Skip to main content
Log in

A propositional probabilistic logic with discrete linear time for reasoning about evidence

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The aim of the paper is to present a sound, strongly complete and decidable probabilistic temporal logic that can model reasoning about evidence. The formal system developed here is actually a solution of a problem proposed by Halpern and Pucella (J Artif Intell Res 26:1–34, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M.: The power of temporal proofs. Theor. Comp. Sci. 65, 35–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abadi, M.: Errata for “The power of temporal proofs”. Theor. Comp. Sci. 70, 275 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andréka, H., Németi, I., Sain, I.: On the strength of temporal proofs. Theor. Comp. Sci. 80, 125–151 (1991)

    Article  MATH  Google Scholar 

  4. Burgess, J.: Axioms for tense logic I: since and until. Notre Dame J. Form. Log. 23(2), 367–374 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burges, J.: Basic tense logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic. Reidel Publishing Company, Dordrecht (1984)

    Google Scholar 

  6. Doder, D., Ognjanović, Z., Marković, Z., Perović, A., Rašković, M: A probabilistic temporal logic that can model reasoning about evidence. In: FoIKS 2010, LNCS, vol. 5956, pp. 9–24 (2010)

  7. Doder, D., Ognjanović, Z., Marković, Z: An axiomatization of a first order branching time temporal logic. J. Univers. Comput. Sci. 16(11), 1439–1451 (2010)

    MATH  Google Scholar 

  8. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 997–1072. Elsevier, Amsterdam (1990)

    Google Scholar 

  9. Emerson, E.: Automated temporal reasoning for reactive systems. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency, pp. 41–101. Springer (1996)

  10. Emerson, E., Halpern, J.: ’Sometimes’ and ’not never’ revisited: on branching versus linear time. J. ACM 33, 151–178 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emerson, E., Sistla, A.: Deciding full branching time logic. Inf. Control 61, 175–201 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. 7th ACM symp. Princ. of Prog. Lang., pp. 163–173 (1980)

  13. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal logic. Mathematical Foundations and Computational Aspects, vol. 1. Clarendon Press (1994)

  14. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halpern, J.: Reasoning about Uncertainty. The MIT Press (2003)

    MATH  Google Scholar 

  16. Leibnitz, G.W.: De conditionibus (1665)

  17. Leibnitz, G.W.: Specimen juris (1669)

  18. Leibnitz, G.W.: De Nouveaux essais (1765)

  19. Godo, L., Marchioni, E.: Coherent conditional probability in a fuzzy logic setting. Log. J. IGPL 14(3), 457–481 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hailperin, T.: Sentential Probability Logic, Origins, Development, Current Status, and Technical Applications. Lehigh University Press (1996)

  21. Halpern, J., Fagin, R.: Two views of belief: belief as generalized probability and belief as evidence. Artif. Intell. 54, 275–317 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Halpern, J., Pucella, R.: A logic for reasoning about evidence. J. Artif. Intell. Res. 26, 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoover, D.N.: Probability logic. Ann. Math. Logic 14, 287–313 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaivola, R.: Axiomatising extended computation tree logic. In: Proceedings of 21st International Colloquium on Trees in Algebra and Programming, pp. 87–101 (1996)

  25. Kamp, J.: Tense logic and the theory of linear order. Doctoral dissertation. University of California, Los Angeles (1968)

  26. Keisler, H.J.: Hyperfinite model theory. In: Gandy, R.O., Hyland, J.M.E. (eds.) Logic Colloquim 76, pp. 5–110. North-Holland (1977)

  27. Keisler, H.J.: Probability quantifiers. In: Barwise, J., Feferman, S. (eds.) Model Theoretic Logics, pp. 509–556. Springer, Berlin (1985)

    Google Scholar 

  28. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and completeness. Log. J. IGPL 8(1), 55–85 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Manna, Z., Pnueli, A.: Verification of concurrent programs: the temporal framework. In: Boyer, R.S., Moor, J.S. (eds.) The correctness problem in computer science, pp. 215–273. Academic, London (1981)

    Google Scholar 

  30. Marković, Z., Ognjanović, Z., Rašković, M.: An intuitionistic logic with probabilistic operators. Publ. Inst. Math., Nouv. S’ er. 73(87), 31–38 (2003)

    Article  Google Scholar 

  31. Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nilsson, N.: Probabilistic logic revisited. Artif. Intell. 59, 39–42 (1993)

    Article  MathSciNet  Google Scholar 

  33. Ognjanović, Z., Rašković, M.: A logic with higher order probabilities. Publ. Inst. Math., Nouv. S’ er. 60(74), 1–4 (1996)

    Google Scholar 

  34. Ognjanović, Z.: Completeness theorem for a first order linear-time logic. Publ. Inst. Math., Nouv. S’ er. 69(83), 1–7 (2001)

    Google Scholar 

  35. Ognjanović, Z., Marković, Z., Rašković, M.: Completeness theorem for a Logic with imprecise and conditional probabilities. Publ. Inst. Math., Nouv. S’ er. 78(92), 35–49 (2005)

    Article  Google Scholar 

  36. Ognjanović, Z.: Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Log. Comput. 16(2), 257–285 (2006)

    Article  MATH  Google Scholar 

  37. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics. Ognjanović, Z. (ed.) Logic in Computer Science. Mathematical Institute of Serbian Academy of Sciences and Arts, pp. 35–111, ISBN 978-86-80593-40-1 (2009)

  38. Ognjanović, Z., Doder, D., Marković, Z.: A branching time logic with two types of probability operators. In: SUM 2011, LNCS 6929, pp. 219–232 (2011)

  39. Perović, A., Ognjanović, Z., Rašković, M., Marković, Z.: A probabilistic logic with polynomial weight formulas. In: FoIKS 2008, pp. 239–252 (2008)

  40. Prior, A.: Time and Modality. Clarendon, Oxford (1957)

    MATH  Google Scholar 

  41. Rašković, M.: Classical logic with some probability operators. Publ. Inst. Math., Nouv. S’ er. 53(67), 1–3 (1993)

    Google Scholar 

  42. Rašković, M., Ognjanović, Z.: A first order probability logic, LP Q . Publ. Inst. Math., Nouv. S’ er. 65(79), 1–7 (1999)

    Google Scholar 

  43. Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–66 (2008)

    Article  MATH  Google Scholar 

  44. Reynolds, M.: An axiomatization of full computation tree logic. J. Symb. Log. 66(3), 1011–1057 (2001)

    Article  MATH  Google Scholar 

  45. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ (1976)

    MATH  Google Scholar 

  46. Shafer, G.: Belief functions and parametric models (with commentary). J. R. Stat. Soc., Ser. B. 44, 322–352 (1982)

    MathSciNet  MATH  Google Scholar 

  47. Stirling, C.: Modal and temporal logic. In: Handbook of Logic in Computer Science, vol. 2, pp. 477–563 (1992)

  48. van Benthem, J.: The Logic of Time. Springer, Berlin Heidelberg New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Doder.

Additional information

This work is supported by grant 144013 of Serbian ministry of science through Mathematical Institute of Serbian Academy of Sciences and Arts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ognjanović, Z., Marković, Z., Rašković, M. et al. A propositional probabilistic logic with discrete linear time for reasoning about evidence. Ann Math Artif Intell 65, 217–243 (2012). https://doi.org/10.1007/s10472-012-9307-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9307-9

Keywords

Mathematics Subject Classifications (2010)

Navigation