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Abstract

Meta-heuristics are frequently used to tackle NP-hard combinatorial
optimization problems. With this paper we contribute to the understand-
ing of the success of 2-opt based local search algorithms for solving the
traveling salesman problem (TSP). Although 2-opt is widely used in prac-
tice, it is hard to understand its success from a theoretical perspective.
We take a statistical approach and examine the features of TSP instances
that make the problem either hard or easy to solve. As a measure of prob-
lem difficulty for 2-opt we use the approximation ratio that it achieves on
a given instance. Our investigations point out important features that
make TSP instances hard or easy to be approximated by 2-opt.
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1 Introduction

For many NP-hard combinatorial optimization problems, meta-heuristic algo-
rithms such as local search [15], simulated annealing [37], evolutionary algo-
rithms [I1], and ant colony optimization [9] have produced good results. Despite
the numerous applications of meta-heuristics to hard combinatorial optimiza-
tion problems, it is hard to understand the success of these algorithms from a
theoretical point of view.

Strict mathematical investigations, as in the field of the runtime analysis of
meta-heuristics, allow one to prove when and why such algorithms are able to
solve certain types of problems. This field of research has gained increasing inter-
est during the last decade and there are results for a wide range of meta-heuristic
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approaches such as simulated annealing [39], evolutionary algorithms [10], and
ant colony optimization [27]. We refer the reader to the textbook of Neumann
and Witt [28] for a comprehensive presentation of this research area.

The rigorous treatment of these algorithms in a strict mathematical sense is
with no doubt desirable, but comes at the expense that one is usually only able
to analyze simplified algorithms on only restricted classes of problems. With
this paper, we follow a different approach. Our aim is to gain new theoretical
insights into the behavior of meta-heuristics by investigating statistical proper-
ties of hard and easy instances of a given problem for a given algorithm. This
relates to previous work in continuous domains for which the extraction of prob-
lem properties that might influence algorithm performance is an important and
current focus of research, denoted as exploratory landscape analysis [24] [4]. For
our investigations on combinatorial meta-heuristics, we choose one of the most
famous N P-hard combinatorial optimization problems, namely the traveling
salesman problem (TSP). Given a set of N cities and positive distances d;; to
travel from city 4 to city j, 1 < 4,7 < N and ¢ # j, the task is to compute a
tour of minimal traveled distance that visits each city exactly once and returns
to the origin.

In the general case (also known as the asymmetric TSP), the distances be-
tween two cities might even be different, depending on the direction taken.
Many subclasses of the TSP can be defined depending on the constraints that
the distances between cities have to satisfy. For example, the distances only
have to satisfy the triangle inequality in the Metric TSP. The perhaps simplest
N P-hard subclass of TSP is the Euclidean TSP where the cities are points
in the Euclidean plane and the distances are the Euclidean distances between
them. We will focus on the Euclidean TSP. It is well known that there is a
polynomial time approximation scheme (PTAS) for this problem [2]. However,
this algorithm is quite complicated and cumbersome to implement.

A great number of heuristic approaches has been proposed for the TSP. Often
local search methods are preferred in practice. The most successful algorithms
rely on the well-known 2-opt operator, which removes two edges from a current
tour and connects the resulting two parts by two other edges such that a different
tour is obtained [I6]. Despite the success of these algorithms for a wide range
of TSP instances, it is still hard to understand 2-opt from a theoretical point of
view.

In the past, theoretical studies regarding 2-opt have investigated the ap-
proximation behavior as well as the time to reach a local optimum. Chandra
et al. [7] have studied the worst-case approximation ratio that 2-opt achieves
for different classes of TSP instances. Furthermore, they investigated the time
that a local search algorithm based on 2-opt needs to reach a locally optimal
solution. Englert et al. [I2] have shown that there are even instances for the Eu-
clidean TSP where a deterministic local search algorithm based on 2-opt would
take exponential time to find a local optimal solution. Furthermore, they have
derived polynomial bounds on the expected number of steps until 2-opt reaches
a local optimum for random Euclidean instances and proved that such a local
optimum gives a good approximation for the Euclidean TSP. These results also



transfer to simple ant colony optimization algorithms as shown in [20]. A pa-
rameterized analysis of evolutionary algorithms for the Euclidean TSP using a
mutation operator based on 2-opt has been recently carried out in [36]. These
results show that evolutionary algorithms are provably successful if the number
of cities that lie in the interior of the convex hull of the given set of N cities is
small.

