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Abstract This paper introduces the idea of reactive semantics and reactive Beth
tableaux for modal logic and quotes some of its applications. The reactive idea is
very simple. Given a system with states and the possibility of transitions moving
from one state to another, we can naturally imagine a path beginning at an initial
state and moving along the path following allowed transitions. If our starting point
is s0, and the path is s0, s1, . . . , sn, then the system is ordinary non-reactive system
if the options available at sn (i.e., which states t we can go to from sn) do not
depend on the path s0, . . . , sn (i.e., do not depend on how we got to sn). Otherwise
if there is such dependence then the system is reactive. It seems that the simple
idea of taking existing systems and turning them reactive in certain ways, has many
new applications. The purpose of this paper is to introduce reactive tableaux in
particular and illustrate and present some of the applications of reactivity in general.
Mathematically one can take a reactive system and turn it into an ordinary system
by taking the paths as our new states. This is true but from the point of view
of applications there is serious loss of information here as the applicability of the
reactive system comes from the way the change occurs along the path. In any specific
application, the states have meaning, the transitions have meaning and the paths have
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meaning. Therefore the changes in the system as we go along a path can have very
important meaning in the context, which enhances the usability of the model.

Keywords Modal logic · Other nonclassical logic · Combined logics ·
Logic in computer science · Beth tableaux
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1 Setting the scene

The purpose of this section is to explain the idea of reactive semantics and reactive
Beth tableaux. The best way to do it is to begin with an ordinary (non-reactive) ex-
ample of a modal logic, look at its axioms and semantics and give the corresponding
ordinary (non-reactive) Beth tableaux for it. We then proceed to turn the example
reactive and see what kind of modifications we need to do to the Beth tableaux
we have developed. These modifications will introduce us to our first example of
reactive Beth tableaux. For general references on tableaux and on modal tableaux,
see [1, 3–5, 20]. For general papers on Reactivity and its use see [2, 6, 7, 10, 11, 13–19].

This will be done in the first section. The second section defines the general notion
of Reactive Beth tableaux and the third section discusses our options for reactivity in
general, including reactive Beth tableaux, reactive automata, reactive sets and more.

Let us begin with modal logic. We denote a Kripke frame by F = (S, R, t) where
S �= ∅ is the set of possible worlds and R ⊆ S × S is the accessibility relation and
t ∈ S is the actual world.

Our language contains the set of atoms Q and the usual connectives {�,⊥, ∼
∧,∨,♦, → and �}.

An assignment h into a frame F = (S, R, t) is a function giving to each q ∈ Q a
subset h(q) ⊆ S. A Kripke model has the form m = (S, R, t, h) = (F, h). We evaluate
a wff in a model as in Definition 1.1 below. We call it the ordinary evaluation (as
opposed to the reactive evaluation, which we shall describe later).

Definition 1.1 (Ordinary evaluation in Kripke models) We write

s � A in m,

to mean

A holds at s in the model m = (S, R, t, h).

The following are the clauses (we omit m, h since the model does not change).

1. • s � q iff s ∈ h(q), for q atomic.
• s � A ∧ B iff s � A and s � B.
• S �∼ A iff s �� A.
• The cases of A ∨ B, A → B are defined in the standard way from ∼ and ∧.

2. s � �A iff for all x such that sRx we have x � A.
3. We say that m = (S, R, t, h) satisf ies A (we write m � A) iff t � A.
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4. We say that A holds in the frame (S, R, t) iff for all possible assignments h into
the frame we have (S, R, t, h) � A.

5. Let K be a class of frames and let L(K) be the set of all sentences which hold in
every frame of K. We say that L(K) is the modal logic defined by K.

There are several ways of characterising the logic L(K) of Definition 1.1.

1. We can generate L(K) by giving a Hilbert or Gentzen or natural deduction
system S for the language, and define the notion of A �S B which means that B
is provable in the system S from A. This is an algorithmic notion defined using S..
The completeness theorem would mean the following:

• A �S B iff for every model m of K we have that m � A implies m � B.

2. We can present a tableaux system for L(K) which tries to build a countermodel
for any pair A �?B, showing, if successful, a model m with frame in K such that
m � A but m �� B.
The tableaux system is an algorithm which constructs (if possible) a counter-
model by following closely the options allowed by the semantics K.
The completeness theorem would mean the following:

• The tableau construction for A �?B is successful iff there exists a model m
of K in which A holds and B does not hold.

It is not easy to find a proof system S or a tableaux system for arbitrary K. It
is easier to find a tableaux system for a logic defined by a single frame. So this is
what we discuss now and we choose a single extremely simple frame to illustrate our
reactive ideas.

1.1 First case study

From the point of view of modal logic, classical logic is the logic of one point Kripke
frame F = (S, R, t) with a reflexive accessibility relation.

We want to explain the idea of reactive Beth tableaux using this modal logic. So
consider the modal logic with one point frame F0 of Fig. 1.

In this logic we have

� A ↔ ♦A.

It is easy to put forward an axiom system for L(F0). We take any axiom system for
classical logic and add the axiom A ↔ ♦A.

The tableaux for this logic is clear. We use the tableaux and rules for classical
logic together with two additional rules for ♦ which identify ♦A with A. Since we

Fig. 1 Frame F0
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are going to turn this logic reactive, and formulate reactive tableaux for it, let us
write the familiar tableau rules explicitly in a way which makes it ready for becoming
reactive.

