
INSTITUT FÜR INFORMATIK

Information-Based Distance Measures

and the Canonical Reflection of View

Updates

Stephen J. Hegner

Bericht Nr. 0805

Oktober 2008

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Information-Based Distance Measures

and the Canonical Reflection of View Updates

Stephen J. Hegner

Bericht Nr. 0805
Oktober 2008

e-mail: hegner�
s.umu.se
Dieser Bericht ist als persönliche Mitteilung aufzufassen.

Information-Based Distance Measures
and the Canonical Reflection of View Updates

Stephen J. Hegner
Umeå University

Department of Computing Science
SE-901 87 Umeå, Swedenhegner�
s.umu.sehttp://www.
s.umu.se/~hegner

Abstract

For the problem of reflecting an update on a database view to the main schema,
the constant-complement strategies are precisely those which avoid all update
anomalies, and so define the gold standard for well-behaved solutions to the prob-
lem. However, the families of view updates which are supported under such strate-
gies are limited, so it is sometimes necessary to go beyond them, albeit in a system-
atic fashion. In this work, an investigation of such extended strategies is initiated
for relational schemata. The approach is to characterize the information content of
a database instance, and then require that the optimal reflection of a view update to
the main schema embody the least possible change of information. The key prop-
erty is identified to be strong monotonicity of the view, meaning that view insertions
may always be reflected as insertions to themain schema, and likewise for deletions.
In that context it is shown that for insertions and deletions, an optimal update, en-
tailing the least change of information, exists and is unique up to isomorphism for
wide classes of constraints.

Keywords: update, view

1 Introduction

1.1 The limitations of constant complement The problem of reflecting view updates
to the main schema of a database system is a difficult one whose solution invariably
involves compromise. The constant-complement approach [BS81] avoids all so-called
update anomalies [Heg04], and so is the gold standard for well-behaved strategies. On
the other hand, it is also quite conservative regarding the updates which it admits. A
short example will help to illustrate. Let E0 be the relational schema consisting of the
single relation symbolR[ABC], constrained by the join dependency1 [AB,BC], and let
ΠE0

AB be the view whose single relation symbol is RAB[AB] and whose morphism πE0

AB is

1

the projection of R[ABC] onto RAB . In the constant-complement strategy, all updates to
ΠE0

AB must hold a so-called complementary view fixed. The natural complement to ΠE0

AB is
the view ΠE0

BC , defined by the projection of R[ABC] onto RBC [BC]. It is easy to see that
the updates to ΠE0

AB which hold ΠE0

BC fixed are precisely those which hold the projection
onto B fixed. Thus, for example, if {(a0, b0, c0), (a1, b1, c1)} is the current state of E0, so
that the state of the view schema is {(a0, b0), (a1, b1)}, then insertion of (a2, b1) is realized
by inserting (a2, b1, c1) into the state of the main schema. Unfortunately, even so simple
an update as inserting (a2, b2) into ΠE0

AB is not supported, since the projection onto B
cannot be held fixed under such an update.

Of course, there is a reason for this limitation. In order to insert (a2, b2) into the
view, it is necessary to insert some tuple of the form (a2, b2, cx) into the main schema,
with information about cx not visible within the view. Such an insertion would violate
the principle that views be encapsulated with respect to the updates which are allowed,
in the sense that the effect of all such updates be contained entirely within the view
itself. It is precisely the constant-complement strategy which guarantees this sort of
encapsulation [Heg04, Sec. 1.2]. Nevertheless, there are certainly situations in which it
is desirable, if not necessary, to lift this limitation in a controlled manner. The goal of
this paper is to develop an extension to the constant-complement strategy which admits
a wider class of view updates while preserving as many of the desirable properties
of the original strategy. In particular, the following three properties are regarded as
uncompromisable.

Invariance of admissibility: The admissibility of a view update must depend only upon
the current view state, and not upon the state of the main schema which gave rise
to it.

Canonicity of reflections: All allowable reflections of a view update to the main schema
must be equivalent up to some natural notion of isomorphism.

Reflection of monotonicity: If the viewmapping is monotonic, then every insertion (resp.
deletion) on the view must be reflected as an insertion (resp. deletion) on the main
schema.

These conditions are all natural extensions of that which is expected from a constant
complement strategy. Invariance of admissibility is always satisfied by a constant-
complement strategy; see (cc:1) of [Heg04, Sec. 1.2]. While the reflection defined by
a constant-complement strategy may in principle depend upon the choice of comple-
ment, it has been shown that it is in fact independent of that choice in most reasonable
circumstances [Heg04, Thm. 4.3] [Heg08c, Cor. 4.24]. Reflection of monotonicity is sim-
ilarly guaranteed in wide variety of circumstances; see [Heg04, Def. 3.1 (upt:6)] and
[Heg08c].

Much of the existing work on this problem, such as [DB82], [Kel85], [Lan90], [BL97],
and [BL98], focuses upon translations via the relational algebra. As such, while they
provide useful insight into commonly occurring problem instances, and all support the
simple update problem of inserting (a2, b2) sketched above, they do not provide a uni-
fied theory of how and under which circumstances view updates should be reflected.

2

A detailed comparison is not pursued in this paper.

1.2 Database repairs, distance measures, and information content More closely re-
lated to the approach developed here is one which has been developed in the logic-
programming community – database repair. Roughly, in the repair problem, a database
M is given which is inconsistent with respect to a set Ψ of constraints, the task being to
“repair” M to a consistent version M ′ which obeys the constraints in Ψ. It is straight-
forward to recast a view-update problem in this context, at least in principle. Extending
the example of 1.1, let E

′
0 be the schema which augments E0 with the relation symbol

RAB[AB] together with its defining constraint (∀x)(∀y)(RAB(x, y) ⇔ (∃z)(R(x, y, z))).
Thus, the current state of this schema is Mold = {R(a0, b0, c0), R(a1, b1, c1), RAB(a0, b0),
RAB(a1, b1)}. The “defective” new state which includes the inserted view tuple
RAB(a2, b2) but not the corresponding update to the main schema is M ′

def = Mold ∪
{RAB(a2, b2)}. The task is to repair M ′

def to be a legal state, subject to the condition
that the instance of RAB is held constant. A ranking function measures the quality of
the of various solutions. For any two sets S1 and S2, let SymDiff〈S1, S2〉 denote their
symmetric difference (S1 \ S2) ∪ (S2 \ S1), and let Card(Si) denote the cardinality of
Si. Two principal measures are subset ranking in which Mnew is preferred to M ′

new if
SymDiff〈Mold,Mnew〉 ⊆ SymDiff〈Mold,M

′
new〉 and the count ranking in whichMnew is pre-

ferred to M ′
new if Card(SymDiff〈Mold,Mnew〉) ≤ Card(SymDiff〈Mold,M

′
new〉). Under either

of these measures, the optimal solutions are precisely those of the form
Insert〈R(a2, b2, v)〉, with v any allowable value for the domain C. See [ADNB06] for
further details, as well as a comprehensive list of other papers which employ related
approaches.

A drawback of both of these measures is that tuple similarity is an all-or-nothing
affair — all tuples which are not identical are equally different from one another. Con-
sequently, R(a0, b0, c1) is just as different from R(a0, b0, c0) as is R(a1, b1, c1). Recently,
more sophisticated distance measures have been proposed [ADB07], some of which are
based upon (pseudo-)distance measures of individual tuples, such as those proposed
in [Hut97] or [NC97]. These tuple-based measures may then be extended to sets of tu-
ples via measures such as that of Eiter and Mannila [EM97], which defines the distance
between database statesM1 andM2 in terms of the distances between tuples to be

Dist〈M1,M2〉 =
1

2
·

(

∑

t1∈M1

min
t2∈M2

Dist〈t1, t2〉 +
∑

t2∈M2

min
t1∈M1

Dist〈t1, t2〉

)

.

Using a model of distance between tuples such as that of [NC97], which defines such
distance in terms of how much each term of one tuple differs from the corresponding
term in the other, it follows that Dist〈R(a2, b2, b1), R(a1, b1, b1)〉 <
Dist〈R(a2, b2, b2), R(a1, b1, b1)〉 and so Insert〈R(a2, b2, b1)〉 is preferred to
Insert〈R(a2, b2, b2)〉 in support of the view update request Insert〈RAB(a2, b2)〉. Similarly,
Insert〈R(a2, b2, b0)〉 is preferred to Insert〈R(a2, b2, b2)〉, while Insert〈R(a2, b2, b0)〉 and
Insert〈R(a2, b2, b1)〉 are of equal preference.

Despite the obvious attractiveness of such tuple-based metrics from both a mathe-
matical and an aesthetic point of view, in this paper it is argued that quite a different

3

type of metric is more appropriate — one which in fact prefers Insert〈R(a2, b2, b2)〉 to
both Insert〈R(a2, b2, b1)〉 and Insert〈R(a2, b2, b0)〉 — precisely the opposite of that which
the above tuple-based metric advises. The idea is to measure the information content of
database states relative to a set of sentences, and to prefer updates which involve less
change of information. More precisely, relative to a set Φ of sentences, the information
content Info〈M,Φ〉 of the database stateM is the set of all sentences in Φ which are satis-
fied by M . The information distance relative to Φ between database states M1 andM2 is
then ∆〈(M1,M2),Φ〉 = SymDiff〈Info〈M1,Φ〉, Info〈M2,Φ〉〉. The information distance be-
tweenM1 andM2 is thus not a number but rather the set of formulas of Φ on whichM1

and M2 differ. Preference of repairs is then defined in the obvious way, with changing
M1 toM2 preferred to changingM1 toM3 if ∆〈(M1,M2),Φ〉 ⊆ ∆〈(M1,M3),Φ〉.

The utility of this approach depends, of course, upon a suitable choice for Φ. If Φ
chosen to be the set of all atoms for the schema, then information distance reduces to
subset ranking as defined above. The most suitable choice in many situation is to let Φ
be the set of all sentences in the language of the schemawhich are existential (no univer-
sal quantification), positive (no negation of any kind), and conjunctive (no disjunction),
and which employ at most the constant symbols which occur in the formulation of the
update itself — those which occur in the current states of the main schema and the view
as well as those which occur in the proposed new state of the view. In the context of
repairs, if the proposed update is an insertion, then this amounts to just the constant
symbols which occur in the database to be repaired. On the other hand, if deletion of
tuples is also allowed, then the constant symbols in tuples to be deleted must also be
included. Updates will be formalized in detail in the core of this paper; for now, it suf-
fices to write ConstSym(u) for the set of all constant symbols which occur in the update
request ConstSym(u). Then, using the notation to be introduced in the next section, the
sentences of importance are WFS(D, ∃∧+,ConstSym(u)), with D the database schema
under consideration.

Returning to the example based upon E
′
0 begun above, insertion of RAB(a2, b2) into

the view requires that the sentence (∃z)(R(a2, b2, z)) be true to the main schema. This
may be satisfied by binding z to any available constant and adding the corresponding
tuple. However, if it is bound to a constant in ConstSym(Mdef′) = {a0, a1, a2, b0, b1, b2, c0,
c1}, then additional sentences will appear in the information content of the new state.
For example, if z is bound to c1, then the sentence RAB(a2, b2, c1) will also be in the in-
formation content of the new state, as would the sentence (∃z)(R(a1, b1, z)∧R(a2, b2, z)).
Neither would be true wereR(a2, b2, c2) inserted instead. Thus, to add the least possible
information relative to sentences which only involve constants which are already used,
z must be bound to a constant which does not occur in ConstSym(Mdef′). Intuitively,
this corresponds to binding it to a generic constant, and not one which also plays some
other rôle in the database.

By itself, this information-based approach is that it does not ensure tuple minimality.
The insertion of both R(a2, b2, c2) and R(a2, b2, c3) into Mold produces exactly the same
added information as does the insertion of either alone, since each tuple adds precisely
(∃z)(R(a2, b2, z)) to the information content. To remedy this, tuple minimality (i.e., min-
imality with respect to subset ranking) is also required. Thus, an optimal repair must
be tuple minimal as well as minimal with respect to information change.

4

1.3 Further example To illustrate the ideas of information-based optimization of up-
dates more completely, a slightly more complex example is presented. Let E2 be the
relational schema with relations R[ABC] and S[CD], constrained by the inclusion de-
pendency R[C] ⊑ S[C]. Regard a database as a set of ground atoms over the associ-
ated logic. For example, M00 = {R(a0, b0, c0), R(a1, b1, c1), S(c0, d0), S(c1, d1)} is such a
database. Now, letK be a set of constants in the underlying logical language, regarded
as domain elements for this schema. For information content, the base set Φ of sen-
tences is WFS(E2, ∃∧+, K), the set of all positive (i.e., no negation, explicit or implicit),
existential, and conjunctive sentences in the language of the schema E2 which involve
at most the constant symbols in K. Relative to this set, the information content of M
is the set of all sentences in WFS(E2, ∃∧+, K) which are implied by M . The key is to
choose K properly. Using the notation to be introduced in 3.2, this information content
is denoted Info〈M,WFS(E2, ∃∧+, K)〉.

A cover for this information content is a subset Ψ ⊆ Info〈M,WFS(E2, ∃∧+, K)〉 such
that Ψ and Info〈M,WFS(E2, ∃∧+, K)〉 are logically equivalent. For K00 = {a0, a1, b0,
b1, c0, c1, d0, d1}, the set of all constant symbols ofM00, the setM00 itself is clearly a cover
for Info〈M00,WFS(E3, ∃∧+, K00)〉. On the other hand, withK ′

00 = {a0, a1, b0, b1, c0, d0}, a
cover for Info〈M00,WFS(E2, ∃∧+, K ′

00)〉 is {R(a0, b0, c0), S(c0, d0),
(∃x)(∃y)(R(a1, b1, x)∧S(x, y))}. Note that the constants in K00 \K

′
00 have been replaced

by existentially quantified variables.
To see how this idea is useful in the context of view updates, let ΠE2

R′[AB] =

(R′[AB], πE2

R[AB]) be the view of E2 which projects R[ABC] onto R′[AB] and which drops
the relation S entirely. ConsiderM00 to be the initial state of schema E2; its image state
in the view is then N00 = {R′(a0, b0), R

′(a1, b1)}. Now, suppose that the view update
Insert〈R′(a2, b2)〉 is requested, so that N01 = N00 ∪ {R′(a2, b2)} is the desired new view
state, and considerM01 = M00 ∪ {R(a2, b2, c2), S(c2, d2)} as a proposed reflection to the
main schema E2. Relative to its entire set K01 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2}
of constant symbols, a cover for Info〈M01,WFS(E2, ∃∧+, K01)〉 is justM01 itself. Similarly,
for M02 = M00 ∪ {R(a2, b2, c3), S(c3, d3)} with K02 = {a0, a1, a2, b0, b1, b2, c0, c1, c3, d0, d1,
d3} a cover for Info〈M02,WFS(E2, ∃∧+, K02)〉 is justM02 itself. However, relative toK00,
the constants of M00, Info〈M01,WFS(E2, ∃∧+, K00)〉 = Info〈M02,WFS(E2, ∃∧+, K00)〉 =
M00 ∪{(∃x)(∃y)(R(a2, b2, x)∧S(x, y))}. Denote this value by I1. This recaptures formally
that the proposed updatesM01 andM02 are identical up to a renaming of the new con-
stants. The utility of information measure is that it provides a means to recapture this
idea formally.

Now, consider the alternative solution M03 = M00 ∪ {R(a2, b2, c3), S(c3, d1)} to this
view-update problem. A cover for Info〈M03,WFS(E2, ∃∧+, K00)〉 is I3 = M00 ∪
{(∃x)(R(a2, b2, x)∧S(x, d1))}, which is strictly stronger than I1, since
(∃x)(R(a2, b2, x)∧S(x, d1)) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not conversely. Thus, rel-
ative to the information measure defined by K00, M03 adds more information to M00

than does M01 or M02. Similarly, M04 = M00 ∪ {R(a2, b2, c0))} adds more information
than does M01 or M02, since a cover for its information content is just M04 itself, which
is stronger than I1, since R(a2, b2, c0)∧S(c0, d0) |= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not
conversely.