Most previously mentioned investigations have in common that they either
investigate the worst local optimum and compare it to a global optimal solution
or investigate the worst case time that such an algorithm needs to reach a local
optimal solution. Although these studies provide interesting insights into the
structure of TSP instances they do not give much insights into what is actually
going on in the application of 2-opt based algorithms. In almost all cases the
results obtained by 2-opt are much better than the actual worst-case guarantees
given in these papers. This motivates the studies carried out in this paper, which
aim to get further insights into the search behavior of 2-opt and to characterize
hard and easy TSP instances for 2-opt.

In general, meta-learning is a subfield of machine learning, where learn-
ing algorithms are applied to meta-data about experiments. In this article,
we take a statistical meta-learning approach to gain new insights into which
properties of a TSP instance make it difficult or easy to solve for 2-opt. A
general overview about how to measure hardness of instances for combinato-
rial optimization problems is given in [32]. By analyzing different features of
TSP instances and their correlation we point out how they influence the search
behavior of local search algorithms based on 2-opt. To generate hard or easy
instances for the TSP we use an evolutionary algorithm approach similar to the
one of [34]. However, instead of defining hardness by the number of 2-opt steps
to reach a local optimum, we define hardness by the approximation ratio that
such an algorithm achieves for a given TSP instance compared to the global
optimal solution. This is motivated by classical algorithmic studies for the TSP
problem in the field of approximation algorithms.

We will consider some minor modifications of the EA used in [25] such that
the instances are forced to cover the whole extent of the underlying plane.
Moreover, the rounding procedure is slightly altered and two different rounding
strategies, differing in the sequence of rounding and mutation, are investigated.
Furthermore, different instance sizes are studied experimentally.

Having generated instances that lead to a bad or good approximation ratio,
the features of these instances are analyzed and classification rules are derived,
which predict the type of an instance (easy, hard) based on its feature levels. In
addition, instances of moderate difficulty in between the two extreme classes are
generated by transforming hard instances into easy instances based on convex
combinations of both. We call this procedure “morphing”. An improved point
matching strategy compared to [25] ensures that points move as little as possible
during the transformation. Systematic changes of the feature levels along this
“path” are identified and used for a feature based prediction of the difficulty of
a TSP instance for 2-opt-based local search algorithms.

The structure of the rest of this article is as follows. In Section 2 we give an



overview about different TSP solvers, features to characterize TSP instances and
indicators that reflect the difficulty of an instance for a given solver. Section
introduces an evolutionary algorithm for evolving TSP instances that are hard
or easy to approximate and carries out a feature based analysis of the hardness
of TSP instances. Finally, we finish with concluding remarks and an outlook on
further research perspectives in Section

2 Local Search and The Traveling Salesman Prob-
lem

As mentioned above, local search algorithms are frequently used to tackle the
TSP. They iteratively improve the current solution by searching for a better one
in its predefined neighborhood. The algorithm stops when there is no better
solution in the given neighborhood, or if a certain number of iterations has been
reached.

Historically, 2-opt [8] was one of the first successful algorithms to solve larger
TSP instances. It is a local search algorithm whose neighborhood is defined by
the removal of two edges from the current tour. The resulting two parts of the
tour are then reconnected by two other edges to obtain another complete tour.
A few years later, this idea was extended to 3-opt [23] where three connections
in a tour are first deleted, and then the best possible reconnection of the network
is taken as a new solution. Lin and Kernighan [22] extended the underlying idea
to more complex neighborhoods by making the number of performed 2-opt and
3-opt steps adaptive. Nowadays, variants of these seminal algorithms represent
the state-of-the-art in heuristic TSP optimizers.

Among others, memetic algorithms and subpath ejection chain procedures
have shown to be competitive alternatives to the 2-opt and 3-opt based algo-
rithms, with hybrid approaches still being investigated today. In the bio-inspired
memetic algorithms for the TSP problem (see [20] for an overview) information
about subtours is combined to form new tours via so-called “crossover opera-
tors”. Additionally, tours are modified via “mutation operators”, to introduce
new subtours. The general idea behind the subpath ejection chain procedures
is that in a first step a dislocation is created that requires further change. In
subsequent steps, the task is to restore the system. It has been shown that the
neighborhoods investigated by the ejection chain procedures form supersets of
those generated by the Lin-Kernighan heuristic [I4].