Definition 1.2 (Tableaux for F0)

1. A tableau τ is a two compartment box with a label. The compartments contain
formulas of the logic. The left compartment contains formulas intended to
be true (hold) and the right compartment contains formulas intended to be
false (not to hold). The label of the tableau contains information about the
tableau including which possible world we are talking about, as well as additional
information to be used when we turn the tableau reactive.
Figure 2 shows an example of a tableau τ . The label is s and the formulas are Ai

and B j, i = 1, . . . , , n, j = 1, . . . , k.
2. A tableaux is said to be closed if the same formula A appears in both the right

and left box, or if ⊥ appears in the left box or if � appears in the right box.
A tableaux is said to be a world (or a model) if all atoms of the language appear
in it, and it is not closed.

3. We consider a system of tableaux as a set τ of tableaux. The system is closed if
all tableaux in the system are closed.

Definition 1.3 (Operations on a set τ of tableaux) We start with a set τ containing
a single tableau as in Fig. 2 where s is the actual world t. We perform successive
operations on the elements of τ to obtain successive sets of tableaux τ 1, τ 2, τ 3 . . ..
Each time we perform an operation on τ n, we choose a tableaux τ ∈ τ n and apply a
rule on τ to obtain from it one or two simpler tableaux τ ′, τ ′′ and then we let τ n+1 =
(τ n − {τ })⋃{τ ′, τ ′′}. This way we keep on making the tableaux in τ n more and more
simple until no more rules apply. Say we stop and cannot continue at stage τm. At
this stage all the tableaux in τm contain only atoms in their respective boxes (this will
become apparent by looking at the rules below). We will get that if all tableaux in τm

are closed then there is no model which makes all formulas Ai true and all B j false
(see Fig. 2).

The operations are done by choosing a tableau t ∈ τ for example:

and choosing a formula A in the left or right box and operating on it using the
tableaux rules.

The following are the rules for ∧ and ∼ on the left and on the right. Our set of
labels is {t} with only one label. However, since we are going to turn the tableaux

Fig. 2 Tableaux τ
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rules reactive we write the rules schematically as if more labels were available at
play.

Left ∼ rule for label t1

Replace

by

where t2 = t1.

Right ∼ rule for label t1

Replace

by

where t2 = t1.

Left ∧ rule for label t1

Replace

by the tableau

where t2 = t1.

Right ∧ rule for label t1

Replace
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by the tableaux τ1 and τ2

where t2 = t1.
Notice that the label t1 has not changed after the operations, we always have

t2 = t1.
We need not explicitly give the rules for ∨ and → as ∼,∧ are sufficient for classical

logic and anyway, the rules for ∨ and → are well known, and the reader can easily
figure them out in our notation.

For the logic with ♦, we add the following rules:

Left ♦ rule for label t1

Replace

by

where t2 = t1.

Right ♦ rule for label t1

Replace

by

where t2 = t1.

Theorem 1.4 (Completeness theorem) Consider the logic for the frame F0 of Fig. 1,
and let A and B be two formulas. Then A � B if f the tableaux

can be expanded into a closed system of tableaux by means of the reactive tableaux
rules.
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Proof Well known process, same as for classical logic. We use the additional axiom
♦A ↔ A in the right and left rules for ♦ which basically eliminate ♦. ��

We now turn our system reactive. Consider the frame F1 of Fig. 3
The set is S = {t}. The relation of accessibility is R = {(t, t), ((t, t)(t, t))}. (t, t) is the

arrow and ((t, t), (t, t)) is the double arrow. The reactivity idea is expressed by the
point of view that once we pass through the arrow, this activates the double arrow
which disconnects the reflexive arrow. We are not giving a formal definition at this
stage, instead we give an example. The formal definitions are Definitions 1.8 and 1.9.

Example 1.5 (Reactive evaluation in F1) Let q be an atom and assume t � q.
To evaluate t �?♦q we go to the accessible world t (tRt holds) and evaluate q.

Since t � q, we get that t � ♦q.
Now let us evaluate t �?♦♦q. We go to the accessible world t and evaluate t �?♦q.

But now, having passed through the arrow (t, t) the double arrow ((t, t), (t, t)) was
activated, and disconnected the reflexive arrow (t, t). The model has changed. What
we have now is a model with the frame ({t}, ∅, t}). Hence now t � ♦q is false. Thus

t �� ♦♦q.

It is obvious that in a reactive model in general the value of s �?♦A depends
not just on s but on the past history sequence of points of evaluations (s1, . . . , sk, s)
leading to s. So we must use the notation

(s1, . . . , sk, s) �?♦A.

The sequence of points leading to s will activate various reactivity double arrows and
tell us what is the current accessibility situation at the point s.

Definition 1.6 (Reactive satisfaction in F1) The following is the correct way of
defining evaluation in our reactive model of Fig. 3. We have paths t, tt, ttt, and we
give evaluation clauses for each path. We need use only two labels, t and tt, because
additional t’s make no behavioural difference:

• t � q if t ∈ h(q), q atomic
• tt � q if t ∈ h(q), q atomic
• The evaluation at t, tt of ∧ and ∼ is as in classical logic.
• t � ♦A iff tt � A
• tt �� ♦A
• A holds in the modal if t � A.

Fig. 3 Frame F1
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We now check what kind of logic we get from the satisfaction notion of
Definition 1.6. Note that the notion of “logic” here is slightly different. These
logics are not closed under arbitrary substitution.You can see this from the way we
axiomatise our examples, see Definition 1.11.

