the transformation between the two families, whose existence is
guaranteed by Assumption 1. A Datalog program P is a transformation between
two families 71, F2 (with progenitors M7 and M3, respectively), if | |,.p Br C
M7 and rp(M1) C M. It is interesting to note that this operation can be per-
formed off-line for each pair of families and not during a transformation process.

Then, line 4 computes the source model Mj for transformation 7. It is the
“union” of the bodies of the selected transformation: |_|ReP Bg.

Next, line 5 finds the sequence of reductions needed to go from the progenitor of
F1 to M7 (on the basis of Assumption 2) and line 6 does the same within the target
family. The first step to find a reduction (that is, a sequence of reduction programs)
toward a model within a family is the search for reductions for that model, testing
if the application of a program to the progenitor of the family returns a model
subsumed by the progenitor. Then we have to order the reductions to avoid that
a program could introduce a construct eliminated by a previous program. Given
two Datalog programs P; and P2, P; precedes Py if |_|R€P1 HR|T|_|R€P2 Bgr # @.
Obviously we have also to check that, at each step, no information gets lost (this is
done by verifying that there are no ignored constructs). Finally, after we found a
reduction, we can optimize it with respect to the actual input, which need not be
the progenitor of a family. Again we note that the first two steps of this procedure

26 Paolo Atzeni et al.

can be done off-line for each family and perform just the optimization step at
run-time during the transformation.

Finally, the algorithm returns a translation that is the concatenation of 77, T,
and 73.

7 An enhanced supermodel

In this section we show that the ideas presented in the paper make sense even if
we remove the assumption that references of constructs are always required.

The usefulness of the MIDST proposal depends on the expressive power of its
supermodel, that is the set of models handled and accuracy and precision of the
representation of such models. In order to improve the expressive power of the
supermodel, it has been necessary to introduce new constructs, often just variants
of pre-existing ones, thus observing a growth in the number of constructs.

A key observation is the following: many constructs, despite differences in their
syntactical structure, are semantically similar or identical, in the following sense.
Recalling our running example, in the ER model, attribute of entities and attribute
of relationships show some similarity: even if they have different references (toward
an entity and toward a relationship, respectively), and the first one has an extra
property (isKey), they both represent a lexical value. Moreover, also a column in
the Relational model is very similar to an attribute of the ER model, even if it has
a reference toward a table. In these cases, two or more constructs can be collapsed
into a unique construct with their common semantics and a structure obtained
by the union of the structures of the involved constructs. Clearly, constructs thus
obtained have some optional references, together with some mandatory ones.

This observation on the one hand allows us to obtain a more compact su-
permodel (i.e. smaller number of constructs) and cohesive (i.e. one construct to
represent all concepts with same semantics) but on the other hand it causes a
general complication of Datalog rules: this implies the necessity to refactor the
formal system introduced in order to keep on reasoning on data models.

In the rest of this section we briefly illustrate how the concepts previously
introduced need to be changed. The intuition is that, now, for every construct, we
have to represent a formula over its properties and references, hence the universe
is:

U= {C1(P1 U Refl), CQ(PQ U Refg), Cey Cu(Pu U Refu)}

Recalling our running example, the definition of attribute, in the new approach,
should be: Attribute({isKey,isNullable, Entity, Relationship, Table}).

The form for the description of a model is still a set of constructs, each with
an associated formula. Let us assume that the formula associated with a construct
C is in disjunctive normal form. Each disjunct has the following form:

DPIAD2A ... App Arefi ANrefog N . Aref,,

where the p;’s are atoms for the properties and the ref ;’s are atoms for references. It
states that construct C has non-null values exactly for the references corresponding
to positive ref;’s, and its properties must satisfy the constraints expressed by the
conjunctions of the p;’s. We want to remark that the meaning of an atom for a
reference in a formula is different from that of an atom for a property: a positive

Data model descriptions and translation signatures in a multi-model framework 27

atom for a reference states that such references must be non-null; a negative one
states that such references must be null.

Now formulas are more complex, but it is due to increased complexity of the
structure of the constructs. On the other hand they are more expressive, since with
a single formula now we can express constraints not only on properties but also on
references. Moreover we can express also constraints on the relationships between
references of a construct, in the sense that, for each construct, we can force the
presence of specific combinations of references and avoid other ones. For example
we can state that both the references of a relationship toward entities must be
valued at the same time, while just one of the three references of an attribute can
be valued.