Contrary to the above-mentioned iterative and heuristic algorithms, Con-
corde [I] is an exact algorithm that has been successfully applied to TSP in-
stances with up to 85900 vertices. It follows a branch-and-cut scheme [29],
embedding the cutting-plane algorithm within a branch-and-bound search. The
branching steps create a search tree, with the original problem as the root node.
By traversing the tree it is possible to establish that the leafs correspond to a
set of subproblems that include every tour for our TSP.



2.1 Characterization of TSP Instances

In general, the theoretical assessment of problem difficulty of a TSP instance
prior to optimization is usually hard if not impossible. Thus, research has
focussed on deriving and extracting problem properties, which characterize and
relate to the hardness of TSP instances (e.g. [34] 17, [33, 2I]). We refer to these
properties as features in the following and provide an overview subsequently.
Features that are based on knowledge of the optimal tour [35, [I8] cannot be
used to characterize an instance a priori to optimization. They are not relevant
in the context of this paper and thus are not discussed in detail.

A natural and considered feature is the number of cities NV of the given TSP
instance [34, 17, B3] 21]. In the following, the subset of features introduced in
[34, 17, B3}, 21] which we incorporated into our study will be detailed. Almost
all mentioned features are included. However, due to the lack of details given in
[21], some of the discussed features had to be omitted. Furthermore, we present
several new features we feel additionally relevant, i.e. features based on the
minimum spanning tree (MST) and the angle between neighboring cities.

The features can be classified into eight groups which are detailed in the
following. In total, 47 features are considered.

Distance Features: One subset of features is based on summary statistics of
the edge cost distribution. We will use edge cost or edge weight synony-
mously for distance between nodes. The lowest, highest, mean and median
edge costs are considered. The proportion of edges with distances shorter
than the mean distance, the fraction of distinct distances, i.e. different
distance levels, and the standard deviation of the distance matrix are in-
cluded as well. The expected tour length for a random tour, given by the
sum of all edge costs multiplied by 2/(N —1), completes the list of suitable
distance features.

Mode Features: Additional features [I7] are the number of modes of the edge
cost distribution and related features such as the frequency and quantity
of the modes and the mean of the modal values. Enhancing the latter
approach given in [I7] we include a feature for computing the number of
modes of the edge cost distribution [24].

Cluster Features: Smith-Miles et al. [33] B4] list features that assume that
the existence and number of node clusters affect the performance of TSP
solvers. GDBSCAN [31] as recommended in [34] is used for clustering
where reachability distances of 0.01, 0.05 and 0.1 are chosen. Derived
features are the the number of clusters and the mean distances to the
cluster centroids.

Nearest Neighbor Distance Features: Uniformity of an instance is reflected
by the minimum, maximum, mean, median, standard deviation and the
coefficient of variation of the normalized nearest-neighbor distances (nnd)
of each node [33] 34].



Centroid Features: The coordinates of the instance centroid together with
the minimum, mean and maximum distance of the nodes from the centroid
are considered.

MST Features: Statistics are included which are related to the depth and the
distances of the minimum spanning tree (MST). The minimum, mean,
median, maximum and the standard deviation of the depth and distance
values of the MST are completed by the sum of the distances on the MST,
which we normalize by diving it by the sum of all pairwise distances. One
reason for considering this feature is the MST heuristic which provides an
upper bound for the optimal tour, i.e. the solution of the MST heuristic
is within a factor two of optimal [3].

Angle Features: This feature subset comprises statistics regarding the angles
between a node and its two nearest neighbor nodes, i.e. the minimum,
mean, median, maximum and the respective standard deviation.

Convex Hull Features: The area of the convex hull of the instance reflects
the “spread” of the instance in the plane. Additionally, the fraction of
nodes which define the convex hull is computed.