Theorem 1.7 The logic of the frame of Fig. 3 as def ined by the satisfaction notion of
Def inition 1.6 is not complete for any class of traditional Kripke frames

Proof Let us assume that the logic of the figure is complete for a class of Kripke
frames. We get a contradiction. Since the formula q∧ ∼ ♦♦q is consistent in the logic
of the figure, it must have a model. Let K be a class of traditional Kripke frames for
which the logic is complete and let (S, R, t, h) be a model of q∧ ∼ ♦♦q. The frame
(S, R, t) must be a model of the logic under any assignment h to the frame.

Claim 1 tRt must hold.

Otherwise, let p be atomic and let t � p, but let s �� p for any s �= t. Hence t �
p∧ ∼ ♦p.

This is impossible since in the reactive frame of Fig. 3 we have � p → ♦p, for any
atomic p, according to Definition 1.6.

Claim 2 q → ♦♦q holds under h.

This holds because tRt holds.
We now have a contradiction. ��

It is time we define the notion of switch reactive Kripke models. Section 3 will
discuss other options for reactivity in Kripke models. The switch reactivity is the
simplest.

Definition 1.8 (Switch reactive models)

1. A switch reactive Kripke frame has the form (S, R, a, t) where S is a non-empty
set of possible worlds, t ∈ S is the actual world and R is a reactive accessibility
set of arrows on S defined as follows:

(a) (t, s) ∈ S × S is an arrow of level 1.
(b) If α is an arrow of level n and (t, s) ∈ S × S then ((t, s), α) is an arrow of

level n + 1.1

1An alternative way of defining R is as follows:
A k-level arrow is inductively defined as follows:

A0 = S × S
Ak+1 = (S × S) × Ak.

Let A = ⋃
Ak.

Let R be a subset of A.
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We assume that if ((t, s), α) ∈ R then α ∈ R.

a is a {0, 1} function on R.

If a(α) = 1, we say α is active.

t is the actual world.

If a(α) = 0, we say α is not active.
2. Let (t, s) ∈ R. Define a(t,s) as follows

a(t,s)(β) = 1 − a(β), if ((t, s), β) ∈ R

a(t,s)(β) = a(β) otherwise.

Definition 1.9 (Satisfaction in switch reactive model) Let m = (S, R, a, t, h) be a
reactive switch model where (S, R, a, t) is a switch reactive frame and h is an
assignment into S giving for each atomic q a subset h(q) ⊆ S. We define the notion
of m � A.

1. m � q iff t ∈ h(q)

2. m � A ∧ B iff m � A and m � B
m �∼ A iff m �� A
similarly for ∧,∨,⊥, �.

3. m � ♦A iff for some (t, s) ∈ R such that a((t, s)) = 1 we have

n = (
S, R, a(t,s), s, h

)
� A

4. Note that the real model is the active part of R. When we evaluate ♦ we move to
a new model with different active part.

5. Given a frame F = (S, R, a, t) then the logic of the frame L(F) is the set of all wff
A such that for all h (S, R, a, t, h) � A.

Corollary 1.10 There exists a logic complete for a class of reactive frames but not
complete for a class of ordinary frames.

Definition 1.11 (Axiomatisiation of the logic of the reactive frame of Fig. 3) We offer
the following system:

1. Take as axioms the following:

(*) All substitution instances of truth functional tautologies A(q1, . . . , qk).

2. Let A(q1, . . . , qk) be a wff. A can be presented as a substitution result of the
form

A (q1, . . . , qk) = B (q1, . . . , qk, ei/♦Bi)

i = 1, . . . , m, where ei are new atoms and Bi are formulas using the atoms
q1, . . . , qk and B(q1, . . . , qk, e1, . . . , em) is a formula without a modality.
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This representation is unique.
Let B⊥

A be the formula B(q1, . . . , qk, ⊥, . . . ,⊥).
We take the additional following axiom:

(**) ♦A for any A such that B⊥
A is a truth functional tautology.

Example 1.12 This example prepares the ground for giving a reactive tableaux
algorithm for the logic of Fig. 3. Although this logic is very simple, there is a technical
problem with the reactive tableaux for it. This is typical of all reactive tableaux and
arises from the very idea of reactivity. Consider Fig. 3 and let p, q be two atoms such
that t � p ∧ q. Consider now t �?♦p ∧ ♦q.

According to the definition of satisfaction, the evaluation is done in parallel.

t � ♦p ∧ ♦q

iff

t � ♦p ∧ t � ♦q

iff

tt � p ∧ tt � q

When we give any tableaux algorithm the algorithm is sequential.
So if we apply a tableaux rule corresponding to t � ♦p, we go to tt in the

model and in the corresponding tableau and have p,♦q to evaluate and in tt,♦q is
false!

Put differently, if we evaluate ♦p first and pass through some arc to find a world
in which p holds, the model might change. We should backtrack on the change when
we evaluate ♦q.

So the tableaux need to be done in parallel.

Definition 1.13 (Tableaux system for the logic of the frame of Fig. 3) We modify the
tableaux system of Definition 1.11 as follows:

1. We allow for two labels t and tt.
2. We require that all classical connective in each box be handled first before

approaching any ♦. For that purpose we regard any ♦X formula as ‘atomic’ and
bring each tableaux to its ‘atomic’ components. The reason for that has to do
with Example 1.12 and the need to handle all cases of ♦ all in parallel.