Some of the models discussed in Section 2, would be as follows:

— Mggr = {E(true), R((F1 V =F2) AE1 AE2),A(EA =R A =TV —1skey A "E AR A —=T)}
— MgRrsiupre = {E(true), R((F1 V =F2) AE1 AE2),A(RNAEA =R A —-T)}

In order to simplify the notation, in the following we omit the negated references
in formulas; hence, the previous model descriptions would be as follows:

— Mggr = {E(true), R((F1 V =F2) AE1 AE2),A(E V —1sKey AR)}
— Mggrsiupie = {E(true),R((F1 V =F2) AE1 AE2),A(WNAE)}

The notions of C, U, M and — go unchanged. For example, we can check that
also with this new formalism Mggrgupes & Mgr. In fact, it results that for E and
R the condition is trivially verified, since they have the same formula associated
in the two models. For A we have to consider the complete formulas (i.e. the form
with also the negated atom for references); simplifying the logical conjunction of
the two formulas in the two models, we have:

“NAEA-RA-TA(EA-RA TV —1sKkey A "E AR A —T)
= -NAEA-RA-TAEA-RA-TV-NAEA-RA-TA-1sKey A “E AR A =T
= -NAEA-RA-T

Regarding the signature of Datalog rules, we redefine the description of an
atom considering also the references. Given an atom C(ARGS), the corresponding
construct description C(f) is computed as the conjunction of the formula obtained
on the basis of properties associated with a constant (like described in Section 4)
and of one literal for each reference in ARGs. For example, the signatures of the two
atoms in the body of rule R; ¢ are R(—F1 A —F2) AE1 AE2 and E(true), respectively.

Then, the definitions of the three parts (B, H,MAP) of the signature rgr of a
Datalog rule R go unchanged. We remark that references are not involved in the
MAP and, hence, the application of pwap to a literal for a reference always returns
true. Let us see again the definition on rule Ry ¢ in our running example. The body
is Bl,6 = <R(—|F1 A —F2 AN E1 A Eg),E(true». The head is H1,6 = R(—|01 ANF1L ANTAN
—F2 A E1 A E2). The mapping is MAP1 6 = (02 : R(01)). Also the application of the
signature of a rule R to a model M goes unchanged.

As the difference in formalization is limited to the way propositions are defined,
it turns out that all lemmas and theorems of Section 5 hold in this extended frame-
work as well, with the same formulations and with proofs that are straightforward
variations of those shown there.

We have recently described the features of this new version of the supermodel
and commented on its experimentation [8].

28 Paolo Atzeni et al.

8 Related work

To the best of our knowledge, there is no approach in the literature that tack-
les the problem we are considering here. There are pieces of work that consider
the translation of schemas in heterogeneous frameworks [5,9,12,22], but none has
techniques for inferring high level descriptions of translations from their specifica-
tion. They all propose some way of generating a complex translation plan but they
either handle very simple descriptions of models or have to rely on a hard coding
of knowledge of behaviour of transformations in terms of pattern of constructs
removed and introduced. [12,22] both use some form of signature to implement an
A* algorithm that produces the shortest transformation plan (if it exists) between
the source and the target model in terms of number of transformations.

This paper complements our previous piece of work [7], as here we provide the
complete development for a result which is indeed used in such a paper (Section 5.3
of it summarize the notions of the present paper, in order to use them).

Translations of schemas by means of Datalog variants have been proposed by
various authors [1,13,15], but no explicit reference to models and to the possibility
of reasoning on models has been proposed. The latter work includes some reasoning
on constraints, but without reference to the features of models.

Various pieces of work exist on the correctness of transformations of schemas,
with reference to the well known notion of information capacity dominance and
equivalence [2,16,21]. Here we are not studying the correctness of the individual
translation steps, but the correctness of complex translations, assumed that the
elementary steps are correct, following an “axiomatic” approach [9].