R [30] source code for the feature computation can be found onlineﬂ Note
that the features have to be normalized appropriately in order to allow for a
fair comparison of features across instances of different sizes N. Ideally, all
instances should be normalized to the domain [0, 1] to get rid of scaling issues.
However, the latter will not be an issue for our experiments as we explicitly
generate instances which fill the [0, 1]? plane.

In order to assess the difficulty of a given TSP instance, we will use the
approximation ratio that an algorithm achieves for this instance as the opti-
mization accuracy. The approximation ratio is given by the relative error of
the tour length resulting from 2-opt compared to the optimal tour length and
is a classical measure in the field of approximation algorithms [38]. Based on
the approximation ratio that the 2-opt algorithm achieves, we will classify TSP
instances either as easy or hard. Afterwards, we will analyze the features of
hard and easy instances.

Algorithm 1 Generate a random TSP instance.
function RANDOMINSTANCE(size)
for i =1 — size do
instanceli, 1] + U(0,
instanceli, 2] «+ U(0,
end for
return instance
end function

1) > Uniform random number between 0 and 1
1) > Uniform random number between 0 and 1

1 http://www.statistik.tu-dortmund.de/compstat_supplementary_material.html
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Algorithm 2 EA for evolving problem easy and hard TSP instances

function EA (popSize,instSize, generations, time_limit, cells, repetitions, type,
rnd, mutationParameters)
poolSize < |popSize/2]
for i =1 — popSize do
population]i] <~ RESCALE(RANDOMINSTANCE(instSize))
population]i] < ROUND(population[i], cells)
if rnd then
population|i] +— NORMALMUTATION (population]i])
population]i] «+ CUTTOBOUNDARY (population]i])
end if
end for
for generation =1 — generations do
for k =1 — popSize do
fitness[k] + coMPUTEFITNESS(population|k], repetitions)

end for
matingPool +— CREATEMATINGPOOL(pool Size, population, fitness)
nextPopulation[1] < population[BESTOF( fitness)] > 1-elitism

for k =2 — popSize do
parentl < RANDOMELEMENT(matingPool)
parent2 < RANDOMELEMENT(matingPool)
of fspring < UNIFORMMUTATION(UNIFORMCROSSOVER(parentl, parent2))
if !rnd then
of fspring < NORMALMUTATION(of fspring)
end if
of fspring < RESCALE(of fspring)
of fspring < ROUND(of fspring, cells)
if rnd then
of fspring < NORMALMUTATION(of fspring)
of fspring < CUTTOBOUNDARY (of fspring)
end if
end for
population < nextPopulation
if over time limit t¢me_limit then
return population
end if
end for
end function

3 Analysis of TSP Problem Difficulty

In this section, we analyze easy and hard TSP instances. We start by describing
the evolutionary algorithm that we used to generate these instances. Later on,
we characterize them using different features which we calculated and analyzed
to determine which features make a TSP instance difficult or easy to solve for



Algorithm 3 Compute Fitness

function CoOMPUTEFITNESS(instance, repetitions)
optimalT our Length <— CONCORDE(instance)
for j =1 — repetitions do
twoOptTour Lengths[j] <+ TWOOPT(instance) > Two Opt Tour
length

end for
return MEAN(twoOptTour Lengths)
optimalT our Length
end function

Algorithm 4 Mating pool creation
function CREATEMATINGPOOL(poolSize, population, fitness)
for i =1 — poolSize do
matingPool|i]

<+ BETTEROF(RANDOMELEMENT (population), RANDOMELEMENT(population))

end for
return matingPool
end function

2-opt.

3.1 EA-Based Generation of Easy and Hard TSP Instances

Our aim is to identify the features that are crucial for predicting the hardness
of instances for the 2-opt heuristic. For this a representative set of instances
is required which contains instances of varying degrees of difficulty. It turned
out that the construction of such a set is a nontrivial task. The generation of
instances in a random manner did not provide a sufficient spread with respect
to the instance hardness. The same is true for moderately sized instances con-
tained in the TSPLIB, i.e. lower than 1000 nodes, for which, in addition, the
number of instances is not high enough to provide an adequate basis for our
analysis. Higher instance sizes were excluded due to the large computational ef-
fort required for their analysis, especially the computation of the optimal tours.