5

The first and primary measure of quality of a reflected update is the change of in-
formation content which is induces. Under this measure, M01 andM02 are equivalent,
and both are superior to either of M03 or M04. However, this is by itself not quite ad-
equate. Rather, there is an additional measure of quality which must be taken into
account. To illustrate, consider the proposed solution M05 = M01 ∪ M02 = M00 ∪
{R(a2, b2, c2), R(a2, b2, c3), S(c2, d2), S(c3, d3)} to this update problem. It has the same
information content, I1, relative to K00, as do M01 and M02. The information measure
cannot distinguish the insertion of two new tuples with completely new constants from
the insertion of just one. However, it is clear that M05 should be considered inferior to
bothM01 andM02 as a solution to the given update problem, since it is a proper super-
set of each. Therefore, a second criterion of quality is invoked; namely that no solution
whose set of changes is a proper superset of those of another can be considered to be
superior. In the terminology introduced earlier in this section, the update must be min-
imal under subset ranking, and not just under count ranking. For example, consider
again the proposed solution M04. From a strict counting point of view, M04 involves
fewer changes than doM01 orM02. However, neitherM01 norM02 is a superset ofM04.
Thus, the superiority ofM01 andM02 is not contradicted. In other words, only solutions
which are tuple minimal, in the sense that no proper subset of the changes is also an
admissible solution, are permitted.

The main modelling premise of this paper is that the quality of a view update can
be measured by the amount of change in information content which it induces, and so
an optimal reflection of a view update request is one which is both tuple minimal and
which induces the least amount of change of information content. Under this premise,
bothM01 andM02 are superior to either ofM03 orM04. Furthermore, sinceM01 andM02

induce the same change in information content, they are equivalent. In Section 3, it is
established that, under suitable conditions, all such optimal solutions are equivalent,
up to a renaming of the constant symbols. In Section 4, it is established, again under
suitable conditions, that for insertions, a minimal solution (in terms of change of in-
formation content) must be optimal. These conditions include in particular schemata
constrained by a very wide class of dependencies called generalized Horn dependen-
cies.

In summary, there are two conditions which must be met for optimality of a pro-
posed update reflection u. First, it must be tuple minimal, in that there can be no other
solution whose set of changes is a proper subset of those of u. Second, it must be infor-
mation least in terms of a specific set of sentences. This approach applies also to deletions
and updates which involve both insertion and deletion, and this generality is incorpo-
rated into the formalism which is presented.

1.4 Further issues Despite the connection to database repair just presented, the pri-
mary focus of this paper is not to present yet another measure for such repairs, but
rather to present a unified approach to the support of updates on traditional relational
schemata which pays particular attention to the requirements of invariance of admis-
sibility, canonicity of reflections, and reflection of monotonicity. Such an approach re-
quires that careful choices bemade regarding the class of schemata and views which are

6

supported. Foremost, schemata or view mappings which allow disjunction preclude
canonicity of reflections is most cases. For example, let E1 have the three unary relation
symbols R[A], S[A], and T [A], subject to the constraint (∀x)(T (x) ⇔ (R(x)∨S(x))), and
letΩT be the viewwhich contains only T [A]. It is easy to see that canonicity of reflections
can never be satisfied. Consider the databaseMold = {R(a0), S(a0), T (a0)}, with the in-
sertion request Insert〈T (a1)〉. A minimal solution would insert either {R(a1), T (a1)} or
else {(S(a1), T (a1)}; to insert {R(a1), S(a1), T (a1)} would not be minimal. For this rea-
son, attention in this work is restricted to relational schemata which are restricted by
Horn-like constraints, such as the XEIDs of Fagin [Fag82].

Unfortunately, even within contexts which involve at most functional dependencies
(FDs) and projections, two sorts of problems may occur for insertions. First of all, an
attempted reflection to the main schema of a view update may introduce new tuples
in the main schema, called orphan tuples, whose images are visible in the view. This
phenomenon is illustrated via a concrete example in 4.8. Secondly, an insertion to a
given view state may be possible for some states of the main schema which map to
it, but not others. This phenomenon is illustrated via a concrete example in 4.12. It
is shown that these anomalies may be remedied by requiring that the view be strongly
monotonic — that is, that every deletion to the view may be reflected as a deletion to the
main schema, and every insertion to the view may be reflected as an insertion to the
main schema. Simple conditions which guarantee strong monotonicity for projections
of relations constrained by FDs and inclusion dependencies are developed.

At first thought, it might appear that the management of deletions would be sim-
pler than that of insertions, since generic values need not be created. However, there is
a quite different type of complication which arises. Specifically, Horn-style dependen-
cies of the form A1∧A2∧ . . . ∧An ⇒ B are disjunction free with respect to insertions, but
not deletions. Roughly, to delete B minimally, it is necessary to delete one of the Ai,
but generally not all. One might therefore be lead to propose weak optimal realizations, as
illustrated in the example of 6.4, in which all of the contributing A)i’s are deleted. Un-
fortunately, as illustrated in 6.9, it is not even possible in general to delete them all and
obtain a correct solution. Therefore, attention is focused upon schemata whose tuple-
generating dependencies are of the form A ⇒ B, with just one assertion in the head
of the rule. Fortunately, even with such a restriction, many common situations, par-
ticularly schemata constrained by functional and inclusion dependencies, and views
defined by projection, are supported.

The most difficult cases surround updates which involve both insertions and dele-
tions. In general, the information-based approach forwarded here does not provide
optimal solutions to such requests, and sot that topic must remain a subject for future
work.

This article is a based upon [Heg08a], but has been completely reworked to address
some shortcomings in that preliminary version.

7

2 The Relational Model

The results of this paper are formulated within the relational model, and familiarity
with its standard notions, as presented in references such as [PDGV89] and [AHV95],
is assumed. Nevertheless, there are aspects which must be formulated with particular
care. Most important are the need to take all relational schemata over the same domain,
with the same constant symbols, and the need to express databases themselves as sets
of ground atoms. For this reason, the key features which are unique to this formulation
are presented in this section.

2.1 Relational contexts and constant interpretations A relational context contains
the logical information which is shared amongst the schemata and database mappings.
Formally, a relational context D consists of a finite nonempty set AD of attribute names,
a countable set Vars(D) of variables, and for each A ∈ AD, a countable set ConstD(A)
of constant symbols, with Const(D) =

⋃

{ConstD(A) | A ∈ AD}. The variables in
Vars(D) are further partitioned into two disjoint sets; a countable set GenVars(D) =
{x0, x1, x2, . . .} of general variables, and special AD-indexed set AttrVars(D) = {xA | A ∈
AD} of attribute variables. The latter is used in the definition of interpretation mappings;
see 2.6 for details. Lowercase letters at the end of the alphabet, such as v, w, x, y, and
z, as well as subscripted instances using these names, will also be used as general vari-
ables.

Databases are represented as ground atoms, as elaborated in 2.2 below. Therefore, it
is necessary that each domain element be bound to a unique constant symbol. Formally,
a constant interpretation for the relational context D is a pair I = (DomI, IntFnI) in which
DomI is a countably infinite set, called the domain of I, and IntFnI : Const(D) → DomI is
a bijective function, called the interpretation function of I. This effectively stipulates the
following two well-known conditions [GN87, p. 120]:

Domain closure: (∀x)(
∨

a∈Const(D) x = a) (DCA(D))

Unique naming: (¬(a = b)) for distinct a, b ∈ Const(D) (UNA(D))

Since there are countably many constant symbols, the domain-closure axiom is not a
finite disjunction. This is not a problem however, since it is never used in a context in
which a first-order constraint is necessary. Because the assignment of domain values to
constants is fixed, it is not necessary to verify independently that it holds.

As a notational convention, from this point on, unless stated otherwise, fix a rela-
tional context D and a constant interpretation I = (DomI, IntFnI) for it.

2.2 Tuples and databases An unconstrained relational schema over (D, I) is a pair D =
(Rels(D),ArD) in which Rels(D) is finite set of relational symbols and ArD : Rels(D) →
2

AD a function which assigns an arity, a set of distinct attributes from AD, to each R ∈
Rels(D).

An R-atom is a function t : ArD(R) → Const(D) ∪ Vars(D) with the property that
t[A] ∈ ConstD(A) ∪ GenVars(D) ∪ {xA}; in other words, all terms, constant and variable,
are of the appropriate type. A ground R-atom has the additional property that it contains

8

no variables; i.e., t[A] ∈ ConstD(A). The set of all R-atoms (resp. ground R-atoms) is
denoted Atoms(R,D) (resp. GrAtoms(R,D).

A D-atom is an R-atom for some R ∈ Rels(D); the set of all such atoms is denoted
Atoms(D). A ground atom is defined in the obvious way, with the set of all such atoms
denoted GrTuAtoms(D). An atom database for D is a finite subset of GrAtoms(D), with
the set of all atom databases for D denoted DB(D). In this work, ground atoms are also
called tuples.

It is convenient to be able to recover the associated relation name from a tuple, and
so tagging is employed, in which tuples are marked with the relation name. Formally,
this is accomplished by introducing a new attribute RName 6∈ AD, and then regarding a
groundR-atom not as a function t just on ArD(R), but rather as one on {RName}∪ArD(R)
with the property that t[RName] = R. Tagging of R-atoms will be used from this
point on throughout the paper. Nevertheless, in writing such atoms, the more con-
ventional notation R(a1, a2, . . . , an) will be used in lieu of the technically more correct
(R, a1, a2, . . . , an), although tags will be used in formal constructions.

There is a third type of atomwhich will be of use in defining constraints, the equality
atom. Formally, an equality atom is of one of the forms (xi = xj), (xi = aj), or (ai = aj),
for xi, xj ∈ GenVars(D) and ai, aj ∈ Const(D). The set of all equalityD-atoms is denoted
EqAtoms(D). Equality atoms which equate two constants; e.g., (ai = aj) are called ground
equality atoms; note that the truth value of such atoms is predetermined by the unique
naming assumption. All other equality atoms; e.g., those of the forms (xi = xj) or
(xi = aj), are called variable equality atoms. The set of all variable equality atoms is
denoted VarEqAtoms(D). Note that the definitions of equality atoms depend only upon
the relational context D, and not upon the specific schema D.

2.3 Formulas and constraint classes The first-order language associated with the re-
lational schema D is defined in the natural way; however, it is useful to introduce some
notation which identifies particular sets of formulas. Define WFF(D) to be the set of
all well-formed first-order formulas with equality in the language whose set of rela-
tional symbols is Rels(D), whose set of constant symbols is Const(D), and which con-
tains no non-nullary function symbols. The variables are those of D; these formulas
are typed to the extent that for A ∈ AD, a term in a position of type A must lie in
Vars(D) ∪ {xA} ∪ ConstD(A).

A constraint class C identifies a subset of WFF(D), denotedWFF(D,C). For this paper,
the two most important constraint classes are ∃∧+ and GrAtoms, defined as follows.

• WFF(D, ∃∧+) is the subset of WFF(D, ∃+) in which in which only existential quan-
tification is allowed, and the only logical connective which is allowed is conjunction
(∧). These formulas define the so-called conjunctive queries [CGT90, Sec. 4.2]. It is
not necessary to allow the equality predicate in such formulas, since equality can
always be expressed by simply using the same name for the two terms.

• WFF(D,GrAtoms) is just GrAtoms(D).

WFF(D,C) may be trimmed further by limiting the constant symbols which may occur
in it. Specifically, if S ⊆ Const(D), then WFF(D,C, S) denotes the formulas in WFF(D)

9

which involve only constant symbols from S.
Each of these classes may be limited to sentences; i.e., formulas without free vari-

ables. WFS(D) (resp. WFS(D,C), resp. WFS(D,C, S)) denotes the subset of WFF(D)
(resp. WFF(D,C), resp. WFF(D,C, S)) consisting of sentences.

Let Φ ⊆ Ψ ⊆ WFS(D). The closure of Φ in Ψ, denoted Closure〈Φ,Ψ〉, is {ϕ ∈
Ψ | Φ |= ϕ}. A cover for Φ relative to Ψ is a subset Φ′ ⊆ Φ with Closure〈Φ′,Ψ〉 =
Closure〈Φ,Ψ〉. A minimal cover Ψ′ has the property that none of its proper subsets is
itself a cover.

Finally, the symbol ⊥ will be used to denote the sentence which is always false.

2.4 Atomic models Even though databases are represented as sets of ground atoms,
and not as interpretations in the usual logical sense, it is still essential to have an appro-
priate notion of model for a given sentence. This is relatively straightforward; a model
for a sentence ϕ is a database which is consistent with both ϕ and the unique-naming
axioms. There is one complication, however. In representing a database as a set of D-
atoms, the closed-world assumption is implicit. On the other hand, to express what it
means for such a representation to satisfy an arbitrary sentence in WFS(D), it is nec-
essary to state explicitly which atoms are not true as well. Formally, for M ∈ DB(D),
define the diagram ofM to be Diagram

D
(M) = M ∪{¬t | t ∈ GrAtoms(D)\M}. Now, say

that M ∈ DB(D) is an atomic I-model of ϕ ∈ WFS(D) if DiagramD(M) ∪ {ϕ} ∪ UNA(D)
is consistent. AtModI(ϕ) denotes the set of all atomic I-models of ϕ, with AtModI(Φ) =
⋂

{AtModI(ϕ) | ϕ ∈ Φ} for Φ ⊆ WFS(D). Since only atomic I-models will be considered
in this paper, the simple term modelwill be used as a synonym for atomic I-model.

2.5 Schemata with constraints and constrained databases To obtain full relational
schemata, constraints are added to the unconstrained schemata of 2.2. Formally, a rela-
tional schema over (D, I) is a tripleD = (Rels(D),ArD ,Constr(D)) in which (Rels(D),ArD)
is an unconstrained relational schema over (D, I) and Constr(D) ⊆ WFS(D) is the set of
dependencies or constraints of D.

Define the legal (or constrained) databases LDB(D) of D to be AtModI(Constr(D)).
Although Constr(D) is allowed to be an infinite set, it will always be assumed that

Constr(D) is constant finite; that is, that all of the sentences in Constr(D) together contain
only a finite number of distinct constant symbols.

2.6 Database morphisms and views Let D1 and D2 be relational schemata over
(D, I). There are two fundamental ways to represent a database morphism f : D1 → D2

in the relational context. On the one hand, such a morphism may be represented
as a function f : DB(D1) → DB(D2), using expressions from the relational algebra.
On the other hand, by providing an interpretation formula fR ∈ WFF(D1) for each
R ∈ Rels(D2), the morphism may be represented using the relational calculus [JAK82].
The equivalence of these two representations is one of the classical results of relational
database theory [PDGV89, Sec. 2.4-2.6]. The interpretation formulation is taken as the
basic one in this work. Formally, given R ∈ Rels(D2), an interpretation for R into D1 is
a ϕ ∈ WFF(D) in which precisely the variables {xA | A ∈ ArD(R)} are free, with xA is

10

used to mark the position in the formula which is bound to attribute A. The set of all
interpretations of R into D1 is denoted Interp(R,D1). A syntactic morphism f : D1 → D2

is a family f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}. The morphism f is said to
be of class ∃∧+ if fR ∈ WFS(D, ∃∧+) for each R ∈ Rels(R2).

Let t ∈ Atoms(R,D2). The substitution of t into f , denoted Substf〈f, t〉, is the formula
in WFF(D1) obtained by substituting, into fR, t[A] for xA, for each A ∈ ArD(R). Note
that If t is a ground atom, then Substf〈f, t〉 ∈ WFS(D1).

For M ∈ DB(D1), define f(M) = {t ∈ GrAtoms(D2) | M ∈ AtModI(Substf〈f, t〉)}.
f is called an LDB-morphism if it maps legal databases to legal databases; formally, an
LDB-morphism has the property that f(M) ∈ LDB(D2) for each M ∈ LDB(D1). When
no qualification is given, database morphismwill always mean LDB-morphism.