3. The rules for ∼ and ∧ remain the same as in Definition 1.3, where t1 can now be
either t1 = t or t1 = tt. t2 remains equal to t1.

4. The rules for ♦ now split into two sets. For the case of t1 = t, we take the rules of
Definition 1.3 with t2 = tt (and not t2 = t1 as in Definition 1.3).
We have a condition here that all cases of ♦X,♦Y etc both on the right hand side
or on the left hand side should all be done in parallel. The classical connectives
should be dealt with before ♦ is handled.



Introducing reactive modal tableaux 65

For the case of t1 = tt we take the following rules:

Left ♦ rule label tt

Replace

by

Right ♦ rule for label tt

Replace

by

Theorem 1.14 The tableaux system of Def inition 1.13 is complete for the semantics of
F2 and for the axiomatisation of Def inition 1.11.

Proof Not too difficult. ��

Remark 1.15 The example we gave is rather simple. In Section 1.2 we give a slightly
more complex example.

1.2 Second case study

We now consider another example. Consider frame F2 of Fig. 4.
We have S = {t, s} and R = {(t, t), (t, s), (s, t)}.
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Fig. 4 Frame F2

As we have already said, there are several ways to characterise the logic of this
frame.

1. Write a Hilbert or a Gentezen system for it and get a completeness theorem for
it, namely:

A �system B iff for all assignments h to the frame F2 above we have t �h A
implies t �h B.

2. Provide a tableaux system for it and have the following completeness theorem

A ��system B iff there is successful tableaux procedure for A = �, B = ⊥.

The fact that we are dealing with the frame F2 of Fig. 4 would be incorporated in
the tableaux procedures.

We now present a reactive version of Fig. 4. Consider Fig. 5, displaying the
frame M

In this figure we added a double arrow from the arc (t, t) into itself. We
can mathematically present the frame as M = (S, R, t) where S = {t, s} and R =
{(t, t), (t, s), (s, t), ((t, t), (t, t))}.

The item ((t, t), (t, t)) represents the double arrow. The evaluation of a formula at
t under an assignment h to the atoms goes as in Definition 1.16 below. Here we use
the full notation in the index:

Definition 1.16 (Reactive evaluation in the frame M) Let x ∈ {t, s}:
1. • x �h q iff x ∈ h(q), for q atomic.

• x �h A ∧ B iff x � A and x � B.
• x �h∼ A iff x �� A.

Fig. 5 Frame M
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Fig. 6 Frame N

2. t �h �A iff (a) and (b) hold.

(a) s �h A, in the frame M = (S, R, t).
(b) t �h A in the frame N = (S, R1, t) where S = {t, s} and R1 = {(t, s), (s, t)}.

See Fig. 6.

3. s �h �A in M or N iff t �h A in M or N respectively.

The way we view the change of model is as follows.
To evaluate t � �A, we need to go to all accessible worlds from t. These are in our

frame M, the worlds t and s. To go to s we traverse the arc (t, s) and we get to s and at
s A must hold. We thus get condition (a) above. We also go to t along the arc (t, t). As
we traverse the arc (t, t), we activate the double arrow ((t, t), (t, t)) which reactively
disconnects the arc (t, t). (Think of it like a bridge collapsing because you passed a
truck through it, or a use once only connection.) Now that we are at t, our frame has
changed from M to N. We evaluate A at t but the accessibility has changed, it is now
the frame N not the frame M.

Figure 7 shows the available paths.
The reactive evaluation at the fixed frame M does give rise to a set of theorems

L(M). This set may be axiomatised as a Hilbert or Gentzen system or may be

Fig. 7 Available paths
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characterised by a tableaux system. Since any tableaux system follows closely the
semantic evaluation procedures, this leads us to the idea of Reactive Tableaux.

The next section will define abstractly the notion of a reactive tableaux. In the rest
of this section we need to show what kind of logic we get from the frame M and what
kind of tableaux system corresponds to it.

First let us axiomatise the logics of frame F2 and M and show that the logic of M

cannot be characterised by any class of ordinary frames.

Remark 1.17 (Methodological comments) We saw that reactive evaluation in the
frame M moved also to evaluation in the frame N. This is typical. In general, since
reactive evaluation in a reactive frame N changes the frame as we proceed in the
evaluation, we end up with a complex interaction of evaluations in some traditional
frames N1, . . . , Nk.

This has implications to how we axiomatise and develop tableaux for the logic
of N. We need to understand the logics and tableaux of the traditional frames
N1, . . . , Nk.

We see that in principle we need a mutually recursive axiomatisation of several
logics, all done together. This is already a new kind of game. We take several logics
Li and recursively define a new combination of them, where the exact way they are
combined is dictated and guided by the reactivity involved.

This observation may necessitate different axiomatic formulations of Li, not
necessarily the traditional ones, in order to facilitate their combination.

The next example shows how we need to reformulate the traditional modal K, in
order to axiomatise the logic of M.

We also see, by the way, that turning a logic reactive is a very special form of
combining logics.

Definition 1.18 (Modal K without necessitation) Consider the following formulation
of modal logic K, without the necessitation rule.2

1. (a) All substitution instances of truth functional tautologies A.
(b) If A is a substitution instance of a truth functional tautology then

�m A, m ≥ 1 is an axiom.
2. (a) All substitution instances of (�(A → B) → (�A → �B))

(b) All substitution instances of �m(�(A → B) → (�A → �B)) for any
m ≥ 1.

3. Note that the necessitation rule

� A
� �A

is derivable now for this formulation of K.

