Skip to main content
Log in

Minimal hypotheses: extension-based semantics to argumentation

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The emptiness problem of the preferred semantics and the non-existence problem of the stable semantics are well recognized for argumentation frameworks. In this paper, we introduce two strong semantics, named s-preferred semantics and s-stable semantics, to guarantee the non-emptiness of the preferred extensions and the existence of the stable extensions respectively. Our semantics are defined by two concepts of extensions of argumentation frameworks, namely s-preferred extension and s-stable extension. Each is constructed in a similar way to the original semantics. The novelty of our semantics is that an extension of an argumentation framework is considered as a pair of sets of arguments, in which the second element of an extension is viewed as a kind of hypotheses that should be minimized. The s-preferred semantics not only solves the emptiness problem of the preferred semantics, but also coincides with the preferred semantics when nonempty preferred extensions exist. Meanwhile, the s-stable semantics ensures the existence of extensions, and coincides with the stable semantics when the stable extensions exist as well. The relations among various semantics for argumentation frameworks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation systems and logic. In: Godo, L., Pugliese, A. (eds.) SUM. LNCS, vol. 5785, pp. 12–27. Springer (2009)

  2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation frameworks. J. Autom. Reason. 29(2), 125–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A general framework for argumentation-based negotiation. In: Proceedings of the 4th International Conference on Argumentation in Multi-Agent Systems, pp. 1–17. Springer (2007)

  5. Baroni, P., Giacomin, M.: Solving semantic problems with odd-length cycles in argumentation. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU. LNCS, vol. 2711, pp. 440–451. Springer (2003)

  6. Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: Besnard, P., Doutre, S., Hunter, A. (eds.) COMMA. Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 25–36. IOS Press (2008)

  7. Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. Int. J. Approx. Reason. 50(6), 854–866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168(1–2), 162–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bench-Capon, T.J.M.: Value-based argumentation frameworks. In: Benferhat, S., Giunchiglia, E. (eds.) NMR, pp. 443–454 (2002)

  10. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodanza, G.A., Tohmé, F.A.: Two approaches to the problems of self-attacking arguments and general odd-length cycles of attack. J. Appl. Logic 7(4), 403–420 (2009)

    Article  MATH  Google Scholar 

  12. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-monotonic reasoning. In: LPNMR, pp. 171–189 (1993)

  14. Caminada, M.: Contamination in formal argumentation systems. In: Verbeeck, K., Tuyls, K., Nowé, A., Manderick, B., Kuijpers, B. (eds.) BNAIC, pp. 59–65. Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten (2005)

  15. Caminada, M.: Semi-stable semantics. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) COMMA. Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 121–130. IOS Press (2006)

  16. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caminada, M., Wu, Y.: An argument game for stable semantics. Log. J. IGPL 17(1), 77–90 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frameworks. In: 17th International Conference on Tools with Artificial Intelligence (ICATI), pp. 568–572. IEEE Computer Society (2005)

  19. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) COMMA. Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 145–156. IOS Press (2006)

  21. Dunne, P.E., Bench-Capon, T.J.M.: Complexity and combinatorial properties of argument systems. Technical report, University of Liverpool, Department of Computer Science (2001)

  22. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141(1/2), 187–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elvang-Gøransson, M., Hunter, A.: Argumentative logics: reasoning with classically inconsistent information. Data Knowl. Eng. 16(2), 125–145 (1995)

    Article  Google Scholar 

  24. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080 (1988)

  25. Kakas, A., Amgoud, L., Kern-Isberner, G., Maudet, N., Moraitis, P.: Aba: argumentation-based agents. In: Proceeding of the 19th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 1005–1006. IOS Press (2010)

  26. Makinson, D., Schlechta, K.: Floating conclusions and zombie paths: two deep difficulties in the “directly skeptical” approach to defeasible inheritance nets. Artif. Intell. 48(2), 199–209 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9–10), 901–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mozina, M., Zabkar, J., Bratko, I.: Argument-based machine learning. Artif. Intell. 171(10–15), 922–937 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nieves, J.C., Cortés, U., Osorio, M., Olmos, I., Gonzalez, J.A.: Defining new argumentation-based semantics by minimal models. In: 7th Mexican International Conference on Computer Science (ENC), pp. 210–220. IEEE Computer Society (2006)

  30. Pollock, J.L.: Nomic Probability and the Foundation of Induction. Oxford University Press, New York (1990)

    Google Scholar 

  31. Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Prakken, H.: Logical Tools for Modelling Legal Argument: A Study of Defeasible Reasoning in Law. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  34. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. J. Appl. Non-Class. Log. 7(1), 25–75 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  36. Schlechta, K.: Directly sceptical inheritance cannot capture the intersection of extensions. J. Log. Comput. 3(5), 455–467 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vreeswijk, G.: Abstract argumentation systems. Artif. Intell. 90(1–2), 225–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, K.: Argumentation-based abduction in disjunctive logic programming. J. Log. Program. 45(1–3), 105–141 (2000)

    Article  MATH  Google Scholar 

  39. Zhang, X., Zhang, Z., Lin, Z.: An argumentative semantics for paraconsistent reasoning in description logic alc. In: Proceedings of the 22nd International Workshop on Description Logics. CEUR Workshop Proceedings, vol. 477, pp. 1–11. CEUR-WS.org (2009)

  40. Zhang, X., Zhang, Z., Xu, D., Lin, Z.: Argumentation-based reasoning with inconsistent knowledge bases. In: Proceedings of the 23rd Canadian Conference on Artificial Intelligence. LNCS, vol. 6085, pp. 87–99. Springer (2010)

  41. Zhang, Z., Lin, Z.: Enhancing dung’s preferred semantics. In: Link, S., Prade, H. (eds.) FoIKS. LNCS, vol. 5956, pp. 58–75. Springer (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoquan Lin.

Additional information

This research was supported in part by National Natural Science Foundation of China under number 60973003 and the Open Fund of the State Key Laboratory of Software Development Environment of BUAA under number BUAA-SKLSDE-09KF) by the National Basic Research Program of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Lin, Z. Minimal hypotheses: extension-based semantics to argumentation. Ann Math Artif Intell 65, 245–283 (2012). https://doi.org/10.1007/s10472-012-9308-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9308-8

Keywords

Mathematics Subject Classification (2010)

Navigation