Let D be a relational schema over (D, I). A (relational) view of D is a pair Γ = (V, γ)
in which V is a relational schema over (D, I) and γ : D → V is an LDB-morphism
which is furthermore LDB-surjective in the sense that for every N ∈ LDB(V), there is
anM ∈ LDB(D) with γ(M) = N . Surjectivity is required because the state of the view
must always be determined by the state of the main schema D. The view Γ = (V, γ) is
said to be of class ∃∧+ precisely in the case that γ has that property.

In order to illustrate these ideas, a simple example is in order. Consider again the
schema E0 and the view ΠE0

AB of 1.1. The view mapping πE0

AB is expressed as an inter-
pretation via the formula (πE0

AB)RAB = (∃z)(R(xA, xB, z)). Note in particular how xA and
xB are used to mark the appropriate attributes. For t = RAB(a0, b0), Substf〈πE0

AB, t〉 =
(∃z)(R(a0, b0, z)), while for t = RAB(x0, x1), Substf〈πE0

AB, t〉 = (∃z)(R(x0, x1, z)).
Occasionally, it will be useful to separate the quantifiers from the rest of the formula

of an interpretation γR. To this end, define γR to be that which is left when the quantifier

prefix is removed from γR. For example, in the above, (πE0

AB)RAB = (R(xA, xB, z)).

2.7 Notation — extracting constant symbols and variables For X an entity (for
example, an atom, a formula, a database, etc.), or a set of entities, ConstSym(X) de-
notes the set of all a ∈ Const(D) which occur in X . Furthermore, for D a database
schema, ConstSym

D
(X) = ConstSym(X ∪ Constr(D), and for Γ = (V, γ) a view of D,

ConstSymΓ(X) = ConstSym(X ∪ Constr(D) ∪ Constr(V)) ∪ ConstSym(γ).
Similarly, Vars(X) denotes the set of all variables which occur in X . This will not be

formalized further, but the meaning should always be unambiguous.

2.8 Notation for inclusion dependencies It is assumed that the reader is familiar
with the relational model and the standard dependencies which have been studied in
that context. Here only some notation and terminology is clarified. First, R[X] ⊑ S[Y]
(note the squared subset symbol) will be used to denote the inclusion dependency (IND)
which states that the projection onto attributes X of relation R is a subset of the projec-
tion onto attributes Y of relation S. Second, a unary inclusion dependency, abbreviated
UIND, is one in which each of X and Y consist of a single attribute.

11

3 Information and Canonical Models

The theory of support for view updates which is forwarded in this paper is based upon
a duality between a set of sentences defining information content and canonical models
for such information. In this section, that duality is developed in detail.

3.1 Notational convention Throughout the rest of this paper, unless stated specifi-
cally to the contrary, take D to be a relational schema over (D, I). The notation Υ will
be used as an abbreviation for WFS(D, ∃∧+), and ΥK will be used as an abbreviation
for WFS(D, ∃∧+, K). Furthermore, in the context of a set of the form WFS(D, ∃∧+, K),
if no further information is given,K will be taken to be an arbitrary subset of Const(D).

3.2 Information content and Φ-equivalence Let Φ ⊆ WFS(D) and let M ∈ DB(D).
The information content ofM relative toΦ is the set of all sentences inΦwhich are true for
M . More precisely, Info〈M,Φ〉 = {ϕ ∈ Φ |M ∈ AtModI(ϕ)}. For ϕ ∈ WFS(D), Info〈M,ϕ〉
denotes Info〈M, {ϕ}〉. M1 and M2 are Φ-equivalent if they have the same information
content relative to Φ; i.e., Info〈M1,Φ〉 = Info〈M2,Φ〉.

The semantics of conventional databases are based upon the closed-world assump-
tion — all assertions which cannot be established to be true are taken to be false. Thus,
intuitively, information content should be monotone; that is, for any M1,M2 ∈ DB(D)
if M1 ⊆ M2, then Info〈M1,Φ〉 ⊆ Info〈M2,Φ〉. However, this is manifestly false for most
choices of Φ. Indeed, if ϕ holds inM2 but notM1, then ¬ϕ holds inM1 but notM2. Thus,
if there is some ϕ ∈ Φ for which ¬ϕ ∈ Φ as well, Φ cannot be information monotone.

Formally, it is best to begin by defining monontonicty for individual sentences. To
be precise, the sentence ϕ ∈ WFS(D) is information monotone if for anyM1,M2 ∈ DB(D)
if M1 ⊆ M2, then Info〈M1, ϕ〉 ⊆ Info〈M2, ϕ〉. The set Φ ⊆ WFS(D) is then said to be
information monotone if each ϕ ∈ Φ has this property. It is easy to see that any ϕ ∈
WFS(D)which does not involve negation, either explicitly or implicitly (via implication,
for example), is information monotone.

In this work, there are two families of information-monotone sentences which are of
central importance. The first is WFS(D,GrAtoms). It is easy to see that
Info〈M,WFS(D,GrAtoms)〉 = M for any M ∈ DB(D), so that the information content
of a database relative to WFS(D,GrAtoms) is just that database itself. Although trivial
in its characterization, this case is nonetheless important. The second key family of in-
formation monotone sentences is WFS(D, ∃∧+, K) for a given K ⊆ Const(D), and is far
less trivial in its characterization.

3.3 Tuple-minimal models Let Φ ⊆ WFS(D) and let M ∈ LDB(D). M is a tuple-
minimal model of Φ if for any M ′ ∈ LDB(D) with M ′ ⊆ M , it must be that M ′ = M .
The set of all tuple-minimal models of Φ is denoted MinAtModI(Φ). For ϕ ∈ WFS(D),
MinAtModI(ϕ) is shorthand for MinAtModI({ϕ}).

For Φ ⊆ WFS(D) and ϕ ∈ WFS(D), say that Φ minimally entails ϕ, written Φ |=min ϕ,
if MinAtModI(Φ) ⊆ AtModI(ϕ). In other words, Φ minimally entails ϕ if every tuple-
minimal model of Φ is also a model (not necessarily minimal) of ϕ.

12

3.4 Fully Reduced ∃∧+-families The concept of a minimal cover for a set Φ of sen-
tences is well known and has already been recalled in 2.3. In the context of sentences in
Υ, there is a stronger notion which is critical. To motivate this idea, let
Ξ = {R(a1, a2), R(a2, a3), (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3))}. It is easy to see
that Ξ is a minimal cover of itself, in that none of its proper subsets is equivalent to
it. However, it is also clear that ξ0 = (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3)) may
be replaced with (∃x3)(R(a3, x3)) while retaining logical equivalence. In other words,
conjuncts may be removed from one of the sentences without any loss of information.

To formalize this notion, let ϕ = (∃x1) . . . (∃xm)(A1∧ . . . ∧An) ∈ Υ have at least two
conjuncts, and for any i, 1 ≤ i ≤ n, define Reduction〈ϕ,Ai〉 to be the sentence obtained by
removing Ai as a conjunct from ϕ, and removing any quantifier term which is no longer
used as well. For example, Reduction〈ξ0, R(x1, x2)〉 = (∃x2)(∃x3)(R(x2, a3)∧R(a3, x3))
and Reduction〈Reduction〈ξ0, R(x1, x2)〉, R(x2, a3)〉 = (∃x3)(R(a3, x3)). Call Φ ⊆ Υ con-
junct reduced if for no ϕ ∈ Φ with at least two conjuncts is there a conjunct Ai of ϕ with
(Φ\ϕ)∪{Reduction〈ϕ,Ai〉} logically equivalent to Φ. Call Φ fully reduced if it is both con-
junct reduced and a minimal cover of itself. In the above example, {R(a1, a2), R(a2, a3),
(∃x3)(R(a3, x3))} is fully reduced.

The goal is to establish that by substituting distinct constants for each variable in
a finite, fully reduced family of sentences, a canonical model is obtained. Thus, in
the above example, {R(a1, a2), R(a2, a3), (R(a3, b1))} would be such a model, with b1 a
“generic” constant. To render all of this formal, some additional notions are necessary.

3.5 Armstrong models in an information-monotone context Let Ψ ⊆ WFS(D) and
let Φ ⊆ Ψ. Informally, an Armstrong model for Φ relative to Ψ is a model of Φ which sat-
isfies only those constraints of Ψ which are implied by Φ. More formally, an Armstrong
model for Φ relative to Ψ is anM ∈ AtModI(Φ) with the property that for any ψ ∈ Ψ, if
M ∈ AtModI(ψ), then AtModI(Φ) ⊆ AtModI(ψ). A tuple-minimal Armstrong model for Φ
relative to Ψ is an Armstrong model with the property that no proper subset is an Arm-
strong model for Φ relative to Ψ. In general, a tuple-minimal Armstrong modelM of Φ
relative to Ψ need not be a tuple-minimal model of Φ, since there may be an M ′ (M
which is a non-Armstrong model of Φ. However, if Ψ is information monotone, it is
easy to see that this cannot happen, so every tuple-minimal Armstrong model must in
fact be a minimal model. Armstrong models have been studied extensively for database
dependencies; see, for example, [Fag82] and [FV83].

In the current context, for a given finite, fully reduced set Φ ⊆ Υ, a suitably con-
structed Armstrongmodel forΦ relative toΥK for a givenK with ConstSym(Φ) ⊆ K will
serve as a canonical representation for insertions with generic constants, as sketched in
the introduction. To proceed further, a special representation is useful.

3.6 Representation of ∃∧+-sentences as sets of D-atoms There is an alternative
syntactic representation for formulas in Υ which will be used in that which follows.
Specifically, for ϕ ∈ Υ define AtRep(ϕ) to be the set of all atoms which occur as con-
juncts in ϕ. For example, if ϕ = (∃x1)(∃x2)(∃x3)(R(x1, a)∧R(x1, b)∧S(x2, a)∧T (x2, x3))
then AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)}.

13

This representation is dual to that used in theorem-proving contexts in classical ar-
tificial intelligence [GN87, 4.1]. Here the variables are existentially quantified and the
atoms are conjuncts of one another; in the AI setting the atoms are disjuncts of one
another and the variables are universally quantified.

3.7 Substitutions Let V = {x1, x2, . . . , xn} ⊆ GenVars(D). A substitution for V (in D)
is a function s : V → Const(D) ∪ GenVars(D). If s(xi) = τi for i ∈ {1, 2, . . . , n}, following
(somewhat) standard notation this substitution is {τ1/x1, τ2/x2, . . . , τn/xn} [CL73, Sec.
5.3] and will be used here, although the reader is cautioned that some authors write
{x1/τ1, x2/τ2, . . . , xn/τn} instead [GN87, 4.2].

Let ϕ ∈ Υ with Vars(ϕ) ⊆ V . Call s correctly typed for ϕ if for each t ∈ AtRep(ϕ)
and each A ∈ ArD(t[RName]), if t[A] ∈ Vars(D) then s(t[A]) ∈ ConstD(A) ∪ GenVars(D).
Define Subst(ϕ, s) to be the set of atoms obtained by substituting s(xi) for xi in AtRep(ϕ).
For example, with s = {a1/x1, a2/x2, a3/x3} and AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a),
T (x2, x3)}, Subst(ϕ, s) = {R(a1, a), R(a1, b), S(a2, a), T (a2, a3)}.

If s(xi) ∈ Const(D) for each xi ∈ V , s is called a constant substitution. In this case,
Subst(ϕ, s) is a set of ground atoms.

Now let Φ ⊆ Υ be a finite set. A constant substitution set for Φ is a Φ-indexed set
S = {sϕ | ϕ ∈ Φ} of substitutions, with sϕ a constant substitution for Vars(ϕ). For K a
finite set with ConstSym(Φ) ⊆ K ⊆ Const(D), S is free for 〈Φ, K〉 if each sϕ is correctly
typed for ϕ, injective, sϕ(xi) 6∈ K for any ϕ ∈ Φ and xi ∈ V , and, furthermore, for any
distinct ϕ1, ϕ2 ∈ Φ, sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅.

With S free for 〈Φ, K〉, the Armstrong model defined by 〈Φ, K, S〉 is obtained by apply-
ing the substitution sϕ to ϕ for each ϕ ∈ Φ. Formally, ArmMod〈Φ, K, S〉 =
⋃

{Subst(ϕ, sϕ) | ϕ ∈ Φ}. Of course, this terminology is a bit presumptuous, as it has not
yet been established that ArmMod〈Φ, K, S〉 is in fact an Armstrong model of anything;
this will be rectified in 3.9 below.

3.8 Constant endomorphisms Informally, an endomorphism onD is a function which
renames constants. More formally, an endomorphism on D is a function h : Const(D) →
Const(D) which preserves attribute types, in the precise sense that for each A ∈ AD and
each a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bijection, then it is called an
automorphism of D. For K ⊆ Const(D), call h K-invariant if h(a) = a for all a ∈ K.

Given a database schema D, an endomorphism on D induces a mapping from
GrAtoms(D) to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with t′[RName] =
t[RName] and t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms will also
be represented by h, as will the induced mapping from DB(D) to itself given by M 7→
{h(t) | t ∈M}.

The following theorem establishes that ArmMod〈Φ, K, S〉 is a weak sort of initial
model for Φ, in the sense that for any other database M which satisfies Φ, there is an
endomorphism h : ArmMod〈Φ, K, S〉 → M which holds K constant. On the other hand,
it is not an initial model for Φ in the traditional categorical sense [HS73, §7], since h need
not be unique.

14

3.9 Theorem — Characterization of tuple-minimal Armstrong models Let Φ ⊆ Υ
be finite and fully reduced, letK be a finite set with ConstSym(Φ) ⊆ K ⊆ Const(D), and let S
be a constant substitution set which is free for Φ. Then the following hold.

(a) For any M ∈ DB(D) ∩ AtModI(Φ), there is a K-invariant endomorphism h on D with
h(ArmMod〈Φ, K, S〉) ⊆M .

(b) ArmMod〈Φ, K, S〉 is a tuple-minimal Armstrong model for Φ relative to ΥK .

(c) If M ∈ DB(D) is any other tuple-minimal Armstrong model for Φ relative to ΥK , then
there is a ConstSym(Φ)-invariant automorphism h on D with h(ArmMod〈Φ, K, S〉) = M .

PROOF: To establish (a), let M ∈ ModI(Φ), and for each ϕ ∈ Φ, let Mϕ be a minimal
subset ofM withMϕ ∈ ModI(ϕ). Let Vϕ denote the set of variables of sϕ ∈ S. It is easy
to see that there must be a constant substitution s′′ with Vars(s′′) = Vϕ and Subst(ϕ, s′′) =
Mϕ. Indeed, there is trivially a constant substitution with Subst(ϕ, s′′) ⊆ Mϕ, but if the
subset inclusion were proper,Mϕ would not be tuple minimal.

Now define h : sϕ(Vϕ) → s′′(Vϕ) by a 7→ s′′(s−1
ϕ (a)). Since sϕ is injective, h is well

defined. Since sϕ1
(Vars(ϕ1)) ∩ sϕ2

(Vars(ϕ2)) = ∅ for distinct ϕ1, ϕ2 ∈ Φ, there are no
conflicts in this definition of h. Finally, extend h to be the identity on all a ∈ Const(D)
which are not covered by the above definition. The result is a endomorphism on D

which satisfies h(ArmMod〈Φ, K, S〉) ⊆M .
For (b), first observe that ArmMod〈Φ, K, S〉 is a model of Φ just by construction. It

is furthermore easy to see that since Φ is fully reduced, it is tuple minimal. Indeed,
if any tuple t ∈ ArmMod〈Φ, K, S〉 could be removed, then the corresponding conjunct
could be removed from the ϕ ∈ Φ associated with t, contradicting the fact that Φ is
fully reduced. To show that ArmMod〈Φ, K, S〉 is an Armstrong model, let ψ ∈ Υ with
ArmMod〈Φ, K, S〉 ∈ ModI(ψ), and letM ∈ ModI(Φ). In view of (a), there is an endomor-
phism h on D with h(ArmMod〈Φ, K, S〉) ⊆ M . In view of Lyndon’s theorem [Mon76,
Thm. 25.22], which states that satisfaction of sentences not involving negation is closed
under endomorphic images, it follows that M ∈ ModI(ψ) also. Hence, Φ |= ψ, and so
ArmMod〈Φ, K, S〉 is an Armstrong model of Φ.