2We need this complicated axiomatisation of K so that it becomes easy to axiomatise the non-
normal logic of the frame F2. It also becomes easy to transform this axiomatisation into a reactive
axiomatisation of the logic of the frame M.
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Definition 1.19 (The logic of the frame N) The logic of the frame N of Fig. 6 is easy to
axiomatise. It is a normal logic. We can take the usual axioms of K with necessitation
and add very simple axioms for ♦, as follows.

1. All substitution instances of truth functional tautologies.
2. �(A → B) → (�A → �B)

3. �A
��A

4. �A �A→B
�B

5. ∼ ♦A ↔ ♦ ∼ A
6. ♦♦A ↔ A.

Theorem 1.20 The logic of Def inition 1.19 is complete for the intended semantics of
the frame N of Fig. 6.

Proof Easy. ��

Definition 1.21 (The logic L(F2)) Consider the following modal axiom schemata,
added to the axioms of modal logic K in the formulation without necessitation, as
presented in Definition 1.18.

1. A → ♦A
2. (a) ∼ A ∧ ♦A → �(A ∧ ♦ ∼ B →∼ ♦B)

(b) ∼ A ∧ ♦A∧ ∼ B ∧ ♦B → ♦(A ∧ B)

(c) ∼ A ∧ ♦(A ∧ B) → �(A → B)

3. A → �♦A
4. Note that since K was formulated without necessitation we do not have the axiom

�(A → ♦A).
The logic is not normal and its theorems are what holds in the actual world only.

5. We define the notion of � �
L(F2)

A in this logic to be �∪ Axioms �K A, where
Axioms is the set of all substitution instances of the axioms (1)–(3) above.

6. � is a theory of the logic if � ⊇ Axioms. It is consistent if it is consistent in K.

Lemma 1.22 The logic L(F2) of Def inition 1.21 is complete for the frame F2.

Proof We start by showing soundness. We check each axiom, they all must hold at t.

1. holds because tRt holds
2. (a) Assume t �∼ A ∧ ♦A. This means s � A. We show that t � �(A ∧ ♦ ∼

B →∼ ♦B). The only possible world accessible to t (out of {t, s}) in which
A can hold is s. So if s � ♦ ∼ B, this means t �∼ B and hence s �∼ ♦B.

(b) Assume t �∼ A ∧ ♦A∧ ∼ B ∧ ♦B. The only way this can hold at t is that
s � A ∧ B. So t � ♦(A ∧ B).

(c) Assume t �∼ A ∧ ♦(A ∧ B). This means s � B. Hence t � �(A → B) be-
cause the only accessible world to t in which A holds is s and s � B.

3. Follows from the fact that in the frame R is symmetric.

To prove completeness we show every consistent theory has a model with frame
F2. Let � be a complete and consistent theory of the logic of Definition 1.21. We can
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assume that for some wff α0 we have ∼ α0 ∧ ♦α0 ∈ �. If no such α exists then for
all α, ∼ (∼ α ∧ ♦α) ∈ �, i.e., α∨ ∼ ♦α ∈ �, which is ♦α → α ∈ �. Since α → ♦α is
an axiom we get that α ↔ ♦α ∈ � for all α. This means � is essentially a consistent
classical theory and can be given a one point classical model.

So let us assume that for some α0,∼ α0 ∧ ♦α0 ∈ �, and find a model for �.
Let �0 = {E |∼ E ∧ ♦E ∈ �} ∪ {D|�D ∈ �}. We claim �0 is consistent in K.

Otherwise for some D1, . . . , Dm, E1, . . . , Ek in �0 we have

K �
∧

j

Dj →∼
∧

i

Ei,

where �Dj ∈ �,∼ Ei ∧ ♦Ei ∈ �, and so

K � �

⎛

⎝
∧

j

Dj →∼
∧

i

Ei

⎞

⎠

and by pushing � through we get

K �
∧

j

�Dj →∼ ♦
∧

i

Ei.

We now obtain a contradiction.
Since ∼ E1 ∧ ♦E1∧ ∼ E2 ∧ ♦E2 are in �, then so is ♦(E1 ∧ E2). Therefore also

∼ (E1 ∧ E2) ∧ ♦(E1 ∧ E2)∧ ∼ E3 ∧ ♦(E3) ∈ � and hence ♦(E1 ∧ E2 ∧ E3) ∈ �.
Continuing in this manner we get ♦∧

i Ei ∈ �, a contradiction since � is consistent
and K � ∧

j �Dj →∼ ♦∧
i Ei and

∧
j �Dj ∈ � and so ∼ ♦∧

i Ei ∈ �.
Therefore �0 is consistent and can be extended in K to a complete theory �. We

now show that if A ∈ � then ♦A ∈ �. This holds because A → �♦A ∈ �. We also
have that if �A ∈ � then A ∈ �. This follows form the axiom A → ♦A. We are now
ready to construct a model for �.

Let S = {�,�}. We know � �= � because ∼ α0 ∈ � and α0 ∈ �. Let R be defined
as R = {(�,�), (�,�), (�,�)}.

Let the actual world be �. Let h(q) = {X ∈ S|q ∈ X}.
We claim for any X, A we have

(*) X � A iff A ∈ X.

