Skip to main content
Log in

Spatial reasoning with rectangular cardinal relations

The convex tractable subalgebra

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Qualitative spatial representation and reasoning plays a important role in various spatial applications. In this paper we introduce a new formalism, we name RCD calculus, for qualitative spatial reasoning with cardinal direction relations between regions of the plane approximated by rectangles. We believe this calculus leads to an attractive balance between efficiency, simplicity and expressive power, which makes it adequate for spatial applications. We define a constraint algebra and we identify a convex tractable subalgebra allowing efficient reasoning with definite and imprecise knowledge about spatial configurations specified by qualitative constraint networks. For such tractable fragment, we propose several polynomial algorithms based on constraint satisfaction to solve the consistency and minimality problems. Some of them rely on a translation of qualitative networks of the RCD calculus to qualitative networks of the Interval or Rectangle Algebra, and back. We show that the consistency problem for convex networks can also be solved inside the RCD calculus, by applying a suitable adaptation of the path-consistency algorithm. However, path consistency can not be applied to obtain the minimal network, contrary to what happens in the convex fragment of the Rectangle Algebra. Finally, we partially analyze the complexity of the consistency problem when adding non-convex relations, showing that it becomes NP-complete in the cases considered. This analysis may contribute to find a maximal tractable subclass of the RCD calculus and of the Rectangle Algebra, which remains an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelmoty, A., El-Geresy, B.: A general method for spatial reasoning in spatial databases. In: Proceedings of CIKM’95, pp. 312–317 (1995)

  2. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Balbiani, P., Condotta, J., del Cerro, L.: A model for reasoning about bidimensional temporal relations. In: Proceedings of KR’98, pp. 124–130 (1998)

  4. Balbiani, P., Condotta, J., del Cerro, L.: Tractability results in the block algebra. J. Log. Comput. 12(5), 885–909 (2002)

    Article  MATH  Google Scholar 

  5. Cicerone, S., Felice, P.D.: Cardinal directions between spatial objects: the pairwise-consistency problem. Inf. Sci. 164(1–4), 165–188 (2004)

    Article  MATH  Google Scholar 

  6. Cohn, A., Hazarika, S.: Qualitative spatial representation and reasoning: an overview. Fundam. Inform. 46(1–2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Condotta, J.: The augmented interval and rectangle networks. In: Proceedings of KR’00, pp. 571–579 (2000)

  8. Drakengren, T., Jonsson, P.: A complete classification of tractability in Allen’s algebra relative to subsets of basic relations. Artif. Intell. 106(2), 205–219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Düntsch, I.: A tutorial on relation algebras and their application in spatial reasoning (1999). http://www.cosc.brocku.ca/~duentsch/archive/relspat.pdf. Invited tutorial, COSIT’99

  10. El-Geresy, B., Abdelmoty, A.: Qualitative representations in large spatial databases. Int. Database Eng. Appl. Symp. (2001)

  11. Frank, A.: Qualitative spatial reasoning: Cardinal directions as an example. Int. J. Geogr. Inf. Sci. 10(3), 269–290 (1996)

    Google Scholar 

  12. Gatterbauer, W., Bohunsky, P.: Table extraction using spatial reasoning on the css2 visual box model. In: Proceedings of AAAI-06 (2006)

  13. Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artif. Intell. 137(1–2), 1–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golumbic, M., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goyal, R.: Similarity assessment for cardinal directions between extended spatial objects. PhD thesis, University of Maine, Dept. of Spatial Information Science and Engineering (2000)

  16. Goyal, R., Egenhofer, M.: Consistent queries over cardinal directions across different levels of detail. In: Proceedings of DEXA 2000, pp. 876–880 (2000)

  17. Guesgen, H.: Spatial Reasoning Based on Allen’s Temporal Logic. Tech. Rep. ICSI TR89-049, International Computer Science Institute (1989)

  18. Hernandez, D.: Qualitative Representation of Spatial Knowledge. Springer-Verlag (1994)

  19. Ladkin, P., Maddux, R.: On binary constraint problems. J. ACM 41, 435–469 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladkin, P., Reinefeld, A.: Fast algebraic methods for interval constraint problems. Ann. Math. Artif. Intell. 19(3–4), 383–411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ligozat, G.: Corner relations in allen‘s algebra. Constraints 3(2–3), 165–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ligozat, G.: Reasoning about cardinal directions. J. Vis. Lang. Comput. 9(1), 23–44 (1998)

    Article  Google Scholar 

  23. Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In: Proceedings of PRICAI 2004, LNCS, vol. 3157, pp. 53–64. Springer (2004)