To show (c), let M be any other tuple-minimal Armstrong model for Φ relative to
ΥK . In the above construction for the proof of (a), the resulting h must be surjective
(else M would not be tuple minimal), and it must be injective (since there must also
be an endomorphism in the opposite direction, and both ArmMod〈Φ, K, S〉 and M are
finite, by assumption). Hence, h is an automorphism. 2

It is easy to see that the endomorphism h need not be unique. For example, if D has
the single unary relation symbol R[A], and Φ = {(∃x)(R(x))}, then M1 = {R(a)} is a
minimal Armstrong model, whileM2{R(b), R(c)} is an Armstrong model which is not
tuple minimal. There are two endomorphisms fromM1 toM2, h1 : a 7→ b and h2 : a 7→ c.

In some ways, the construction given above is similar to the construction of the
universal solutions of [FKMP05, Def. 2.4], in that both are based upon similar notions of
endomorphism (there termed homomorphism). However, those universal solutions are
not required to be tuple minimal. On the other hand, they are not limited to positive
sentences, but rather apply to the more general class of XEIDs [Fag82].

15

The existence of a (finite) Armstrong model for a set of Φ is guaranteed under fairly
simple circumstances; all that is necessary is that Φ have finite cover.

3.10 Lemma Let Φ ⊆ ΥK . Then Φ admits a tuple-minimal Armstrong model with respect
to ΥK iff Φ admits a finite cover relative to ΥK .

PROOF: If Φ admits a finite cover, then Φ admits a tuple-minimal Armstrong model
with respect to ΥK by 3.9(b). Conversely, if Φ is not finite and has no finite cover, then
for any positive integer n, there is a ϕ ∈ Φ which contains at least n distinct conjuncts
and which is not equivalent to any finite subset of ΥK , each of whose elements contains
fewer than n conjuncts. An Armstrong model must thus contain at least n tuples. Since
nmay be chosen arbitrarily large, it follows that no such finite model can exist. 2

3.11 Canonical models Let K ⊆ Const(D). In (a)-(c) and (e) below, take Φ ⊆ ΥK as
well.

(a) Φ is D-consistent if AtModI(Φ) ∪ LDB(D) 6= ∅.

Thus, Φ isD-consistent if there is some legal database which satisfies Φ. Such a database
must also satisfy the sentences in Constr(D); the total set of sentences which it must
satisfy is the extended information; expressed formally as follows.

(b) Define the extended information of Φ with respect to ΥK to be XInfoD〈Φ,ΥK〉 = {ϕ ∈
ΥK | Φ ∪ Constr(D) |= ϕ}.

Note that if Φ is not D-consistent, then XInfoD〈Φ,ΥK〉 = ΥK . Also note that, equiv-
alently, XInfoD〈Φ,ΥK〉 = {ϕ ∈ ΥK | (∀M ∈ LDB(D))((M ∈ AtModI(Φ)) ⇒ (M ∈
AtModI(ϕ)))} whenever Φ is D-consistent. In other words, XInfoD〈Φ,ΥK〉 is the set of
all sentences in ΥK which are true in everyM ∈ LDB(D) ∩ AtModI(Φ).

Since the databases of this paper are finite, consistency is not enough. Rather, Φ
together with Constr(D) must admit a finite model. In view of 3.10, this property is
equivalent to Φ having a finite cover. Formally, this is recaptured formally as follows.

(c) Φ extends finitely to D with respect to ΥK if XInfoD〈Φ,ΥK〉 has a finite cover with
respect to ΥK .

(d) The schema D admits finite extensions with respect to ΥK if every finite and D-
consistent Φ ⊆ ΥK extends finitely to D with respect to ΥK .

(e) A canonical database for Φ in D with respect to ΥK is a tuple-minimal Armstrong
modelM for XInfoD〈Φ,ΥK〉with respect to ΥK .

Observe that, in view of 3.9(c), canonical databases are unique up to automorphism.
D admits canonical databases conditionally if there is a canonical model whenever the
extended information is finite, with unconditional extension requiring further that this
finiteness condition always be satisfied.

(f) The schema D admits canonical models conditionally if with respect to ΥK if for every
Φ ⊆ ΥK which is extends finitely toD with respect to ΥK , every canonical database
with respect to ΥK is in LDB(D).

16

(g) The schema D admits canonical models unconditionally if D admits finite extensions
with respect to ΥK and every canonical database with respect to ΥK is in LDB(D).

These existence conditions are characterized precisely in the following lemma.

3.12 Lemma Continue with the notation of 3.11 above.

(a) D admits canonical models conditionally with respect to ΥK iff for every D-consistent
Φ ⊆ ΥK , XInfoD〈Φ,ΥK〉 |=min ϕ for every ϕ ∈ Constr(D),

(b) D admits canonical models unconditionally with respect to ΥK iff it admits canonical
models conditionally and XInfoD〈Φ,ΥK〉 has a finite cover relative to ΥK .

PROOF: Both parts follow immediately from 3.10. 2

3.13 Example — Canonical models conditionally but not unconditionally It is not
the case that every schema which admits canonical models conditionally admits them
unconditionally. For example, let the schema E2 have three relational symbols R1[A],
R2[AB], and R3[AB], with the inclusion dependencies R1[A] ⊆ R2[A], R2[A] ⊆ R3[A],
and R3[B] ⊆ R2[B]. LetM1 = {R1(a0), R2(a0, b0), R3(a0, b0), R1(a1)}, let K = {a0, a1, b0},
and note that M1 ⊆ WFS(E3, ∃∧+, K), since databases are taken to be sets of ground
atoms.

In XInfoE3
〈M1,WFS(E3, ∃∧+, K)〉, a tuple of the form R2(a1, b1) must be present,

which implies that one of the form R3(a2, b1) must be present as well, which in turn
implies that one of the form R2(a2, b2) must be present, and so forth. If the constant
symbols which are introduced to satisfy the dependencies, are always new ones which
have not been used previously, then this construction proceeds indefinitely. In terms
of the construction of the extended informationXInfoD〈M1,WFS(E3, ∃∧+, K)〉, it is not
difficult to see that an infinite increasing sequence 〈ϕ0, ϕ1, ϕ2, . . . , ϕi, . . .〉 of sentences
arises, as shown in Fig. 1, with ϕi+1 strictly longer than ϕi and furthermore not a con-
sequence of {ϕ0, ϕ1, . . . , ϕi}. Thus, XInfoE3

〈M1,WFS(E3, ∃∧+, K)〉 cannot have a finite
cover. If the sequence is terminated, by choosing, say, b2 = b1, then an additional sen-
tence beyond those in XInfoE2

〈M1,WFS(E2, ∃∧+, K)〉 is included, and so the result-
ing database is not Armstrong with respect to WFS(E3, ∃∧+, K). On the other hand,

(∃x1)(R2(a1, x1))

(∃x1)(∃x2)(R2(a1, x1)∧R3(x1, x2))

(∃x1)(∃x2)(∃x3)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2))

(∃x1)(∃x2)(∃x3)(∃x4)(R2(a1, x1)∧R3(x1, x2)∧R2(x3, x2)∧R3(x3, x4))

...
Figure 1: A strictly increasing sequence of information sentences

the database M2 = {R1(a0), R2(a0, b0), R3(a0, b0)} already satisfies every constraint in
XInfoE3

〈M2,WFS(E2, ∃∧+, K)〉, and so is a tuple-minimal Armstrong model of itself.
Thus, the terminology conditionally is justified; E2 admits canonical models for some

17

sets of sentences, but not for others. In 3.22, conditions under which canonical models
are always admitted unconditionally are identified.

3.14 Example — Canonical models and positive disjunction While the definitions
of 3.11 apply to any relational database schema, further restrictions must be imposed to
render them meaningful. Consider again the schema E1 of Section 1, with the three
unary relation symbols R[A], S[A], and T [A], subject to the constraint (∀x)(R(x) ⇔
(S(x)∨T (x))). For M1 = {R(a0)} and K = {a0}, XInfoE1

〈M1,WFS(E1, ∃∧+, K)〉 = M1,
yet M1 6∈ LDB(E1). The problem is that the “full” extended information, relative to
WFS(E1) is {R(a0), S(a0)∨T (a0)}, but the disjunction S(a0)∨T (a0) does not lie in
WFS(E1, ∃∧+). Hence the canonical database for M1 with respect to WFS(E1, ∃∧+) is
not in LDB(E1). It is clear that the notion of a canonical database is not really mean-
ingful in the presence of such disjunctions. Rather, attention must be restricted to Horn
dependencies, which avoid such positive disjunction and which are described below.

3.15 Generalized Horn dependencies The vast majority of relational database de-
pendencies which have been considered over the years belong to a general class of log-
ical formulas calledHorn clauses. Originally presented as a characterization of formulas
which are true under direct products [Hor51], they are more generally central to the
modelling canonical instances in computer science [Mak87]. In the context of database
dependencies, the following form is used, with each Ai and each Bi is in Atoms(D).

(∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))(GHD)

In this work, such dependencies will be allowed in their most general form, which will
be called generalized Horn dependencies, or GHDs. The only restrictions are the following.

(ghd-1) Each GHD is in fact a sentence, so that each variable lies within the scope of a
quantifier.

(ghd-2) {x1, x2, . . . , xm} ∩ {y1, y2, . . . , yr} = ∅.

(ghd-3) Each xi occurs in some Aj ; no universally quantified variable occurs only in a
Bj.

(ghd-4) Ai ∈ Atoms(D) for each i.

(ghd-5) If s > 0, then either each Bi ∈ Atoms(D), in which the sentence is tuple gener-
ating, or else s = 1, r = 0, and B1 ∈ VarEqAtoms(D), in which case the sentence is
called equality generating. If s = 0, the sentence is called a mutual exclusion.

As a convenient notation, GHD(D) will be used to denote the set of all GHDs onD, with
TGHD(D) (resp. EGHD(D)) the subset consisting of the tuple-generating (resp. equality-
generating) sentences. Mutual exclusions will be regarded as special cases of EGHDs in
which there is no atom on the right-hand side.

The GHDs are a generalization of the XEIDs of Fagin [Fag82, Sec. 7], and are es-
sentially the source-to-target dependencies of [FKMP05, Def. 2.1]. As such, the GHDs
encompass virtually all classes of database constraints which have been studied, in-
cluding in particular functional and inclusion dependencies. In contrast to XEIDs, the

18

left-hand side need be neither unirelational nor typed. Of course, the more stringent
requirement on XEIDs is made for a reason — XEIDs enjoy the property of possessing
Armstrong models [Fag82, Thm. 3.1] which GHDs do not. Although they were used as
the general class of dependency in [Heg08a], it turns out that this property of possess-
ing Armstrong models is only required of sentences in WFS(D, ∃∧+) which are used to
characterize the information content of database, and not for more general Horn clauses
which are used to characterize the underlying constraints. Therefore, there is no need
to enforce the additional requirements of XEIDs.

GHDs also generalize XEIDs in a less essential way — there is no requirement that
either n or s be greater than zero, although both are not allowed to be zero in the
same clause.. If s = 0; i.e., if the right-hand side is empty, a statement of the form
(∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An) ⇒ ⊥) is obtained, with ⊥ denoting the identically
false assertion. As noted in (ghd-5) above, such as sentence is called a mutual exclusion.
An example is the antisymmetry constraint (∀x1)(∀x2)((R(x1, x2)∧R(x2, x1)) ⇒ ∅. If
n = 0, a sentence in WFS(D, ∃∧+) is obtained; thus, GHD(D) ⊆ WFS(D, ∃∧+). As a spe-
cific example of such a constraint, consider (∃y1)(∃y2)(R(y1, y2)), which states that the
relation instance for R is always nonempty. Additionally, constant symbols are allowed
in a GHD. For example, a constraint of the form (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν)
might assert that for every tuple in R, a similar tuple, padded with the constant ν in the
third position (with ν representing a null value, for example), is required.

The idea of forward chaining on databases by applying Horn-style rules is well
known [DG84], and forms one of the cornerstones of logic programming [Llo87]. How-
ever, in the current context, rather than reasoning on ground atoms, it is essential to
apply forward chaining on information — that is, on sentences in ΥK . This idea is ad-
dressed via notions of information associated with TGDs, as developed below.

3.16 Information inference for TGHDs In so-called forward chaining in classical
propositional logic, given a Horn clause of the formA1∧A2∧ . . . ∧An ⇒ B, if all of theAi’s
are known to be true, the rule may “fire” and assert that B is also true. This idea also
works for TGHDs operating on ground atoms; a ground substitution is applied to the
left-hand side, and if all of the resulting ground atoms are true, the sentence obtained
by applying the same substitution to the right-hand side must be true, and further sub-
stitutions may then be applied to identify the ground atoms which it implies. More
generally, however, when the pool of knowledge consists of sentences in WFS(D, ∃∧+),
the left-hand side and right-hand sides are coupled via variables. In other words, a rule
fires for specific bindings of variable common to both sides. It is therefore not possible to
separate the conclusion (i.e., the right-hand side) from the hypotheses (i.e., the left-hand
side). The solution is a rather simple one. When a rule of the above form fires, rather
than concluding simply B from A1∧A2∧ . . . ∧An, the conjunction A1∧A2∧ . . . ∧An∧B is de-
duced as a new fact. In this way, any binding of quantified variables which occurred
during the inference process are preserved.

Let ϕ be a GHD of the form (GHD) of 3.15 above, and let s be a substitution on
{x1, x2, . . . , xn}. Call sGHD-compatible with ϕ if s(xi) 6= yj for any indices i and j, and as-
sume that s has this property. GHD compatibility ensures only that a substitution does

19

not rename a universally quantified variable to coincide with one which is existentially
quantified in the original formula. The left-hand-side information of ϕ with respect to s is
the sentence obtained by applying s to the left-hand side of ϕ. Formally, LHSinfo〈ϕ, s〉
is the sentence in WFS(D, ∃∧+) obtained from (∀x1)(∀x2) . . . (∀xm)(A1∧A2∧ . . . ∧An) as
follows.

(lhs-i) For i ∈ {1, 2, . . . , m}, if s(xi) = v ∈ GenVars(D), replace (∀xi) with (∃v).

(lhs-ii) For i ∈ {1, 2, . . . , m}, if s(xi) ∈ Const(D), delete (∀xi).

(lhs-iii) For i ∈ {1, 2, . . . , n}, replace each Ai with the sole element of Subst(Ai, s).

Note in particular that universally quantified variables become existentially quantified.
The existentially quantified versions represent a single but unspecified biding on those
formerly universally quantified positions. Now, the left-plus-right-hand-side information
of ϕ with respect to s, denoted LRHSinfo〈ϕ, s〉, is the sentence obtained from

(∀x1)(∀x2) . . . (∀xm)(∃y1)(∃y2) . . . (∃yr)(A1∧A2∧ . . . ∧An∧B1∧B2∧ . . . ∧Bs)

by following the steps (i)-(iii) above and, in addition to the following step.

(rhs) Replace each Bi with Subst(Bi, s).

For example, if ϕ = (∀x1)(∀x2)(R(x1, x2) ⇒ (∃y)(S(x1, x2, y))) and s = {a1/x1, x/x2}
then LHSinfo〈ϕ, s〉 = (∃x)(R(a1, x)) and LRHSinfo〈ϕ, s〉 = (∃x)(∃y)(R(a1, x)∧S(a1, x, y)).

The following lemma states formally the intuition that if LHSinfo〈ϕ, s〉 is satisfied,
and the rule ϕ holds, then LRHSinfo〈ϕ, s〉 holds as well. It is an immediate consequence
of the above definitions.

3.17 Lemma Let ϕ ∈ TGHD(D) and letM ∈ DB(D). ThenM ∈ AtModI(ϕ) iff for every
GHD-compatible substitution s on Vars(ϕ), if LHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉, then
LRHSinfo〈ϕ, s〉 ∈ Info〈M,ΥK〉 as well. 2

The case of EGHDs must be handled a bit differently, since the result of a deduction
is not a new sentence in ΥK but rather a restriction on existing sentences. Therefore, the
key idea is to consider the effect of reducing a given sentence ψ ∈ ΥK by an EGHD ϕ,
with the latter possibly forcing certain terms of ψ to be equal.