We need to check only the cases of �A ∈ � and �A ∈ �.
Assume �A ∈ �. Then A ∈ �. Otherwise ∼ A ∈ � and hence ♦ ∼ A ∈ �, a

contradiction.
Now assume ∼ �A ∈ �. Then if ∼ A ∈ �, we are finished. If A ∈ �, we get A ∧

♦ ∼ A ∈ � then by construction ∼ A ∈ � and we are finished.
Now assume �A ∈ �. We need to show A ∈ �. Otherwise ∼ A ∈ � and hence

�♦ ∼ A ∈ � and hence ♦ ∼ A ∈ � a contradiction.
Assume now that ♦ ∼ A ∈ �. We need to show ∼ A ∈ � If A ∈ � we get �♦A ∈

� hence ♦A ∈ �. But ∼ α ∧ ♦α → �(α → (♦ ∼ A →∼ ♦A)) holds and we get a
contradiction.

This completes the proof of Lemma 1.22. ��
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Lemma 1.23 (Axioms for L(M)) The following schemas hold in the reactive frame M

under any assignment.

(a) The following axioms

(1*) • A → �♦A
• A → ♦A
For any theorem A of the logic of the frame N of Def inition 1.19.

(2*) Same as axiom (2) of Def inition 1.21.
(3*) A ∧ ♦ ∼ A → �(∼ A → ♦A).

(b) ∼ A ∧ ♦A → ♦(∼ A ∧ �A)

(c) If x is an atom then there exists a model for ∼ x ∧ ♦x.

Proof Axiom group (a) hold in the frame M for similar reasons as checked in the
soundness part of Lemma 1.22.

We now check (b).
Assume t �∼ A ∧ ♦A. This implies t �∼ A and s � A. We now show t � ♦(∼

A ∧ �A). We use the fact that tRt holds. We go to t, to check whether t �∼ A ∧ �A.
Indeed, t �∼ A. But now that we have passed through the connection tRt, because
of reactivity, tRt no longer holds, it was disconnected. The only possible world
accessible to t is s, and s � A hence t � �A. See Definition 1.2, item 2(b).

(c) Clearly holds ��

Lemma 1.24 (Reactive frames are stronger than ordinary frames) The logic of the
reactive frame M is not complete for any class of ordinary Kripke frames.

Proof Suppose there is a class K of ordinary frames for which L(M) is complete. This
means that every instance of axioms (a), (b) of Lemma 1.23 holds at the actual world
for any assignment h into any of the frames in K. We also know that there exists a
frame (S, R, t) and an assignment h such that (c) of Lemma 1.23 holds at t.

We shall use the above to derive a contradiction. We start with any frame (S, R, t)
in which every instance of (a) of Lemma 1.23 hold under any h and see what are its
properties. We prove (1), (2), (3) below:

tRs1 ∧ tRs2 ∧ t �= s,∧ t �= s2 ⇒ s1 = s2

Assume otherwise.
Let ∼ x hold at t and x hold at s1 and s2 and let u hold at s1 and ∼ u hold at t and

s2. Figure 8 displays this situation.

Fig. 8 Illustrating Lemma 1.24
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Let α = x ∨ u.
Therefore by the axiom

∼ α ∧ ♦(α ∧ u) → �(α → u),

we have

t �∼ α ∧ ♦(α ∧ u)

and so t � �(α → u) and so s2 � u, a contradiction.

(b) We claim that tRt holds. This follows from the axiom A → ♦A, for otherwise
we can let t � x and ∀s(t �= x ⇒ s �∼ x) and get a contradiction.

(c) We claim that tRs → sRt. This is because of the axiom A → �♦A.
For otherwise choose an atom x and let t �h x and for all y, sRy ⇒ y �h∼ x.
Since sRt does not hold, this is OK. Then we have t �h x but t ��h �♦x, since at
s we have s �h � ∼ X.

The above (a)–(c) hold for any frame in K.

4. We now get a contradiction. There exists a model (S, R, t, h) in K in which (c) of
Lemma 1.23 holds. Namely t �h∼ x ∧ ♦x holds in the model. Let s1 be such tRs1

and s1 �h X. So we must have also t �h ♦(∼ x ∧ �x) from the axiom. We show
that this is impossible. For let s2 be such that tRs2 and s2 �h∼ x ∧ �x. We have
shown that in any frame of K, tRs1 ∧ tRs2 ∧ t �= s1 ∧ t �= s2 ⇒ s1 = s2.
We have according to our data that t �= s1 and s1 �= s2 and tRs1 and tRs2.
Therefore we must have t = s2.
But tRt holds and t = s2 �h∼ x ∧ �x.
A contradiction. ��

Example 1.25 (Tableaux for the logics of F2 and of M) Let us do tableaux for the
logics of F2 and of M. We know that ∼ u ∧ ♦u → ♦�u is refutable in the logic of
F2 but is a theorem of L(M). So if we do tableaux for both we will see where the
difference lies.

These two logics depend on frames with two possible worlds in them and only one
reactive arrow. So our tableaux will take advantage of these special features and have
the form

α, beta are labels from {t, tt, s}, α can be t or tt and β is s.
A tableau is closed if

1. Some Ak
i = Bk

j
2. ⊥ is in the left
3. � is in the right.

The following are the rules. They are especially tailored for this particular case.
For the formulas of the form A =∼ X or A = X ∧ Y, the left rule and the right

rule for a box in row α or β are the same as in classical logic. We replace the same
way. The difference comes for the case of ♦.
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Again we stress that we are required to do all classical connectives first for each
label until we end up with only formulas which are either atomic or of the form ♦X.
Only at this stage do we handle ♦.