9 Conclusions

We have given the definition of a formal system to infer the model rp (M) obtained
out of a model M by applying the signature rp of a Datalog program P, and have
shown that the derivation is sound and complete: the application of P to a schema
S that belongs to M produces only schemas that belong to rp(M) and potentially
all of them. The techniques developed here are the basis for a formal support
to a tool for the automatic generation of translations, because signatures can be
obtained directly out of programs. Such a tool was originally developed for the
offline translation of schemas and data, where both are imported in the tool from
a source environment and then, after the translation, exported in a different target
one [6,7]. More recently, we have used these techniques also in a tool that supports
a runtime approach, where data is not moved but views are built to execute the
needed transformations in the native environment [3].

References

1. Abiteboul, S., Cluet, S., Milo, T.: Correspondence and translation for heterogeneous data.
Theor. Comput. Sci. 275(1-2), 179-213 (2002)

2. Abiteboul, S., Hull, R.: Restructuring hierarchical database objects. Theor. Comput. Sci.
62(1-2), 3-38 (1988)

3. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: A runtime approach to model-
independent schema and data translation. In: EDBT Conference, ACM, pp. 275-286
(2009)

Data model descriptions and translation signatures in a multi-model framework 29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Atzeni, P., Cappellari, P., Bernstein, P.A.: A multilevel dictionary for model management.
In: ER Conference, LNCS 3716, pp. 160-175. Springer (2005)

Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data transla-
tion. In: EDBT Conference, LNCS 3896, pp. 368-385. Springer (2006)

Atzeni, P., Cappellari, P., Gianforme, G.: MIDST: model independent schema and data
translation. In: SIGMOD Conference, pp. 1134-1136. ACM (2007)

Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-independent
schema translation. VLDB J. 17(6), 1347-1370 (2008)

. Atzeni, P., Gianforme, G., Toti, D.: Polymorphism in datalog and inheritance in a meta-

model. In: FOIKS Symposium, LNCS 5956, pp. 114-132. Springer (2010)

Atzeni, P., Torlone, R.: Management of multiple models in an extensible database design
tool. In: EDBT Conference, LNCS 1057, pp. 79-95. Springer (1996)

Batini, C., Ceri, S., Navathe, S.: Database Design with the Entity-Relationship Model.
Benjamin and Cummings Publ. Co., Menlo Park, California (1992)

Bernstein, P.A.: Applying model management to classical meta data problems. In: CIDR
Conference, pp. 209-220 (2003)

Bernstein, P.A., Melnik, S., Mork, P.: Interactive schema translation with instance-level
mappings. In: VLDB, pp. 1283-1286 (2005)

Bowers, S., Delcambre, L.M.L.: The Uni-Level Description: A uniform framework for rep-
resenting information in multiple data models. In: ER Conference, LNCS 2813, pp. 45-58.
Springer (2003)

Cosmadakis, S., Kanellakis, P.: Functional and inclusion dependencies - a graph theoretical
approach. In: P. Kanellakis, F. Preparata (eds.) Advances in Computing Research, Vol.3,
pp. 163-184. JAI Press (1986)

Davidson, S.B., Kosky, A.: Wol: A language for database transformations and constraints.
In: ICDE, pp. 55-65 (1997)

Hull, R.: Relative information capacity of simple relational schemata. SIAM J. Comput.
15(3), 856-886 (1986)

Hull, R., King, R.: Semantic database modelling: Survey, applications and research issues.
ACM Computing Surveys 19(3), 201-260 (1987)

Hull, R., Yoshikawa, M.: ILOG: Declarative creation and manipulation of object identifiers.
In: Sixteenth International Conference on Very Large Data Bases, Brisbane (VLDB’90),
pp. 455-468 (1990)

Markowitz, V.M., Shoshani, A.: On the correctness of representing extended entity-
relationship structures in the relational model. In: SIGMOD, pp. 430-439 (1989)
McGee, W.C.: A contribution to the study of data equivalence. In: IFIP Working Confer-
ence Data Base Management, pp. 123-148 (1974)

Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of information capacity in schema
integration and translation. In: VLDB, pp. 120-133 (1993)

Papotti, P., Torlone, R.: Heterogeneous data translation through XML conversion. J. Web
Eng. 4(3), 189-204 (2005)

Tarski, A.: A lattice-theorethic Fixpoint Theorem and its applications. Pacific Journal of
Mathematics 5, 285-309 (1955)

Ullman, J.D., Widom, J.: A First Course in Database Systems. Prentice-Hall, Englewood
Cliffs, New Jersey (1997)