3.18 Information associated with an EGHD Let ϕ be an EGHD of the form (GHD)
of 3.15 above, and let ψ ∈ ΥK . Here ψ is a sentence to which the ϕ will be applied. If ψ
can be unified with the left-hand side of ϕ, then the equality defined by the right-hand
side of ϕmust be applied to ϕ.

For this to work, a suitable substitution must be applied, so s be any substitution
on {x1, x2, . . . , xn}, the variables of ϕ. (In an ETGD, there are no existentially quantified
variables of the form yi in (GHD).) Note further that the GHD-compatibility property on
a substitution does not apply here, since every EGHD is a universal sentence. However,
the result of applying s to the left-hand side of ϕmust match ψ, so that the rule can fire.
Formally, call s ϕ-compatible for ψ if AtRep(LHSinfo〈ϕ, s〉) ⊆ AtRep(ψ). Thus, s is ϕ-
compatible if, when applied to the left-hand side of ϕ, the conjuncts which are obtained

20

(after removing any quantifiers) are a subset of those of ψ. Let RHSinfo〈ϕ, s〉 denote the
equality atom obtained by applying the substitution s to B1, the right-hand side of ϕ.
(If ϕ is a mutual exclusion, then RHSinfo〈ϕ, s〉 = ⊥.) The reduction of ψ by RHSinfo〈ϕ, s〉,
denoted Reduction〈ψ,RHSinfo〈ϕ, s〉〉 is defined by cases as follows.

(red-i) If RHSinfo〈ϕ, s〉 is of the form (ai = aj) with i 6= j, or RHSinfo〈ϕ, s〉 = ⊥, then
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥, the identically false assertion.

(red-ii) If RHSinfo〈ϕ, s〉 is of the form (ai = ai) or (xi = xi), then
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ψ.

(red-iii) If RHSinfo〈ϕ, s〉 is of the form (xi = aj) or (aj = xi), then
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 is obtained by substituting aj for xi in ψ and removing
the quantifier (∃xi).

(red-iv) If RHSinfo〈ϕ, s〉 is of the form (xi = xj) with i 6= j, then
Reduction〈ψ,RHSinfo〈ϕ, s〉〉 is obtained by substituting xi for xj in ψ and remov-
ing the quantifier (∃xj). (Note that the quantifier (∃xi) must also be present in this
case, and is not removed.)

For example, if ϕ = (∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ (x2 = x3)) and ψ =
(∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)∧S(x1, x2)) then for s = {(a1/x1, x1/x2, x2/x3)},
LHSinfo〈ϕ, s〉 = (∃x1)(∃x2)(R(a1, x1)∧R(a1, x2)) and so is ϕ-compatible. RHSinfo〈ϕ, s〉 =
(x1 = x2), and so Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = (∃x1)(∃x2)(R(a1, x1)∧R(a1, x1)∧S(x1, x1)).
On the other hand, if ψ = (∃x1)(R(x1, a1)∧R(x1, a2) then s = {x1/x1, a1/x2, a2/x3} is ϕ-
compatible but RHSinfo〈ϕ, s〉 = (a1 = a2). and so Reduction〈ψ,RHSinfo〈ϕ, s〉〉 = ⊥.

The following lemma is a routine consequence of the above.

3.19 Lemma Let ϕ ∈ EGHD(D), let M ∈ DB(D), and let Ψ be a cover for Info〈M,ΥK〉
with respect to ΥK . ThenM ∈ AtModI(ϕ) iff for every ψ ∈ Ψ and every substitution s which
is ϕ-compatible for ψ, Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ Info〈M,ΥK〉 as well. 2

Finally, the main result, that schemata constrained by GHDs always admit canonical
models conditionally, may be established.

3.20 Theorem—Conditional existence of canonical models IfConstr(D) ⊆ GHD(D),
then for any K ⊆ Const(D), D admits canonical models conditionally with respect to ΥK .

PROOF: Let Φ ⊆ WFS(D, ∃∧+, K) have the property that it extends finitely to D for
ΥK . First, let ϕ ∈ Constr(D) be a TGHD, and let s be a GHD-compatible substitution
for ϕ. It follows directly from 3.17 and the definition of XInfo (3.11(b)) that whenever
LHSinfo〈ϕ, s〉 ∈ XInfoD〈Φ,ΥK〉, then LRHSinfo〈ϕ, s〉 ∈ XInfoD〈Φ,ΥK〉 as well. A second
application of 3.17 establishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Arm-
strong modelM of XInfoD〈Φ,ΥK〉with respect to ΥK .

The proof for ϕ ∈ Constr(D) an EGHD is similar. Choose ψ ∈ Φ and let s be a ϕ-
compatible substitution for ψ. In view of 3.19 and the definition of XInfo, it must be the

21

case that Reduction〈ψ,RHSinfo〈ϕ, s〉〉 ∈ XInfoD〈Φ,ΥK〉 as well. Again, a second appli-
cation of 3.19 establishes that M ∈ MinAtModI(ϕ) for every tuple-minimal Armstrong
modelM of XInfoD〈Φ,ΥK〉 with respect to ΥK . 2

3.21 Weakly acyclic TGHDs To admit canonical models unconditionally, it is neces-
sary to ensure that infinite increasing sequences in XInfoD〈Φ,ΥK〉, as illustrated in 3.13,
do not occur. Such infinite models are related to cycles in the tuple-generating depen-
dencies. In [FKMP05, Def. 3.7], the notion of a weakly acyclic set of TGDs is developed,
and it is shown [FKMP05, Thm. 3.9] that the chase procedure always terminates when
the dependencies are limited to an acyclic set of of TGDs together with EGDs. The
TGDs and EGDs of [FKMP05] differ only in relatively minor ways from the TGHDs
and EGHDs of this paper; in particular, the result extends directly to TGDs. The details
will not be worked out, but the following result is noted for completeness.

3.22 Corollary — (to 3.20) If Constr(D) is finite and consists of a weakly acyclic set of
TGHDs, together with any set of EGHDs, then then for anyK ⊆ Const(D),D admits canonical
models unconditionally with respect to ΥK .

PROOF: Combine the result of 3.20 with [FKMP05, Thm. 3.9]. 2

4 Optimal Reflection of Insertions

The focus is now turned to the problem of characterizing optimal reflections of inser-
tions into the view schema. Roughly, the idea is to reflect the information whichmust be
added to the main schema and then construct an Armstrong model (with respect to ΥK

for a suitableK) of that information together with the current state of the main schema.
There are, of course, details to be developed and pitfalls to be avoided, all of which are
discussed in this section. First of all, some basic definitions surrounding updates and
information are developed.

4.1 Notational convention Throughout the rest of this paper, unless stated specifi-
cally to the contrary, take Γ = (V, γ) to be a relational view of D of class ∃∧+.

4.2 Updates and reflections An update on D is a pair (M1,M2) ∈ LDB(D)×LDB(D).
M1 is the current state, andM2 the new state. It is an insertion ifM1 ⊆ M2, and a deletion
ifM2 ⊆M1.

To describe the situation surrounding an update request on Γ, it is sufficient to spec-
ify the current state M1 of the main schema and the desired new state N2 of the view
schema V. The current state of the view can be computed as γ(M1); it is only the new
state M2 of the main schema (subject to N2 = γ(M2)) which must be obtained from an
update strategy. Formally, an update request from Γ to D is a pair (M1, N2) in which
M1 ∈ LDB(D) (the old state of the main schema) and N2 ∈ LDB(V) (the new state of
the view schema). If γ(M1) ⊆ N2, it is called an insertion request, and if N2 ⊆ γ(M1), it is
called a deletion request. Collectively, insertion requests and deletion requests are termed

22

unidirectional update requests. A realization of (M1, N2) along Γ is an update (M1,M2) on
D with the property that γ(M2) = N2. The update (M1,M2) is called a reflection (or
translation) of the view update (γ(M1), N2). The set of all realizations of (M1, N2) along
Γ is denoted UpdRealiz〈(M1, N2),Γ〉. The subset of UpdRealiz〈(M1, N2),Γ〉 consisting of
insertions (resp. deletions) is denoted InsRealiz〈(M1, N2),Γ〉 (resp.DelRealiz〈(M1, N2),Γ〉.

4.3 Update difference and optimal reflections The update difference of an update
(M1,M2) on D with respect to a set Σ ⊆ WFS(D) is a measure of how much M2 dif-
fers from M1 in terms of satisfaction of the sentences of Σ. Formally, the positive (∆+),
negative (∆−), and total (∆) update differences of (M1,M2) with respect to Σ are defined as
follows:

∆+〈(M1,M2),Σ〉 = Info〈M2,Σ〉 \ Info〈M1,Σ〉

∆−〈(M1,M2),Σ〉 = Info〈M1,Σ〉 \ Info〈M2,Σ〉

∆〈(M1,M2),Σ〉 = ∆+〈(M1,M2),Σ〉 ∪ ∆−〈(M1,M2),Σ〉

Note that, given ϕ ∈ ∆〈(M1,M2),Σ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2),Σ〉 or ϕ ∈ ∆−〈(M1,M2),Σ〉 by checking whether or not M1 ∈ AtModI(ϕ).
Given an update request (M1, N2), the quality of a realization (M1,M2) is measured by
its update difference. Formally, let Σ ⊆ WFS(D), let (M1, N2) be an update request from
Γ to D, let T ⊆ UpdRealiz〈(M1, N2),Γ〉, and let (M1,M2) ∈ T .

(a) (M1,M2) is minimal in T with respect to Σ if for any (M1,M
′
2) ∈ T ,

if ∆〈(M1,M
′
2),Σ〉 ⊆ ∆〈(M1,M2),Σ〉, then ∆〈(M1,M

′
2),Σ〉 = ∆〈(M1,M2),Σ〉.

(b) (M1,M2) is least in T with respect to Σ if for all (M1,M
′
2) ∈ T , ∆〈(M1,M2),Σ〉 ⊆

∆〈(M1,M
′
2),Σ〉.

4.4 Update classifiers An update classifier for D is simply a set Σ of information-
monotone sentences. In this work, the setΣwill always be taken to be eitherGrAtoms(D)
or else WFS(D, ∃∧+, K) = ΥK for an appropriate setK of constants.

Let (M1, N2) be an update request from Γ to D, let T ⊆ UpdRealiz〈(M1, N2),Γ〉, and
let (M1,M2) ∈ T .

(a) (M1,M2) is 〈ΥK , T 〉-admissible if it is minimal in T with respect to both ΥK and
GrAtoms(D).

(b) (M1,M2) is 〈ΥK , T 〉-optimal if it is 〈ΥK , T 〉-admissible and least in T with respect to
Σ.

Roughly, (M1,M2) is admissible if no other realization is better, and it is optimal if it is
better than all others, up to the equivalence defined by Σ. Observe that if some update
request is 〈ΥK , T 〉-optimal, then all 〈ΥK , T 〉-admissible update requests are 〈ΥK , T 〉-
optimal.

As a notational shorthand, if T = InsRealiz〈(M1, N2),Γ〉 (resp. T =
DelRealiz〈(M1, N2),Γ〉), that is, if T is the set of all possible insertions (resp. deletions)

23

which realize (M1, N2), then 〈ΥK , T 〉-admissible and 〈ΥK , T 〉-optimal will be abbrevi-
ated to 〈ΥK , ↑〉-admissible and 〈ΥK , ↑〉-optimal (resp. 〈ΥK , ↓〉-admissible and 〈ΥK , ↓〉-
optimal).

For Σ = GrAtoms(D), admissibility reduces to minimality in the sense of symmet-
ric difference of sets as sketched in 1.2. More concretely, given an update request
(M1, N2), a realization (M1,M2) is 〈GrAtoms(D), T 〉-admissible if for no other realization
(M1,M

′
2) ∈ T is it the case that SymDiff〈M1,M

′
2〉 ⊆ SymDiff〈M1,M2〉. Similarly, (M1,M2)

is 〈GrAtoms(D), T 〉-optimal if for every other realization (M1,M
′
2), SymDiff〈M1,M2〉 ⊆

SymDiff〈M1,M
′
2〉. Minimality with respect to GrAtoms(D) is referred to as tuple mini-

mality, in harmony with the terminology already introduced for Armstrong models in
Section 3.

The major theme of this paper is that tuple minimality, by itself, is not sufficient
to characterize optimal updates. Rather, optimality with respect to ΥK for a suitably
chosen setK of constants is also essential. This issue is next addressed in detail.

4.5 The constants associated with an update request In reflecting an update from
a view to the main schema, the use of new constants in generic models is crucial. For
a constant to be “new”, it is not sufficient that it merely not appear in the current or
proposed view state, or the current state of the main schema. Rather, it must not appear
in any constraint or defining formula for the main schema or view. For example, refer-
ring back to the example of the null-value constraint (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν)
of 3.15, it would be inappropriate to use ν as a generic constant, since it already has
another meaning within the global context of all databases. Thus, the pool of generic
constants must also exclude any which occur in constraints or in the defining formulas
for views. Specifically, the following sequence of definitions leads to the acceptable pool
of generic constants.

First of all, define the constant symbols of the schemaD to be those of its constraints.

(a) ConstSym(D) = ConstSym(Constr(D))

Next, define the constant symbols of the view Γ = (V, γ) to be those of the main schema
D, together with those of both the view schema V and the view mapping γ.

(b) ConstSym(Γ) = ConstSym(Constr(D)) ∪ ConstSym(Constr(V)) ∪ ConstSym(γ)

The constant symbols of an update request u are those of its states.

(c) For u = (M1, N2) an update request from Γ to D, ConstSym(u) = ConstSym(M1) ∪
ConstSym(N2).

Finally, define the total constant set of u, denoted Cu, to be the constant symbols of u
together with those of Γ.

(d) Cu = ConstSym(Γ) ∪ ConstSym(u).

Note that ConstSym(N2) ⊆ ConstSym(M1)∪ConstSym(γ)∪ConstSym(V), so the following
more compact representation is also valid.

(d′) Cu = ConstSym(Γ) ∪ ConstSym(M1).

24

Since database schemata, even those of views, are always taken to be constant finite (see
2.5), it follows that Cu is always a finite set. Since ConstD(A) is infinite for everyA ∈ AD,
it follows that there are always infinitely many “available” constant symbols for each
attribute Awhich do not lie in Cu. The set Cu will thus be taken to be the set of constant
symbols which may not be used as generic values in constructing Armstrong models.

4.6 Information lifting LetN ∈ DB(V). The information lifting ofN along Γ, denoted
InfoLift〈N,Γ〉, is the minimum information inWFS(D, ∃∧+)which anyM ∈ DB(D)with
γ(M) = N must have. Formally, this is recaptured as follows.

InfoLift〈N,Γ〉 = {Substf〈γ, t〉 | t ∈ N}

Note that InfoLift〈N,Γ〉 ⊆ ΥK with K = ConstSym(N2) ∪ ConstSym(γ).
Given an insertion request u = (M1, N2) from Γ to D, and let M2 ∈

InsRealiz〈(M1, N2),Γ〉. The least information whichM2 must have is InfoLift〈N2,Γ〉 ∪M1,
closed up under the constraints in Constr(D). This is recaptured formally as

LeastRefl〈u,Γ〉 = XInfoD〈M1 ∪ InfoLift〈N2,Γ〉,ΥCu
〉

and is called the least reflection of u along Γ.
In the context of the example of 1.3, with u = (M00, N01), the information lifting

InfoLift〈N01,Π
E2

R′[AB]〉 = {(∃x1)(∃x2)(∃x3)(R(a0, b0, x1)∧R(a1, b1, x2)∧R(a2, b2, x3))}, while

the least reflection LeastRefl〈u,ΠE2

R′[AB]〉 = M00 ∪ {(∃x1)(∃x2)(R(a2, b2, x1)∧(S(x1, x2)))}.
Using the construction of 3.9, a tuple-minimal Armstrong model of

LeastRefl〈u,ΠE2

R′[AB]〉 is obtained by replacing the variables by distinct and new constants;
for exampleM01 = M00 ∪ {R(a2, b2, c2), S(c2, d2)}.