In the reactive case of M all cases of ♦Xi are done simultaneously in parallel.

This is a special feature of this logic because it has at most one reactive arrow. The
general case is more complex. See Section 2.

♦ rule for α

Let ♦Xi, i ∈ I be on the left and ♦Y j, j ∈ J be on the right. Let I1 be any subset of I.
Replace

By some of the following, for all I1

I1 �= ∅.

As follows.

Case M

• If α = t then α1 = tt and τ is replaced by all possible τI1 , I1 ⊆I1 �=∅ I.
• If α = tt, then α2 = tt and τ is replaced by τ∅

• If α = t and I = ∅ then α2 = t.

Case F2

In this case α = α1 = α2 = t and τ is replaced by all of τI1 , for all I1 ⊆ I.

♦ rule for β

Replace
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by

This is done for any of the logics and any α, β.

Example 1.26 Consider the tableau τ0 below.

τ0 = s :
t : ∼ u

♦�u
♦u

Let us operate on it using the rules of F2 and in parallel the rules of M. The tableau
should close for M and give a countermodel for F2.

The following sequence of replacements is what we get

τ1 = s :
t : u

♦u
♦�u

Here we should be doing ♦u and ♦�u simultaneously, but ♦u cannot go to α because
u is false at α so we can do it first!

τ2 = s : u
t : u

♦�u

We got from τ1 to τ2 using the ♦ rule for α. This rule gives two options, but one of
them is a closed tableau in this case. So we took only one of the options. We have to
use now the right ♦ rule for α, for the formula ♦�u. We get the tableau τ3 with α3.

For logic F2, α3 = t. For the logic of M, α3 = tt.
Using right negation rule we get τ4.

We continue by looking at the left ♦ rule for s, which yields:
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In the logic F2, α3 = t and so we replace τ5 by two tableaux, one of them has u at the
right hand side of the α3 = t row. This is tableau τ6 which gives us a countermodel.
The other is τ7 which is closed. For the case of M, α3 = tt and the only option is to
replace τ5 by τ7 which is closed.

τ6 = s u
α3 = t : u

τ7 = s : u,∼ u
α3 = tt : u

2 Reactive Beth tableaux

We now discuss reactive Beth tableaux. To deal with that we need a general
discussion of tableaux for modal logic and its relationship to modal labelled deductive
systems.

Let K be a set of frames of any kind, ordinary frames or reactive frames. There
are two main ways of presenting K.

1. List the members of K or generate them inductively.
2. Use a meta-predicate � in some language capable of talking about properties of

frames and letting

K = {F | �(F) holds}
The way we develop tableaux for L(K) depends on the way K is presented.
Suppose K is presented as a set of specific finite frames, namely K =
{F1, F2, . . . , }, where Fn are all finite. We can do tableaux for each Fi much in
the same spirit as we did in Section 1 and prove a completeness theorem of the
form:

L(K) � A iff for each Fi, the A tableaux in Fi is closed.

The problem is more difficult when K is defined using a predicate �. It is not
simple even in the case of traditional Kripke frames with ordinary R ⊆ S × S
and � a condition on R. Take for example the logic K + ♦�A ∨ ♦� ∼ A. This
logic is complete for a class of frame defined by a second order condition on R.
Let E(x, y) = ∃a(xRa ∧ aRy). Then the condition is

�(R)≡∀x∀T
[
(y∈T → E(x, y))→∃a (∀z (aRz→z ∈ T)∨ ∀z (aRz →∼ z∈T)) .

Another logic is provability logic, being

K + {♦♦A → ♦A} + {♦A → ♦ (A ∧ � ∼ A)} .

Provability logic is complete for the second order condition saying that every
ascending R sequence of points has a last element.

To do tableaux for these logics we have to creatively make something tailor made.
If we take the frames for these logics and turn them reactive then we need to know
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how to modify the tableaux systems for the logics and turn them reactive. This is not
systematic. We therefore propose to solve the following problem:

Reactive tableaux problem Given a tableaux system for some logic (never
mind how we got it or what that logic is), how do we make it reactive? What
are the features we change in it to make it reactive?

In the semantical case of Kripke models we know how to turn them reactive; we
add the higher level arrows and allow the model to change as in Definition 1.8. We
now ask how to do it in the syntactic case. Doing tableaux for reactive Kripke models
gives us some clues. We make the tableaux dependent on the path of the use of ♦
rules, by using labels.

The story, however, is much more complex than that, as the examples below will
show.

The following series of Definitions intends to follow the way a reactive frame Ft,
with actual world t, changes in the course of evaluation along a path α into a new
frame Fα . These concepts will help us formulate a recursive tableaux algorithm for
the logic of the frame Ft.

Definition 2.1 (How reactive frames change)

1. Let Ft = (S, R, a, t) be a switch reactive frame.
2. Let α = (t, t1, . . . , tn), ti ∈ S be a sequence of worlds. Let e(α) = tn . We define

Rα = (S, F, aα, e(α)) as follows:

(a) For α = (t), let Fα be Ft as in (1).
(b) Assume Fβ is defined for β = (t, t1, . . . , tn) and let (tn, tn+1) ∈ R be such

that aβ(tn, tn+1) = 1, i.e., tn → tn+1 is active in Fβ . Then let F(β,tn+1) =
(S, R, aβ,(tn,tn+1)), (see Definition 1.8, item 2).