  24. Liu, W., Li, S.: Reasoning about cardinal directions between extended objects: the np-hardness result. Artif. Intell. 175(18), 2155–2169 (2011)

    Article  MATH  Google Scholar 

  25. Liu, W., Li, S., Renz, J.: Combining rcc-8 with qualitative direction calculi: algorithms and complexity. In: Proceedings of IJCAI-09, pp. 854–859 (2009)

  26. Liu, W., Zhang, X., Li, S., Ying, M.: Reasoning about cardinal directions between extended objects. Artif. Intell. 174, 951–983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mackworth, A., Freuder, E.: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artif. Intell. 25(1), 65–74 (1985)

    Article  Google Scholar 

  29. Navarrete, I., Morales, A., Sciavicco, G., Cardenas, M.: An utility package for rectangular cardinal relations (2011). http://sites.google.com/site/aikespatial/RCDC

  30. Navarrete, I., Sciavicco, G.: Spatial reasoning with rectangular cardinal direction relations. In: Proceedings of ECAI-2006 Workshop on Spatial and Temporal Reasoning, pp. 1–10 (2006)

  31. Nebel, B.: Solving hard qualitative temporal reasoning problems: evaluating the efficiency of using the ord-horn class. Constraints 1(3), 175–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nebel, B., Bürckert, H.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995). The authors provide a software for machine-assisted analysis of Allen’s interval algebra

    Article  MATH  Google Scholar 

  33. Nebel, B., Scivos, A.: Formal properties of constraint calculi for qualitative spatial reasoning. KI 16(4), 14–18 (2002)

    Google Scholar 

  34. Oro, E., Ruffolo, M., Staab, S.: Sxpath—extending xpath towards spatial querying on web documents. PVLDB 4(2), 129–140 (2010)

    Google Scholar 

  35. Papadias, D., Kalnis, P., Mamoulis, N.: Hierarchical constraint satisfaction in spatial databases. In: Proceedings of AAAI/IAAI-99, pp. 142–147 (1999)

  36. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and spatial data structures. Int. J. Geogr. Inf. Sci. 11(2), 111–138 (1997)

    Article  Google Scholar 

  37. Pham, D.N., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiability. Artif. Intell. 172(15), 1752–1782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proceedings of KR’92, pp. 165–176. Morgan Kaufmann (1992)

  39. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: Proceedings of CP 2005, LNCS, vol. 3709, pp. 534–548. Springer (2005)

  40. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Handbook of Spatial Logics, pp. 161–215. Springer (2007)

  41. Renz, J., Schmid, F.: Customizing qualitative spatial and temporal calculi. In: Orgun, M., Thornton, J. (eds.) AI 2007: Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 4830, pp. 293–304 (2007)

  42. Samet, H.: Spatial data structures. In: Modern Database Systems, pp. 361–385 (1995)

  43. Schultz, C., Guesgen, H., Amor, R.: Computer-human interaction issues when integrating qualitative spatial reasoning into geographic information systems. In: Proceedings of the 7th ACM SIGCHI New Zealand chapter’s international conference on Computer-human interaction (CHINZ 2006), pp. 43–51. ACM (2006)

  44. Skiadopoulos, S., Giannoukos, C., Sarkas, N., Vassiliadis, P., Sellis, T., Koubarakis, M.: Computing and managing cardinal direction relations. IEEE Trans. Knowl. Data Eng. 17(12), 1610–1623 (2005)

    Article  Google Scholar 

  45. Skiadopoulos, S., Koubarakis, M.: Composing cardinal direction relations. Artif. Intell. 152(2), 143–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal directions constraints. Artif. Intell. 163(1), 91–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell. 58, 728–734 (1992)

    Google Scholar 

  48. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Comput. Intell. 6(3), 132–147 (1990)

    Article  Google Scholar 

  49. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proceedings of AAAI-86, pp. 377–382 (1986)

  50. Westphal, M., Wölfl, S.: Qualitative csp, finite csp, and sat: comparing methods for qualitative constraint-based reasoning. In: Proceedings of IJCAI-09, pp. 628–633 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Navarrete.

Additional information

A preliminary version of this paper appeared in [30]. There, only 240 out of the 400 convex relations of the RCD calculus were considered. In the present work, we also proposeadditional reasoning methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarrete, I., Morales, A., Sciavicco, G. et al. Spatial reasoning with rectangular cardinal relations. Ann Math Artif Intell 67, 31–70 (2013). https://doi.org/10.1007/s10472-012-9327-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9327-5

Keywords

Mathematics Subject Classifications (2010)

Navigation