4.7 Proposition — Characterization of optimal insertions Assume that D admits
canonical models conditionally, and let u = (M1, N2) be an insertion request from Γ to D.
Then (M1,M2) is a 〈ΥCu

, ↑〉-optimal realization of u iff the following two conditions hold.

(i) M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu
〉 with respect to ΥCu

.

(ii) γ(M2) = N2.

PROOF: Certainly, if (i) and (ii) hold, thenM2 is a 〈ΥCu
, ↑〉-optimal realization of u. On

the other hand, ifM2 is a 〈ΥCu
, ↑〉-optimal realization of u, then (ii) holds trivially. Since

D admits canonical models conditionally, if LeastRefl〈u,ΥCu
〉 admits a finite cover, then

a tuple-minimal Armstrong model of that set is a a 〈ΥCu
, ↑〉-optimal realization of u, just

by construction. If LeastRefl〈u,ΥCu
〉 does not admit a finite cover, then, as illustrated

in 3.13, it must contain an infinite increasing sequence 〈ϕ0, ϕ1, ϕ2, . . .〉 of sentences with
AtModI(

⋃

{ϕi | 0 ≤ i ≤ k}) 6⊆ AtModI(ϕk) for any k > 0, and so it cannot have a finite
Armstrong model. Thus, any 〈ΥCu

, ↑〉-admissible realization must satisfy some sentence
not in LeastRefl〈u,ΥCu

〉, and so no 〈ΥCu
, ↑〉-optimal realization can exist. 2

25

4.8 Example — Orphan tuples Even in the case that LeastRefl〈u,ΥCu
〉 satisfies con-

dition (i) of 4.7, it may not satisfy condition (ii); that is, it may not be the case that
γ(M2) = N2. The problem lies with so-called orphan tuples, which are illustrated via the
following example.

LetE4 be the schema having the single relation symbolR[AB], constrained by the de-
pendency (∃x1)(∃x2)(R(x1, x2)) which simply asserts that the instance ofR is nonempty.
It is immediate that this dependency is a TGHD (with m = n = 0 in the pattern
(GHD) of 3.15). The view ΠE4

A+B = (W4, π
E4

A+B) has two relation symbols RA[A] and
RB [B], defined by the obvious projections πE4

A and πE4

B . The only constraints on the
view schema are (∃x1)(RA(x1)) and (∃x1)(RB(x1)), so Constr(W4) consists of GHDs
as well. Now with M1 = {R(a0, b0), R(a1, b1)} the state of E4, π

E4

A+B(M1) = N1 =
{RA(a0), RA(a1), RB(b0), Rb(b1)}. Let N2 be the view state obtained by inserting RA(a2)
into N1, and define u = (M1, N2). Then LeastRefl〈u,ΥCu

〉 = M1 ∪ (∃x1)(R(a2, x1)). A
canonical modelM2 of this least reflection is of the formM1 ∪ {R(a2, b2)}, with b2 6∈ Cu,
so πE4

A+B(M2) = N2 ∪ {RB(b2)}. Here RB(b2) is termed an orphan tuple; it represents
newly inserted information which has made its way back to the view. The tuple can
be made to “disappear” by replacing b2 with an existing value for attribute B, say b1.
However, in that case, while the resulting stateM ′

2 = M1 ∪ {R(a2, b1)} does map to N2

under πE4

A+B, Info〈M2,ΥCu
〉 is a proper subset of Info〈M ′

2,ΥCu
〉, and soM ′

2 is not 〈ΥCu
, ↑〉-

optimal. Thus, (M1,M
′
2) is a 〈ΥCu

, ↑〉-admissible solution to the update request (M1, N2),
but it is not optimal. This problem cannot be made to disappear via clever formulation;
in this example, there are no optimal solutions. Fortunately, orphan tuples can be ruled
out by requiring that Γ reflect deletions, as described below.

4.9 Reflection of deletions The view Γ = (V, γ) reflects deletions if every deletion
request (M1, N2) from Γ to D admits a realization which is itself a deletion.

In the example of 4.8 above, ΠE4

A+B does not reflect deletions. There is no realization
of the update request (M ′

1, N2)which is a deletion, since withM1 = {R(a0, b0), R(a1, b1)}
the state of the main schema E4, there is no way to realize the deletion of R2(b1) from
the view state N1 as a deletion from M1; R(a1, b1) must be deleted, which would also
remove R1(a1).

4.10 Lemma — Reflection of deletions implies no orphan tuples Assume that D

admits canonical models conditionally, and let u = (M1, N2) be an insertion request from Γ
to D for which LeastRefl〈u,ΥCu

〉 admits a tuple-minimal Armstrong modelM2 with respect to
ΥCu

. Then, if Γ reflects deletions, γ(M2) = N2.

PROOF: It is clear that N2 ⊆ γ(M2). By the definition of reflection of deletions, there is
an M ′

2 ∈ LDB(D) with M ′
2 ⊆ M2 and γ(M ′

2) = N2. However, since M2 is already tuple
minimal, it follows thatM ′

2 = M2. Thus, γ(M2)\N2 = ∅, and so γ(M2) = N2, as required.
2

Finally, it can be established that for views with reflect deletions, condition (ii) of 4.7
is superfluous.

26

4.11 Proposition Assume that Γ reflects deletions, that D admits canonical models condi-
tionally, and let u = (M1, N2) be an insertion request from Γ toD. Then (M1,M2) is a 〈ΥCu

, ↑〉-
optimal realization of u iff M2 is a tuple-minimal Armstrong model of LeastRefl〈u,ΥCu

〉 with
respect to ΥCu

.

PROOF: The proof follows immediately from 4.7 and 4.10. 2

4.12 Example — Dependence upon the state of the main schema There is a an-
other issue which arises in applying 4.7 and 4.11; namely, that whether or not an op-
timal insertion exists may depend upon M1 and not simply the view state γ(M1). To
illustrate this phenomenon, consider the schema E5 containing the single relation sym-
bol R[ABCDE] governed by the FDs in F = {A → D,B → E,DE → C}. The
view to be updated is the projection onto ABC; it contains the single relation symbol
RABC [ABC], and is represented more formally as ΠE5

ABC = (W5, π
E5

ABC). It is easy to see
that Constr(W5) = {AB → C}, so that the view is constrained by FDs alone. Each of the
two statesM20 = {R(a0, b0, c0, d0, e0), R(a1, b1, c1, d1, e1)}, andM21 = {R(a0, b0, c0, d0, e0),
R(a1, b1, c1, d1, e0)} of E5 maps to the view state N1 = {RABC(a0, b0, c0), RABC(a1, b1, c1)}
under πE5

ABC . Consider the view update which inserts the tuple RABC(a0, b1, c2), so
that the desired new view state is N2 = N1 ∪ {RABC(a0, b1, c2)}. For convenience,
write u20 = (M20, N2) and u21 = (M21, N2). Then LeastRefl〈u20,ΥCu

〉 is given by M ′
20 =

M20 ∪R(a0, b1, c2, d0, e1), and it is easy to see that γ(M ′
20) = N2, as desired. On the other

hand, LeastRefl〈u21,ΥC
u′
〉 does not exist. Indeed, the FDs stipulate that it would need

to be M ′
21 = M21 ∪ R(a0, b1, c2, d0, e0), but the presence of both R(a0, b0, c0, d0, e0) and

R(a0, b1, c2, d0, e0) in the same state violates the FD DE → C. In the case that the state
of E5 isM ′

1, there is no insertion which will realize the insertion of RABC(a0, b1, c2) into
γ(M ′

1) = N1. To realize this update, tuples ofM ′
1 must either be deleted or else altered.

This example thus shows that the principles of reflection of monotonicity and invariance
of admissibility, as defined in Sec. 1, cannot always be realized simultaneously, even
when the reflections for certain databases of the main schema are very well behaved.
Fortunately, this phenomenon can be ruled out by requiring that Γ reflect insertions, as
described below.

4.13 Reflection of insertions The view Γ = (V, γ) reflects insertions if every insertion
request (M1, N2) from Γ to D which admits a realization admits one which is itself a
insertion.

In the example of 4.12 above, ΠE5

ABC does not reflect insertions, since there is no re-
flection of the insertion request (M ′

1, N2) which is itself an insertion.

4.14 Observation If Γ reflects insertions, then for every insertion request u = (M1, N2)
from Γ to D, LDB(D) ∩ AtModI(LeastRefl〈u,ΥCu

〉) is nonempty.

PROOF: Since LeastRefl〈u,ΥCu
〉 is the least information which any realization of uwhich

is an insertion must contain, it must be consistent if any insertion has that property. 2

27

4.15 Strong monotonicity of views In view of 4.11 and 4.14, it is clear that for the
reflection of updates to be well behaved, a view should reflect both deletions and in-
sertions. Because of the importance of this property, it is given a special name. Call Γ
strongly monotonic if it reflects both insertions and deletions.

Finally, conditions which guarantee the existence of optimal insertions may be es-
tablished.

4.16 Theorem If D admits canonical models unconditionally with respect to ΥK and Γ
is strongly monotonic, then every insertion request u from Γ to D admits a 〈ΥCu

, ↑〉-optimal
realization.

PROOF: The proof follows from 4.11 and 4.14. 2

4.17 Corollary If Constr(D) is finite and consists of a weakly acyclic set of TGHDs, together
with any set of EGHDs, and Γ is strongly monotonic, then every insertion request u from Γ to
D has a 〈ΥCu

, ↑〉-optimal realization.

PROOF: The proof follows from 4.16 and 3.22. 2

5 Characterization of Strongly Monotonic Views

The characterizations 4.16 and 4.17 lead to the further problem of identifying conditions
under which a view is strongly monotonic. In general, this does not appear to be an easy
question to answer. However, for schemata constrained by FDs and unary inclusion
dependencies (UINDs), and for views defined by projections, it is possible to identify
some sufficient conditions which are easily verified in practice.

5.1 Partial dependence and complete sets In the example of 4.12, the problem is
that there is a sort of weak dependence of A upon C via A → D;D ⊆ DE;DE → C,
while the Fd A → C itself does not hold. To obtain strong monotonicity in the context
of projections of views constrained by FDs, it is precisely this sort of weak dependence
which must not be present without the associated FD also holding. To formalize this
idea for a general schema D which is constrained by FDs, let R ∈ Rels(D), let FR be a
set of FDs on R, and let A,B ∈ ArD(R).

(a) A functionally influences B, denoted A 99K B, if there is a sequence
〈A0, A1, A2, . . . , An〉 of elements of ArD(R)with A = A0 andB = Ak, and a sequence
X1 → A1, X2 → A2, . . . , Xk → Ak of FDs in the closure of FR with the property that
Ai ∈ Xi+1 for i ∈ {0, . . . , k}. This may be visualized as follows.

A = A0 ∈ X1;X1 → A1;A1 ∈ X2;X2 → A2; . . . Ak−1 ∈ Xk;Xk → Ak = B

Functional influence is weaker than functional dependence. A 99K B simply means that
the value of A could influence the value of B, subject to information about the values of
other attributes. Put another way, if A 99K B does not hold, then the value of A cannot
influence the value of B via the FDs which hold on the schema.

28

(b) Call a subset Y ⊆ ArD(R) complete for FR if if whenever A,B ∈ Y with A 99K B,
then there is a Z ⊆ Y with A ∈ Z and Z → B ∈ Closure〈FR,WFS(D, ∃∧+)〉.

In other words, completeness states that if A 99K B holds in Y , then an FD whose left
hand side contains A and whose right-hand side is B also embeds into Y .

5.2 Simple projective views and complete views Informally, Γ = (V, γ) is a simple
projective view of D if the schema V consists of at most one projection of each relation
symbol of D. Formally, a simple projective view Γ = (V, γ) of D is defined by an
injective function SPΓ : Rels(V) → Rels(D) with ArV(R) ⊆ ArDSPΓ(R) for each R ∈
Rels(V). SPΓ(R) is the relation of which R is a projection. The property that SPΓ be
injective; that is, that each relation of V be the projection of a distinct relation in D, is
critical.

Now assume that Γ is a simple projective view and that each S ∈ Rels(D) is con-
strained by a set FS of FDs. Call Γ FD-complete if for each R ∈ Rels(V), the set ArV(R)
is complete for FSPΓ(R). In other words, for each relation symbol of V, the projected
attributes must be complete in the relation of D from which they originate.

5.3 Proposition Suppose that D is constrained solely by FDs, and that Γ is a simple pro-
jective view which is FD-complete. Then Γ is strongly monotonic.

PROOF: Since the relation symbols of D are independent of one another, it suffices to
consider the situation in which Rels(D) consists of single relation symbol R[X], con-
strained by FDs FR, with Rels(V) consisting of a single relation symbol R′[Y] with
Y ⊆ X , and γ = πD

Y defining the projection of R[X] onto R′[Y].
First of all, since FDs are EGDS, deletions are reflected trivially. Now let u = (M1, N2)

be an insertion request, and let P = N2 \ γ(M1). Each tuple t′ = R′(a1, a2, . . . , am) ∈ P
must be lifted to a tuple t = R(a1, a2, . . . , am, b1, b2, . . . , bk) in D, with the bi’s values for
the attributes in X \ Y . In view of the FD-completeness property of Γ, the values of the
bi’s cannot be influenced by the values of the ai’s. (Put another way, the classical chase
procedure [BV84] will not force the values of the bi’s to match those of any existing
tuples.) Thus the insertion will not have the problems which are illustrated in 4.12, and
so the update may be realized as an insertion. 2

5.4 Examples — FDs and strong monotonicity As noted above, the example of 4.12
is not strongly monotonic. However, if the set F = {A → D,B → E,DE → C} of FDs
is replaced by F′ = {A → D,B → E,D → C}, then A → C is in the closure of F′, ABC
is FD-complete, and the associated projection is strongly monotonic.

5.5 Examples — UINDs and strong monotonicity It is possible to obtain conditions
under which simple projective views governed by UINDs are strongly monotonic, al-
though some care is necessary. A few examples will illustrate the key issues.

First of all, let E6 denote the schema with two binary relation symbols R1[AB] and
R2[AB], governed by the IND R1[AB] ⊑ R2[AB]. R2[AB] is also governed by the FD
A→ B, and this FD is inherited by R1[AB] via the IND. The view ΠE6

R1
preserves R1[AB]

29

but discards R2[AB]. Let M1 = {R2(a0, b0)} be the current state of E6, so that the state
of the view is ∅. Consider the update request (M1, N2) with N2 = {R1(a0, b0)}. This
update can be realized as the insertion of {R1(a0, b0)} to R inM1. However, if the state
of E6 wereM ′

1 = {R2(a0, b1)} instead, this view insertion would not be realizable as an
insertion to the main schema, since the insertion of R1(a0, b0) requires the insertion of
R2(a0, b0), and {R2(a0, b0), R2(a0, b1)} together violate the FD A → B on R2. Thus, any
reflection of (M ′

1, N2) must delete R2(a0, b1). Hence ΠE6

R1
does not reflect insertions. In

general, non-unary INDs are very problematic with respect to strong montonicity, and
so in this paper attention will be restricted to UINDs. Note that if the IND above is
changed to R1[A] ⊆ R2[A], then the problem disappears.

Next, let E7 denote the schema with the single relation symbol R[ABC], constrained
by R[B] ⊑ R[C], and let ΠE7

A = (W7, π
E7

A be the simple projective view which projects
R[ABC] onto R′[A]. Let M1 = {R(a0, b0, b0)R(a1, b1, b1)}, so that πE7

A (M1) = N1 =
{R′(a0), R

′(a1)}. The view stateN2 = N1\R
′(a1) = {R′(a0)}may be realized via the dele-

tion of R(a1, b1, b1) from M1. On the other hand, for M ′
1 = {R(a0, b0, b1)R(a1, b1, b0)},

πE7

A (M ′
1) = N1 as well, yet there is no subset ofM ′

1 which maps to N2 under π
E7

A . Hence
ΠE7

A does not reflect deletions. A similar problem occurs if the view is taken to be the
projection ΠE7

AB onto AB or the projection ΠE7

AC onto AC. Thus, the second principle to
enforce is that for every intrarelational UINDR[A1] ⊆ R[A2], ifR is projected at all to the
view, then the projection must contain R[A1A2]. Less formally, all intrarelational UINDs
must be completely visible in the projection.