Therefore, two sets of instances are constructed in the [0, 1]%-plane, which
focus on reflecting the extreme levels of difficulty. An evolutionary algorithm
(EA) is used for this purpose (see Algs. [1|- |§| for a description), which can be
parameterized such that its aim is to evolve instances that are either as easy
or as hard as possible for a given instance size. The approach is conceptually
similar to [34] but focusses on approximation quality rather than on the num-
ber of swaps as in our view this indicator more adequately reflects problem
hardness. In addition, the EA concept consists of a different mutation strategy.
Initial studies showed that a second mutation strategy was necessary. “Local
mutation” was achieved by adding a small normal perturbation to the location
(normalMutation). “Global mutation” was performed by replacing each coor-



Algorithm 5 Rescale instance

function RESCALE(instance)
mins < COLUMN_MINS(instance)
mazs < COLUMN_MAXS(instance)
scaledPop « ((instance — mins)T /(maxs — mins))T
return scaledPop
end function

Algorithm 6 Round instance

function ROUND(instance, cells)
gridRnd <— CREATEGRID(resolution = cells)
instRnd < FLOOR(instance x cells)/cells
for i =1 — instSize do
instRnd[i,] < —SetToCellCenter(instRnd, grid Rnd)
end for
return instRnd
end function

dinate of the city with a new uniform random value (uniformMutation). This
later step was performed with a very low probability. The two sequential muta-
tion strategies together enable small local as well as global structural changes of
the offspring resulting from the crossover operation. All parameters are given
at the end of this section.

In contrast to our previous work in [25], a rescaling of the generated instances
ensures the complete coverage of [0, 1]? in that the minimum and maximum coor-
dinates are placed on the boundary of the instance space (see Fig. . Therefore
the area covered will not vary as much as in our previous work and instances
become comparable in this regard.

In addition, two different rounding schemes are investigated which differ
in the sequence of the rounding and normal mutation step. In the first case
rounding is applied after both mutation steps are complete (!rnd, denoted as
nrnd in the following). After rescaling of the generated instance the points are
rounded to force the cities to lie on a predefined grid. This is advantageous for
some features which incorporate the proportion of distinct distances. Secondly,
we consider normal mutation after the sequence of uniform mutation, rescaling
and rounding (rnd). This strategy results in instances which resemble a grid
structure but also include slight perturbations of the latter as it for instance
occurs in circuit board problems. The rounding scheme conceptually differs
from rounding to a predefined number of digits as previously considered in that
in the current approach the points are rounded to the center of the grid cell they
are placed in (see Fig. . By this means the probability that cities are located
outside the boundary after normal mutation of the rounded points is very low.
In these cases points are cut to the boundary of the plane.

The fitness function to be optimized is chosen as the approximation quality
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Figure 1: Examples. Left: Rescaling of an instance of size 25. The original
instance is reflected by black dots. Right: Rounding of an instance of size 25 to
grid cell centers. The rounded instance is visualized by white dots.

of 2-opt, estimated by the arithmetic mean of the tour lengths of a fixed number
of 2-opt runs, on a given instance divided by the optimal tour length which is
calculated using Concorde [I]. In general other summary statistics instead of
the arithmetic mean could be used as well such as the maximum, minimum
or median approximation quality achieved. Note that randomness is only in-
duced by varying the initial tour whereas the 2-opt algorithm is deterministic
in always choosing the edge replacement resulting in the highest reduction of
the current tour length. Depending on the type of instance that is desired, the
BETTEROF and BESTOF operators are either chosen to minimize or maximize
the approximation quality.

We use a 1-elitism strategy such that only the individual with the current
best fitness value survives and will be contained in the next population. The
rest of the population is obtained by choosing two parents from the mating
pool, applying uniform crossover, uniform and normal mutation, rescaling and
rounding in the appropriate order and adding the offspring to the population.
This procedure is repeated until the population size is reached.

In the experiments, 100 instances each for the two instance classes (easy,
hard) with fixed instance sizes of 25, 50 and 100 are generated. The re-
maining parameters are set as follows: popSize = 30, generations 5000,
time_limit = 24h, uniformMutationRate = 0.001, normalMutationRate = 0.01,
cells = 100, and the standard deviation of the normal distribution used in the
normalMutation step equals normalMutationSd = 0.025. The parameter levels
were chosen based on initial experiments. The number of 2-opt repetitions for
calculating the approximation quality is set to 500. Again this was a trade-off
between evaluation speed and the noise level of the fitness function.