Definition 2.2 (Reactive tableaux) A tableau has the form (τ, Fα), where Fα is as in
Definition 2.1 and τ is a function on S giving a pair of sets of formulas Lτ (x) (left
part of the tableau at x) and Rτ (x), (right part of the tableau at x) for each x ∈ S. The
formulas in Lτ (x), Rτ (x) are either atomic or of the form ♦A.

Definition 2.3 (Tableaux complexity) let (τ, Fα) be a tableau. The complexity of
(τ, Fα) is a pair of numbers (m, n) where m is the maximal number of nested ♦
in formulas of τ and n is the number of formulas with maximal number m. So
m ≥ 0, n ≥ 1. Note that our tableaux rules will reduce complexity.

Definition 2.4 (Tableaux feasibility) Let (τ, Fα) be a tableau. We perform a feasibil-
ity check on (τ, Fα) as follows.

Consider τ(e(α)):

♦Xr,♦Yw are all the formulas of this form in the tableaux, r = 1, . . . , k1 and w =
1, . . . , k2.
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First observe that if k1 ≥ 1 and there is no s such that (e(α), s) ∈ R is active then
the tableau is not feasible. If there is such an s, then we can assume k1 ≥ 1, because
we can always take X1 = �.

For each s such that the arc (e(α), s) ∈ R is active, and for each ♦Xr, con-
sider the sets (Lτ,r,s, Rτ,r,s) where Lτ,r,s = Lτ (s) ∪ {Xr} and Rτ,r,s = Rτ (s) ∪ {Yw | w =
1, . . . , k2}. Consider this pair as a classical tableaux and let (Lτ,r,s

i , Rτ,r,s
i ) for i =

1, . . . , k3(r) be all open options for this tableaux. Consider the frame Fα,s and let
τ

α,s,r
i i = 1, . . . , k3(r) be the following tableaux for the frame Fα,s.

τ
α,s,r
i (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ(x) for x �= e(α), s

τ(x) − ♦Xr for x = e(α), e(α) �= s
(
Lτ,r,s

i , Rτ,r,s
i

)
for x = s, e(α) �= s

Lτ,r,s
i − {♦Xr}, Rτ,r,s

i

)
for x = s = e(α)

Notice that the tableau τ
α,s,r
i (x) has less complexity than the tableau τα , because

we took out from it ♦Xr. We may have added more modal sentences but they are of
lower complexity.

We now continue:
We define the predicate feasible(τ, Fα) as follows:

• feasible(τ, Fα) iff

∧

r

∨

s

∨

i

feasible
(
τ

α,s,r
i , Fα,s

)

where r = 1, . . . , k2

s ∈ {x | (e(α), x) ∈ R is active}

and i = 1, . . . , k3(r).
If there are no open options for any r then (τ, Fα) is not feasible. If the tableau

τ(e(α)) contains no modalities then it is feasible if it is open.

Definition 2.5 (Tableaux algorithm) The following is a recursive algorithm for a
tableaux system for a frame Ft = (S, F, a, t). Let us ask wether A �?B.

First consider the classical tableau with A on the left and B on the right.

Any formula E(qi) of modal logic can be written uniquely as a substitution instance
of a pure classical logic formula E′(qi, pj) with additional atoms pj where for the
pj we substitute unique modal formulas ♦E j. Thus E = E′(qi, Pj/♦E j). Thus let us
consider A and B in the tableau as classical formulas with ‘atoms’ which are either
real atoms qi or ‘atoms’ of the form ♦A j and ♦B j.

So we regard cτ as
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Develop this tableau classically. There are two possibilities.

1. All its branches are closed, in which case A → B is an instance of classical
tautology.

2. Some branches are open. Let ct1, . . . , ctk0 be all the open tableaux.

Let cτδ be a fixed one of these options. Write cτδ in the notational form

r = 1, . . . , k1, w = 1, . . . , k2

Then ♦Xi
r,♦Yi

w list the modal ‘atoms’ which are on the left and on the right
(respectively) of the tableau cτδ . We know that if we can make ♦Xδ

r all true,
r = 1, 2 . . . and ♦Yδ

w all false w = 1, 2, . . . then we get a countermodel.
For a fixed δ, we are in the situation of Definition 2.4, as follows. We are given Ft,

and we define a tableau function τ as in Definition 2.4

τ(t) = (
Lcτδ , Rcτδ

)

where Lcτδ is the left side of cτδ and Rcτδ is the right hand side of cτδ .
Let τ(x) = (∅, ∅) for x �= t. We are now exactly in the situation of Definition 2.4,

with α = (t).
Therefore the tableau (τ, Ft) (which is really cτδ evaluated at t) is feasible

according to Definition 2.4 iff
∧

r

∨
s

∨
i feasible((τ

t,s,r
i , F(t,s))).

We now continue the tableaux feasibility construction for each (τ
t,s,r
i , F(t,s)).

Note the complexity of the tableaux is reduced. We continue by induction until
the tableaux we get have no ♦ in them. This means they are classical tableaux and
therefore are either closed or open. We can therefore know at this stage whether a
countermodel exists or not.

3 Conclusion

We discussed reactive Kripke semantics and showed that there are modal logics
which cannot be characterised by classes of ordinary Kripke frames but which can
be characterised by classes of reactive frames.

We offered tableaux system for finite frame reactive Kripke models. We made
essential use of the fact that the frame is finite.

Completeness theorems for ordinary arbitrary frame reactive modal K can be
found in [9, 12].

Tableaux systems for ordinary reactive intuitionistic logic can be found in [8].
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