Finally, letE8 be the schemawith three relation symbolsR1[AB],R2[AB], andR3[AB],
constrained by R1[A] ⊑ R2[A] and R2[B] ⊑ R3[B]. The simple projective view Ω7 con-
tains the projections R′

1[A] and R′
3[A] of R1 and R3, respectively. Let M1 = {R1(a0, b0),

R2(a0, b1), R3(a0, b1), R3(a1, b0)}, so that the view state is N1 = {R′
1(a0), R

′
3(a0), R

′
3(a1)}.

LetN2 = {R′
1(a0), R

′
3(a0)}. It is easy to see that the deletion request (M1, N2) is realizable

by deleting R3(a1, b0) from M1. However, for M ′
1 = {R1(a0, b0), R2(a0, b1), R3(a1, b1),

R3(a0, b0)}, the deletion request (M ′
1, N2) is not realizable as a deletion, since R3(a1, b1)

must be deleted, which would violate R2[B] ⊑ R3[B]. Note that parts of the “chain”
R1[A] ⊑ R2[A] ↔ R2[B] ⊑ R3[B] ↔ R3[A] are not visible in the view, with ↔ meaning
“occurs in the same relation. The final condition to be enforced is that all intermediate
entries in such a chain must appear in the view whenever the end points do.

The next task is to formalize all of this.

5.6 UINDs and projective views The set of unary projections of D consists of all ex-
pressions of the form R[A] with R ∈ Rels(D) and A ∈ ArD(R). Thus, the unary projec-
tions are precisely those which can occur as the left-hand or right-hand side of a UIND.
Formally, UProj(D) = {R[A] | R ∈ Rels(D) and A ∈ ArD(R)}.

Define UIND(D) to be the set of all UINDs which are implied by Constr(D). Say that
R[A] participates in UIND(D) if if it appears as either the left-hand side or else the right-
hand side of some nontrivial ϕ ∈ UIND(D). Here a nontrivial UIND is one which is not
true in M ∈ DB(D); i.e., one which is not of the form R[A] ⊑ R[A]. For R[A1], R[A2] ∈
UProj(D) both participants in UIND(D) and over the same relation R, write R[A1] ↔
R[A2]. Note that R[A1] ↔ R[A2] does not necessarily imply that one of R[A1] ⊑ R[A2] or

30

R[A2] ⊑ R[A1] holds; R[A1] and R[A2] may well participate in distinct UINDs of D.
Define the UIND-graph of D, denoted UGraph(D), to be the directed graph whose

vertices are the members of UProj(D), with an edge from R1[A1] to R2[A2] iff R1[A1] 6=
R2[A2] and either R1[A1] ⊑ R2[A2] ∈ UIND(D) or else R1 = R2 and R1[A1] ↔ R2[A2].
Thus, the UIND-graph recaptures “chains of influence for UINDs, much as functional
influence does for FDs.

Finally, assume that Γ = (V, γ) is a simple projective view of D. Say that R[A] ∈
UProj(D) is visible in Γ if there is some R′ ∈ Rels(V) which is a projection of R under
γ. Call Γ UIND-complete if for every directed path ρ = 〈R1[A1], R2[A2], . . . , Rk[Ak]〉 in
UGraph(D), if R1[A1] and Rk[Ak] are visible in Γ, so too are all intermediate elements in
ρ.

The following result, analogous to 5.3, may now be established.

5.7 Proposition Suppose that D is constrained by UINDs, and that Γ is a simple projective
view which is UIND-complete. Then Γ is strongly monotonic.

PROOF: The proof is a similar to that of 5.3. The key is to observe that all connections
between values which are forced by the UINDs are already visible in the view, and so
it is completely decidable within the view whether or not an insertion or deletion will
violate a UIND. The details are left to the reader. 2

5.8 Proposition Suppose that D is constrained by FDs and UINDs, and that Γ is a simple
projective view which is both FD-complete and UIND-complete. Then Γ is strongly monotonic.

PROOF: The proof follows from 5.3 and 5.7, together with the classical result that FDs
and UINDs have trivial interaction [CKV90]. 2

5.9 Theorem Suppose that D is constrained by FDs and weakly acyclic UINDs, and that Γ
is a simple projective view which is both FD-complete and UIND-complete. Then every insertion
request u from Γ to D admits a 〈ΥCu

, ↑〉-optimal realization.

PROOF: Combine 3.22, 4.17, and 5.8. 2

6 Optimal Reflection of Deletions

At first glance, the information-based modelling of deletions to views would appear
to be much simpler than that for insertions. Indeed, in large part, the only relevant
information-monotone family is GrAtoms(D). Thus, the following is immediate.

6.1 Observation Let u = (M1, N2) be a deletion request from Γ to D, (M1,M2) ∈
DelRealiz〈(M1, N2),Γ〉, and letK = ConstSym(u).

(a) (M1,M2) is 〈ΥK , ↓〉-admissible iff for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉 withM2 ⊆

M ′
2, it must be thatM2 = M ′

2.

(b) (M1,M2) is 〈ΥK , ↓〉-optimal iff for all (M1,M
′
2) ∈ DelRealiz〈(M1, N2),Γ〉,M

′
2 ⊆M2. 2

31

6.2 Admissibility and optimality for deletions As the admissibility and optimality
of deletions do not depend upon the set of constant symbols in the states defining the
update, a more concise notation may be employed. For u = (M1, N2) be a deletion
request from Γ to D and (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉, write ↓-admissible as an ab-
breviation for 〈ΥCu

, ↓〉-admissible, and ↓-optimal as an abbreviation for 〈ΥCu
, ↓〉-optimal.

It is also worth observing that equality-generating dependencies and mutual-
exclusion dependencies are always preserved under deletion, so no special handling
of them is required.

6.3 Observation—EGHDs andmutual-exclusion TGHDs preserved under deletion
Let ϕ be either an ETGD or a mutual-exclusion TGHD on D. IfM ∈ AtModI(ϕ), thenM ′ ∈
AtModI(ϕ) for everyM ′ ⊆M . 2

Despite these simplifications, the optimal support of deletions is far from trivial.
The root of the problem is that while TGDs are well suited for insertions, they display
inherent disjunction in the context of deletion. A simple example will help illustrate.

6.4 Example— Strong monotonicity does not ensure ↓-optimal realizations Let E9

be the relational schema with three relation symbols R[A], S[A], and T [A], constrained
by the single TGHD (∀x)((R(x)∧S(x)) ⇒ T (x)), let G9 be the schema whose single
relation symbol is T ′[A], and let Ω9 = (G9, ω9) be the view of G9 with ωT ′

9 = T (xA). In
words, the view Ω9 preserves T [A] (as T ′[A]) but discards R[A] and S[A] completely.

Clearly Ω9 is strongly monotonic. However, it does not always admit reflections
which are ↓-optimal. Indeed, let M1 = {R(a0), R(a1), S(a0), T (a0)} be the current state
of E9, so that N1 = {T ′(a0)} is the state of G9. Let N2 = ∅. For M ′

2 = {R(a0), R(a1)}
and M ′′

2 = {S(a0), R(a1)}, each of (M1,M
′
2) and (M1,M

′′
2) are ↓-admissible realizations

of u = (M1, N2) with respect to WFS(E9, ∃∧+), and so neither is ↓-optimal.
Observe that for M3 = M ′

2 ∩M ′′
2 = {R(a1)}, (M1,M3) ∈ DelRealiz〈(M1, N2),Ω9〉 as

well, although it is not minimal. This leads to a weaker “minimax”-style of optimality,
in which every tuple which is deleted in some ↓-admissible realization is deleted. This
is formalized as follows.

6.5 Weak ↓-optimality Let u = (M1, N2) be a deletion request from Γ to D.

(a) Define WeakOpt↓〈u,Γ〉 =
⋂

{M3 | (M1,M3) ∈ DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}.

(b) Call (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 weakly ↓-optimal ifM2 = WeakOpt↓〈u,Γ〉.

In 6.4 above,M3 is weakly ↓-optimal but not ↓-optimal in the sense of 6.2.

To identify conditions under which a weakly ↓-optimal reflections are admitted, it
useful to introduce a new way of viewing the combination of a schema and a view.

6.6 The combined schema induced by a view Rather than regarding the main
schema D and the view schema V as distinct, it is quite possible to combine them into

32

a single schema, with the view mappings regarded as additional constraints. The alter-
native representation turns out to be very useful, since all constraints, both those of the
schemata and those induced by the view mappings, may be considered at once.

To formalize this idea, it is necessary to assume that Rels(D) ∩ Rels(V) = ∅. This is
not a problem since relations may always be renamed as necessary.

The combined schema CombSch〈D,Γ〉 has as its relational symbols Rels(D) ∪ Rels(V).
The constraints of CombSch〈D,Γ〉 are those in Constr(D), together with, for each R ∈
Rels(V), the definitional constraint

(∀xA1
)(∀xA2

) . . . (∀xAm
)((R(xA1

, xA2
, . . . , xAn

)) ⇔ γR(DefC)

In the above, {xA1
, xA2

, . . . , xAm
} are precisely the attribute variables which occur in the

interpretation formula γR. It is easier to see the full nature of this constraint when γR

is expanded into its full form (∃x1)(∃x2) . . . (∃xn)(γR(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn)).

(See 2.6 for a clarification of the notation γR.) The complete expansion then becomes

(DefC′) (∀xA1
)(∀xA2

) . . . (∀xAm
)((R(xA1

, xA2
, . . . , xAn

)) ⇔

(∃x1)(∃x2) . . . (∃xn)(γR))(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn)))

The definitional constraint (DefC′) for Rmay be broken into the forward component

(DefC-Fwd) (∀xA1
)(∀xA2

) . . . (∀xAm
)(∀x1)(∀x2) . . . (∀xn)

(γR(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn) ⇒ (R(x1, x2, . . . , xn)))

and the reverse component

(DefC-rev) (∀xA1
)(∀xA2

) . . . (∀xAm
)((R(xA1

, xA2
, . . . , xAn

)) ⇒

(∃x1)(∃x2) . . . (∃xn)(γR))(xA1
, xA2

, . . . , xAm
, x1, x2, . . . , xn)))

It is easy to see that both the forward and the reverse components are TGHDs. Thus, if
Constr(D) has a cover consisting of GHDs, so too does Constr(CombSch〈D,Γ〉).

This idea has already been illustrated in 1.2 with E
′
0 the combined schema associ-

ated with CombSch〈E0,Π
E0

AB〉. The single definitional constraint is (∀x)(∀y)(RAB(x, y) ⇔
(∃z)(R(x, y, z))), and this decomposes into the forward constraint
(∀x)(∀y)(∀z)(R(x, y, z) ⇒ RAB(x, y)) and the reverse constraint (∀x)(∀y)(RAB(x, y) ⇒
(∃z)(R(x, y, z))). Note that the forward constraint is always universal.

6.7 Universal pairs Call the pair 〈D,Γ〉 universal if Constr(CombSch〈D,Γ〉) consists
entirely of universal GHDs. In other words, this means that both the constraints of
D and the view interpretation mappings consist of total dependencies, without any
existential quantification. For example, in 6.4, the pair 〈E9,Ω10〉 is universal.

Under this assumption of universality, weakly ↓-optimal solutions exist whenever a
solution which is a deletion is possible.

33

6.8 Proposition Let 〈D,Γ〉 be a universal pair. Then for every deletion request u = (M1, N2)
from Γ to D with DelRealiz〈u,Γ〉 6= ∅, WeakOpt↓〈u,Γ〉 is a weak ↓-optimal realization of u.

PROOF: Let (M1,M2) ∈ DelRealiz〈(M1, N2),Γ〉 and let t ∈ N2. Since 〈D,Γ〉 is a universal
pair, Subst(γ, t →) must be a conjunction of ground atoms, and these ground atoms
must be in every M for which t ∈ γ(M). In particular, each such conjunct must be in
⋂

{M3 | (M1,M3) ∈ DelRealiz〈(M1, N2),Γ〉 and ↓-admissible}. Thus γ(WeakOpt↓〈u,Γ〉) =
N2.

It remains to verify that WeakOpt↓〈u,Γ〉 ∈ LDB(D). However, it is a very easy exer-
cise to show that all universal Horn sentences (and hence all total TGDs) are preserved
under intersection, whence the result. 2

6.9 Example — Lack of weak ↓-optimal realizations It is natural to conjecture that
the result of 6.8 extends to situations involving existential quantification. Unfortunately,
this is not the case. If non-total TGDs are allowed, relatively simple examples of dele-
tions requests exist which admit ↓-admissible realizations but no weak ↓-optimal real-
ization.

Let E10 be the schema with three relational symbols R[AB], S[BC], and T [BC], with
the following three constraints.

(∀x1)(∀x2)(∀x3)((R(x1, x2)∧R(x1, x3)) ⇒ S(x2, x3))

(∀x1)(∀x2)(R(x1, x2) ⇒ T (x2, x2))

(∀x1)(T (x1, x1) ⇒ (∃y1)(R(y1, x1)))

Let Ω10 = (G10, ω10) be the view which retains the relations of S and T , but discards R.
Let M1 = {R(a0, b0), R(a0, b1), R(a1, b0), R(a1, b1), S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1),
T (b0, b0), T (b1, b1)}. It is easy to see that M1 ∈ LDB(E10). The corresponding view
state ω10(M1) = {S(b0, b0), S(b0, b1), S(b1, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Let the de-
sired new view state be N2 = {S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. Thus, the tuples
in P = {S(b1, b0), S(b0, b1)} are to be deleted. It is easy to see that this update ad-
mits two ↓-admissible realizations, one which deletes P ∪ {R(a0, b0), R(a1, b1)} and the
other which deletes P ∪ {R(a0, b1), R(a1, b0)}. Thus, the two possibilities for the new
state of E10 are M ′

2 = {R(a0, b1), R(a1, b0), S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)} and
M ′′

2 = {R(a0, b0), R(a1, b1), S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)}. However,M ′
2∩M

′′
2 =

{S(b0, b0), S(b1, b1), T (b0, b0), T (b1, b1)} 6∈ LDB(E10). Indeed, the existential quantifica-
tion has introduced an exclusive-or requirement in which
(R(a0, b0)∧R(a1, b1))∨(R(a0, b1)∧R(a1, b0)) must hold, but both disjuncts must not hold
simultaneously. Furthermore, it is not difficult to see that Ω10 reflects deletions. There-
fore, a general approach which addresses the disjunction problem for deletions seems
impossible.

It should be noted that Constr(E10) is not typed in the sense of [Fag82, p. 955]. For
this paper, whether such an example is possible with such typed constraints is left as an
open question. Rather, attention is turned to a more restrictive but nevertheless useful
class which does admit full ↓-optimal realizations.

34

6.10 Unit-head TGDs, schemata, and views A TGHD of the form (GHD) of 3.15 is
called a unit-head dependency if n = 1; that is, if there is only one atom on the left-hand
side of the rule. Themost important example of a unit-head dependency is the inclusion
dependency. The schema D is called unit-head if Constr(D) has a cover consisting of
EGDs, mutual-exclusion TGHDs, and unit-head TGHDs.

This idea extends to combined schemata as well. Call the pair 〈D,Γ〉 unit head if
CombSch〈D,Γ〉 is unit head. Clearly, CombSch〈D,Γ〉 is unit head iff D has that prop-
erty and, for each R ∈ Rels(V), the interpretation formula γR consists of a single (not
necessarily ground) atom.

All EGDs, as well as all INDs, are unit-head. Furthermore, views which are defined
via projection and selection (but not join), are also unit head. Therefore, many practical
examples are represented under this class.

The following lemma identifies a critical property of unit-head schemata.