3.2 Characterization of the Generated Instances

Table [1] gives an overview of the instance generation process, i.e. the mean
approximation qualities and average number of generations the EA managed
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Size Class Type Mean Approximation Quality Mean # of generations
25 easy nrnd 1.00 5000.00
25 easy rnd 1.00 5000.00
25 hard nrnd 1.13 5000.00
25 hard rnd 1.13 5000.00
50 easy nrnd 1.00 3991.42
50  easy rnd 1.00 3295.77
50 hard nrnd 1.16 5000.00
50 hard rnd 1.16 5000.00

100 easy nrnd 1.03 454.93

100  easy rnd 1.03 453.74

100 hard nrnd 1.18 1194.59

100 hard rnd 1.18 1204.87

Table 1: Overview of generated instances: Mean approximation quality and
mean number of EA generations within the time limit.
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Figure 2: EA fitness in the course of the generations for all executed runs.

to execute within the time limit. For all instance sizes, a sufficiently high per-
formance discrepancy between the two evolved sets of hard and easy instances
is generated while the absolute performance difference increases along with the
instance size. For instance sizes 25 and 50, the EA even evolves instances which
2-opt nearly manages to solve to optimality on average.

The average number of generations executed by the EA within the computing
budget reflects the rising computational complexity when enlarging the instance
size. While for the smallest instance size the maximum number of generations

11
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Figure 3: Examples of the evolved instances of both types (easy, hard) includ-
ing the optimal tours computed by Concorde for different instance sizes and
rounding strategies (round before normal mutation (rnd), round after normal
mutation (nrnd)).

was reached, this amount decreases substantially for the higher instance sizes.
Interestingly, the EA requires much higher computation times for generating the
easy instances than it is the case for the hard ones. While the number of swaps
carried out by 2-opt slightly increases in this situation (see discussion below),
particularly problem hardness seems to increase for Concorde as the algorithm
takes up much higher computation times than for the instances which are hard to
approximate for 2-opt. No differences can be detected concerning the sequence
of rounding and mutation.

In Figure[3lexemplary EA instances of both classes are shown for the different
instance sizes and rounding schemes together with the corresponding optimal
tours computed by Concorde. The main visual observations can be summarized
as follows:

e The distances of the cities on the optimal tour appear to be more uniform
for the hard instances than it is the case for the easy ones. This is sup-
ported by Figure [4] that shows boxplots of the standard deviations of the
edge weights on the optimal tour. There we see that respective standard
deviations of the easy instances are roughly twice as high than for the
hard instances for instance sizes of 100 which increases to a factor of three
for the smallest instance size. Related to this context it is observable that
the easy instances tend to consist of many small clusters of cities whereas
this is not the case for the hard instances up to the same extent.

e Visually, the fraction of highly pointed angles within the class of easy
instances exceeds the respective proportion within the class of hard in-
stances. Fig. [5| shows mean angles between neighboring points on the
optimal tour and the corresponding standard deviations. The mean an-
gles are significantly smaller for the easy instances than within the class of

12
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Figure 4: Boxplots of the standard deviations of the tour length legs of the
optimal tour, both for the evolved easy and hard instances.

hard ones while the opposite is true for the respective standard deviations.

e The instance shapes for the smallest instance size structurally differ from
the respective ones regarding the higher instance sizes. This is especially
the case for the easy instances which exhibit an almost circular structure.
Consequentially, the area within the convex hull enclosed by the points is
much higher for high instance sizes than for smaller ones.

e U-shaped instances are prevalent within the class of generated hard in-
stances while the respective frequency increases with decreasing instance
size.

e No significant structural differences between the considered rounding schemes
can be observed. Note that both the U-shaped and X-shaped hard instance
for the instance size 50 represent interchangeable exemplary instances for
both rnd and nrnd.