6.11 Lemma Let D be a unit-head schema, and let M,M1,M2 ∈ LDB(D) with Mi ⊆ M
for i ∈ {1, 2}. ThenM1 ∪M2 ∈ LDB(D) as well.

PROOF: Without loss of generality, assume that Constr(D) itself consists of EGDs and
unit-head TGHDs. Let ϕ ∈ Constr(D) be a TGHD and let s be a constant substitution
into the universal variables of ϕ such that LHSinfo〈ϕ, s〉 ∈ M1 ∪ M2. Let i ∈ {1, 2}
for which LHSinfo〈ϕ, s〉 ∈ Mi. There must then be a tuple t ∈ Mi which satisfies
RHSinfo〈ϕ, s〉, since Mi ∈ LDB(D). Thus M1 ∪ M2 ∈ AtModI(ϕ), and so M1 ∪ M2

satisfies every TGHD in Constr(D). Since M1 ∪ M2 ⊆ M , it follows from 6.3 that
M1∪M2 ∈ AtModI(ψ) for every EGHD andmutual-exclusion TGHD in Constr(D). Thus,
M1 ∪M2 ∈ LDB(D). 2

6.12 Theorem Let 〈D,Γ〉 be a unit-head pair. Then every deletion request u = (M1, N2)
from Γ to D for which DelRealiz〈(M1, N2),Γ〉 6= ∅ admits a unique ↓-optimal realization.

PROOF: Given a deletion request u = (M ′, N2) from Γ to D, let M ′
1 and M ′

2 be ↓-
admissible realizations of u, and letMi = M ′

i ∪N2 ∈ LDB(CombSch〈D,Γ〉) for i ∈ {1.2}.
Now just apply 6.11 to establish that M1 ∪ M2 ∈ LDB(D). It thus follows that M1 =
M2, else one of M1 and M2 would not be tuple minimal. Hence the part of M1 which
corresponds to the relations of D must be the ↓-optimal solution. 2

In the context of the traditional dependencies and view constructions of the rela-
tional model, this theorem leads to the following corollary.

6.13 Corollary Let D be constrained by FDs and INDs, and let Γ be defined by projections
and selections on the relations of D. Then, if Γ reflects deletions, every deletion request from Γ
to D admits a unique ↓-optimal realization. 2

Invoking 5.8 yields the following more focused characterization.

6.14 Corollary LetD be constrained by FDs and weakly acyclic INDs, and let Γ be a simple-
projective view which is strongly monotonic. Then every unidirectional update request (i.e.,

35

insertion request or deletion request) u from Γ toD admits a unique optimal realization (〈ΥCu
, ↑

〉-optimal or ↓-optimal, as the case may be). 2

7 Conclusions and Further Directions

A strategy for the optimal reflection of view updates has been developed, based upon
the concept of least information change. The property of strong monotonicity — that
view insertions may always be reflected as main-schema insertions and view deletions
may always be reflected as main-schema deletions, has been shown to be critical. Un-
der this assumption, and in the context of generalized Horn dependencies, it has been
shown that optimal insertions are supported in a reasonable fashion — they are unique
up to a renaming of the newly-inserted constants. It has furthermore been shown that
optimal deletions are supported under unit-head conditions. Nonetheless, a number of
issues remain for future investigation. Among the most important are the following.

Deletion beyond the unit-head context The theory for deletions developed in Section
6 is largely restricted to unit-head pairs. It would be useful to extend these results
to a wider class of schemata. As noted at the end of 6.9, it is not known (at least to
the author) whether weak ↓-optimality may be obtained for typed GHDs. This topic
warrants further investigation.

Strong monotonicity for wider classes of constraints The characterization in Section 5
of views which are strongly monotonic is limited simple projections constrained by
FDs and UINDs. Since strong monotonicity is central to the support of optimal up-
dates, an investigation into broader characterization would certainly be worthwhile.

Optimization of tuple modification Although the general formulation applies to all
types of updates, the results focus almost entirely upon insertions and deletions. Mod-
ification of single tuples (“updates” in SQL), on the other hand, are of fundamental
importance. With the standard update classification pair introduced in 4.4 and used
throughout the paper, only very special cases admit optimal solutions. The difficulty
arises from the fact that the framework, which is based entirely upon information con-
tent, cannot distinguish between the process of modifying a tuple and that of deleting
it and then inserting a new one. Consequently, both appear as admissible updates, but
neither is optimal relative to the other. Further work must therefore look for a way to
recapture the distinction between tuple modification and a delete-insert pair.

Application to database components This investigation began as an effort to under-
stand better how updates are propagated between database components, as forwarded
in [Heg08b, Sec. 4], but then took on a life of its own as it was discovered that the
component-based problems were in turn dependent upon more fundamental issues.
Nevertheless, it is important to return to the roots of this investigation — database
components. This includes not only the purely autonomous case, as sketched in

36

[Heg08b, Sec. 4], but also the situation in which users cooperate to achieve a suitable
reflection, as introduced in [HS07]

Relationship to work in logic programming As already noted in the introduction, the
problem of view update has also been studied extensively in the context of deductive
databases. The connection between update preference based upon distance measures,
as identified in Section 1 and the current approach beg a rapprochement. In addition,
the connection between the current work and that of identifying algorithms for finding
all possible reflections [BM04] is of interest. In addition, some recent work has intro-
duced the idea of using active constraints to establish a preference order on admissible
updates [GSTZ03]. Thus, rather than employing a preference based upon information
content, one based upon explicit rules is employed. The relationship between such
approaches and that of this paper warrants further investigation. Also, there has been
a substantial body of work on updates to disjunctive deductive databases [FGM96], in
which the extensional database itself consists of a collection of alternatives. The ap-
proach of minimizing information change in the disjunctive context deserves further
attention as well.

Acknowledgment Much of this research was carried out while the author was a visi-
tor at the Information Systems Engineering Group at Christian-Albrechts-University of
Kiel. He is indebted to Bernhard Thalheim and the members of the group for the invi-
tation and for the many discussions which led to this work. reviewers made numerous
suggestions which more readable presentation. Thanks are also due to Peggy Schmidt
who read the manuscript and made many valuable suggestions.

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[ADB07] Ofer Arieli, Marc Denecker, and Maurice Bruynooghe, “Distance seman-
tics for database repair,” Ann. Math. Artif. Intell., 50(2007), pp. 389–415.

[ADNB06] Ofer Arieli, Marc Denecker, Bert Van Nuffelen, and Maurice Bruynooghe,
“Computational methods for database repair by signed formulae,” Ann.
Math. Artif. Intell., 46(2006), pp. 4–37.

[BS81] François Bancilhon and Nicolas Spyratos, “Update semantics of relational
views,” ACM Trans. Database Systems, 6(1981), pp. 557–575.

[BV84] Catriel Beeri and Moshe Y. Vardi, “A proof procedure for data dependen-
cies,” J. Assoc. Comp. Mach., 31(1984), pp. 718–741.

[BM04] Andreas Behrend and Rainer Manthey, “Update propagation in deductive
databases using soft stratification,” in: Georg Gottlob, András A. Benczúr,
and János Demetrovics, eds., Advances in Databases and Information Systems,

37

8th East European Conference, ADBIS 2004, Budapest, Hungary, September 22-
25, 2004, Proceesing, pp. 22–36, Volume 3255 of Lecture Notes in Computer
Science, Springer-Verlag, 2004.

[BL97] Fadila Bentayeb and Dominique Laurent, “Inversion de l’algèbre relation-
nelle et mises à jour,” Technical Report 97-9, Université d’Orléans, LIFO,
1997.

[BL98] Fadila Bentayeb and Dominique Laurent, “View updates translations in
relational databases,” in: Proc. DEXA ’98, Vienna, Sept. 24-28, 1998, pp. 322–
331, 1998.

[CGT90] Stefano Ceri, Georg Gottlob, and Letizia Tanca, Logic Programming and
Databases, Springer-Verlag, 1990.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee, Symbolic Logic and Mechan-
ical Theorem Proving, Academic Press, 1973.

[CKV90] Stavros Cosmadakis, Paris C. Kannelakis, and Moshe Y. Vardi,
“Polynomial-time implication problems for unary inclusion dependen-
cies,” J. Assoc. Comp. Mach., 37(1990), pp. 15–46.

[DB82] Umeshwar Dayal and Philip A. Bernstein, “On the correct translation
of update operations on relational views,” ACM Trans. Database Systems,
8(1982), pp. 381–416.

[DG84] William F. Dowling and Jean H. Gallier, “Linear-time algorithms for test-
ing the satisfiability of propositional Horn clauses,” J. Logic Programming,
3(1984), pp. 267–284.

[EM97] Thomas Eiter and Heikki Mannila, “Distance measures for point sets and
their computation,” Acta Inf., 34(1997), pp. 109–133.

[Fag82] Ronald Fagin, “Horn clauses and database dependencies,” J. Assoc. Comp.
Mach., 29(1982), pp. 952–985.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa,
“Data exchange: Semantics and query answering,” Theoret. Comput. Sci.,
336(2005), pp. 89–124.

[FV83] Ronald Fagin and Moshe Y. Vardi, “Armstrong databases for functional
and inclusion dependencies,” Info. Process. Lett., 16(1983), pp. 13–19.

[FGM96] José Alberto Fernández, John Grant, and Jack Minker, “Model theoretic
approach to view updates in deductive databases.,” J. Automated Reasoning,
17(1996), pp. 171–197.

[GN87] Michael R. Genesereth and Nils J. Nilsson, Logical Foundations of Artificial
Intelligence, Morgan-Kaufmann, 1987.

38

[GSTZ03] Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano,
“Preferred repairs for inconsistent databases,” in: 7th International Database
Engineering and Applications Symposium (IDEAS 2003), 16-18 July 2003, Hong
Kong, China, pp. 202–211, IEEE Computer Society, 2003.

[Heg04] Stephen J. Hegner, “An order-based theory of updates for closed database
views,” Ann. Math. Art. Intell., 40(2004), pp. 63–125.

[Heg08a] Stephen J. Hegner, “Information-optimal reflections of view updates on
relational database schemata,” in: Sven Hartmann and Gabriele Kern-
Isberner, eds., Foundations of Information and Knowledge Systems: Fifth Inter-
national Symposium, FoIKS 2008, Pisa, Italy, February 11-15, 2008, Proceedings,
pp. 112–131, Volume 4932 of Lecture Notes in Computer Science, Springer-
Verlag, 2008.

[Heg08b] Stephen J. Hegner, “A model of database components and their intercon-
nection based upon communicating views,” in: Hannu Jakkola, Yashui
Kiyoki, and Takehiro Tokuda, eds., Information Modelling and Knowledge
Systems XIX, pp. 79–100, Frontiers in Artificial Intelligence and Applica-
tions, IOS Press, 2008.

[Heg08c] Stephen J. Hegner, “Semantic bijectivity and the uniqueness of constant-
complement updates in the relatiional context,” in: Klaus-Dieter Schewe
and Bernhard Thalheim, eds., International Workshop on Semantics in Data
and Knowledge Bases, SDKB 2008, Nantes, France, March 29, 2008, Proceedings,
pp. 172–191, Volume 4925 of Lecture Notes in Computer Science, Springer-
Verlag, 2008, in press.

[HS07] Stephen J. Hegner and Peggy Schmidt, “Update support for database
views via cooperation,” in: Yannis Ioannis, Boris Novikov, and Boris
Rachev, eds., Advances in Databases and Information Systems, 11th East Eu-
ropean Conference, ADBIS 2007, Varna, Bulgaria, September 29 - October 3,
2007, Proceedings, pp. 98–113, Volume 4690 of Lecture Notes in Computer
Science, Springer-Verlag, 2007.

[HS73] Horst Herrlich and George. E. Strecker, Category Theory, Allyn and Bacon,
1973.

[Hor51] Alfred Horn, “On sentences which are true of direct unions of algebras,”
J. Symbolic Logic, 16(1951), pp. 14–21.

[Hut97] Alan Hutchinson, “Metrics on terms and clauses,” in: Maarten van
Someren and Gerhard Widmer, eds., Machine Learning: ECML-97, 9th Eu-
ropean Conference on Machine Learning, Prague, Czech Republic, April 23-25,
1997, Proceedings, pp. 138–145, Volume 1224 of Lecture Notes in Computer
Science, 1997.

39

[JAK82] Barry E. Jacobs, Alan R. Aronson, and Anthony C. Klug, “On interpreta-
tions of relational languages and solutions to the implied constraint prob-
lem,” ACM Trans. Database Systems, 7(1982), pp. 291–315.

[Kel85] Arthur M. Keller, “Updating relational databases through views,” PhD
thesis, Stanford University, 1985.

[Lan90] Rom Langerak, “View updates in relational databases with an indepen-
dent scheme,” ACM Trans. Database Systems, 15(1990), pp. 40–66.

[Llo87] John W. Lloyd, Foundations of Logic Programming, Second Extended Edition,
Springer-Verlag, 1987.

[Mak87] Johann A. Makowsky, “Why Horn formulas matter in computer science:
Initial structures and generic examples,” J. Comput. System Sci., 34(1987),
pp. 266–292.

[Mon76] J. Donald Monk, Mathematical Logic, Springer-Verlag, 1976.

[NC97] Shan-Hwei Nienhuys-Cheng, “Distance between Herbrand interpreta-
tions: A measure for approximations to a target concept,” in: Inductive
Logic Programming, 7th International Workshop, ILP-97, Prague, Czech Repub-
lic, September 17-20, 1997, Proceedings, pp. 213–226, Volume 1297 of Lecture
Notes in Computer Science, Springer, 1997.

[PDGV89] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht, The Struc-
ture of the Relational Database Model, Springer-Verlag, 1989.

40

	Introduction
	The limitations of constant complement
	Database repairs, distance measures, and information content
	Further example
	Further issues

	The Relational Model
	Relational contexts and constant interpretations
	Tuples and databases
	Formulas and constraint classes
	Atomic models
	Schemata with constraints and constrained databases
	Database morphisms and views
	Notation --- extracting constant symbols and variables
	Notation for inclusion dependencies

	Information and Canonical Models
	Notational convention
	Information content and -equivalence
	Tuple-minimal models
	Fully Reduced +-families
	Armstrong models in an information-monotone context
	Representation of +-sentences as sets of D-atoms
	Substitutions
	Constant endomorphisms
	Theorem --- Characterization of tuple-minimal Armstrong models
	Lemma
	Canonical models
	Lemma
	Example --- Canonical models conditionally but not unconditionally
	Example --- Canonical models and positive disjunction
	Generalized Horn dependencies
	Information inference for TGHDs
	Lemma
	Information associated with an EGHD
	Lemma
	Theorem --- Conditional existence of canonical models
	Weakly acyclic TGHDs
	Corollary --- (to 3.20)

	Optimal Reflection of Insertions
	Notational convention
	Updates and reflections
	Update difference and optimal reflections
	Update classifiers
	The constants associated with an update request
	Information lifting
	Proposition --- Characterization of optimal insertions
	Example --- Orphan tuples
	Reflection of deletions
	Lemma --- Reflection of deletions implies no orphan tuples
	Proposition
	Example --- Dependence upon the state of the main schema
	Reflection of insertions
	Observation
	Strong monotonicity of views
	Theorem
	Corollary

	Characterization of Strongly Monotonic Views
	Partial dependence and complete sets
	Simple projective views and complete views
	Proposition
	Examples --- FDs and strong monotonicity
	Examples --- UINDs and strong monotonicity
	UINDs and projective views
	Proposition
	Proposition
	Theorem

	Optimal Reflection of Deletions
	Observation
	Admissibility and optimality for deletions
	Observation --- EGHDs and mutual-exclusion TGHDs preserved under deletion
	Example --- Strong monotonicity does not ensure "3223379 -optimal realizations
	Weak "3223379 -optimality
	The combined schema induced by a view
	Universal pairs
	Proposition
	Example --- Lack of weak "3223379 -optimal realizations
	Unit-head TGDs, schemata, and views
	Lemma
	Theorem
	Corollary
	Corollary

	Conclusions and Further Directions
	Acknowledgment