Additionally, by analyzing the mean and standard deviation of the number
of swaps executed by 2-opt (see Fig. @ the choice of choosing the approximation
quality instead of the number of swaps as suggested in [34] as a meaningful per-
formance indicator for 2-opt can be justified. It becomes obvious that there is
no positive correlation between the number swaps and problem hardness mea-
sured by approximation quality. On the contrary, the opposite trend can be
observed. However, it is questionable if this significant difference is really a
relevant difference as the absolute deviations in the number of swaps are very
small. Therefore, at least for 2-opt, the number of swaps is not an adequate
indicator for algorithm performance.
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Figure 5: Boxplots of the mean (top) and standard deviations (bottom) of the
angle between adjacent cities on the optimal tour.

3.3 Classification of Instance Hardness

A decision tree [6] is used to differentiate between the two instance classes.
Independent from the instance sizes and rounding schemes an almost perfect
classification of instances into the two classes based on only two features is pos-
sible. Fig. [0 visualizes the values of two exemplary feature combinations which
can be used for this purpose. It becomes obvious that the classification task is
almost trivial as the instance classes could be separated in a quite satisfactory
manner with one feature already.

The corresponding classification rules are presented in Figs. [7] and [§] for rnd
together with the ten-fold cross-validated classification accuracies.
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Figure 6: Mean number of swaps (top) executed by 2-opt and standard devia-
tions (bottom) for different instance sizes and rounding schemes.

The first rule is perfectly in line with the exploratory observations of Sec-
tion 32l The mean angles between the cities on the optimal tour were found
to be significantly higher for the hard instances than the for the easy ones (see
Fig. |5) which is reflected by the corresponding classification rule. Secondly, the
easy instances exhibit a more uniform distribution of the tour length legs on the
optimal tour (see Fig.[d]). This observation coincides with the characteristics of
the feature dist_max. The higher the maximum distance between two cities the
lower is the probability of a low standard deviation of the tour length legs.

The second rule comprises two of the new features introduced in this paper.
A lower fraction of points on the convex hull of all points together with smaller
mean distance of the minimum spanning tree indicates a low instance hardness.
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Figure 7: Classification rules for rnd for the first feature combination given in
Fig. 0] Mean classification accuracy equals 0.968.

In general the rules are more accurate for the higher instances sizes than for
instance size 25.

Summarizing, an accurate feature-based separation of the easy and hard
instances can be successfully achieved, even with various combinations of two
features. Arising from this, we will investigate in the next sections how instances
of moderate difficulty in between the evolved easy and hard instances can be
generated and if an explicit prediction of the expected approximation quality of
2-opt on all instances is possible based on the available features. This prediction
problem in our view is much more interesting as well as challenging than the
classification task analyzed within this section and will thus be investigated in
more detail.

3.4 Morphing Hard into Easy Instances

We are now in the position to separate easy and hard instances with the classi-
fication rules presented in Section In this section, instances in between, i.e.
of moderate difficulty, are considered as well. Starting from the result in [12]
that a hard TSP instance can be transformed into an easy one by slight varia-
tion of the node locations, we studied the “transition” of hard to easy instances
by morphing a single hard instance into an easy instance by a convex combina-
tion of the points of both instances, which generates an instance in between the
original ones (Alg. [7)).

The point matching between the input instances is improved w.r.t. [25] in
that a greedy approach is used which successively selects the point pair for which
the pairwise Euclidean distance is minimal. Depending on the type of rounding
scheme used in the EA that generated the instances, a normal mutation step
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Figure 9: Scattlerplot of exemplary feature combinations which allow an accu-
rate separation of easy and hard instances.

and successive cutting to the boundary might be required after rescaling and
rounding to ensure that the newly constructed instance is of the desired instance
type.

Fig.[10]shows the positive effect of the greedy heuristic point matching strat-
egy in contrast to a random point matching as utilized in [25]. A simulation
was conducted in the following way: Two random instances are generated in the
[0, 1)2-plane, rescaled, rounded and (possibly) normally mutated afterwards to
reflect the EA rounding scheme which applies rounding before normal mutation
(rnd). Afterwards, the sum of interpoint distance after random point matching
(dist,) and greedy heuristic point matching (dist) are calculated and divided
by each other (dist, / disty). Results are shown for instance sizes {25, 50,100}
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Algorithm 7 Morphing
function MORPH(hardInstance, easyInstance, a, cells, rnd)
easylnstance < pointMatching(hardInstance, easyInstance)
instMorph < « - hardInstance + (1 — ) - easyInstance
instMorph < RESCALE(instMorph)
instMorph < ROUND(instMorph, cells)
if rnd then
instMorph < NORMALMUTATION (instM orph)
instMorph < CUTTOBOUNDARY (instMorph)
end if
return instMorph
end function

nrnd rnd

£ i i
Ll s e
= =+

T
25 50 100 25 50 100
instance size

Figure 10: Effect of heuristic vs. random point matching strategy. Boxplots of
the sums of all interpoint distances of the random approach (dist,) relative to
the heuristic ones (dist) are given for the two different rounding concepts and
varying instance sizes.

and both rounding schemes. It becomes obvious that the interpoint distances
resulting from the greedy approach are much smaller than the respective ones
of the random strategy. The latter distance sums are on average roughly twice
as high for the instance size 25 and increases linearly to a factor of four for
instance size 100. The effects are visually identical for both rounding concepts.

Morphing examples are shown in Figure [[I] Based on the initial instances
(e = 1and o = 0), instances emerge from each other with decreasing «.. Clearly,
the advantageous effect of the improved point matching becomes visible as the
transitions of the morphed instances are much smoother than in the former case
of random point matching. Furthermore, in case of random point matching
instances tend to concentrate on the center part of the [0, 1]? - plane.

The morphing strategy is applied to all possible combinations of single hard
and easy instances of the two evolved instance sets using 6 levels of «, i.e.
a €{0,0.2,04,...,1}. Each generated instance is characterized by the levels of
the features discussed in Section [2.1] Thus, the changes of the feature levels
with increasing o can be studied which is of interest as it should lead to an
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Figure 11: Example: Morphing of one instance into a different instance for
different a-levels of the convex combination (nrnd) with heuristic greedy (above)
and random point matching (below). Optimal tours are visualized in grey.

understanding of the influence of the different features on the approximation
quality.

Figures [12] - [I6] show the approximation quality for the instances of all mor-
phing sequences for the various « levels in the top subfigure. Starting from a
hard instance on the left side of each individual plot (o = 0) the findings of [12]
are confirmed. The approximation quality of 2-opt quickly increases with slight
increases of o. Additionally, the feature levels of the generated instances are
visualized arranged by feature groups. We concentrate on the subset of data
which is based on rounding before the normal mutation step as the presented
observations coincide for both rounding schemes.

Obviously, many features do not show any systematic relationship with the
approximation quality for all considered instance sizes, e.g. most features related
to the centroid, the clustering as well as the modes of the edge cost distribu-
tion. Interestingly, some features exhibit different tendencies for the smallest
and highest instance size, e.g. the features reflecting the mean and minimum
distance to the centroid in Fig. This is due to the different structural shapes
of small and large instance classes, more specifically the almost circular struc-
ture of the easy instances for an instance size of 25 (see Fig. [3). The same
reasoning holds for the features associated with the mean and median distances
and the standard deviation of the distance matrix. Exceptional behavior of the
feature levels occurs for the features related to the MST depth (mean, median,
max and sd) for which a systematic nonlinear decrease can be observed only for
the instance size 100. In most cases the change of the feature in relation to « is
similar for all instance sizes, what does change is the variance of the feature.

However, systematic nonlinear relationships with the approximation quality
can be detected for the mean and median distances on the MST as well as the
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Figure 12: Angle (top) and Centroid Features (bottom): Approximation quality
and feature values for different « levels of all conducted morphing experiments.
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Figure 13: Convex Hull (top) and Mode (bottom) features: Approximation
quality and feature values for different « levels of all conducted morphing ex-
periments.

standard deviation (Fig. , the maximum distance between the cities and the
respective standard deviation (sd) (Fig. and the coefficient of variation of
nearest neighbor distances (Fig. . Additional promising features in Fig.
are the fraction of points on the convex hull, the area of the convex hull, and
the mean angle between adjacent cities as well as the maximum distance to
the centroid in Fig. Naturally, the features included in the two exemplary
classification rules above form a subset of the mentioned relevant features.

3.5 Feature-Based Prediction of TSP Problem Hardness

In order to get a more accurate picture of the relationship between the approx-
imation quality and the features a Multivariate Adaptive Regression Splines
(MARS) [13] model is constructed in order to directly predict the expected ap-
proximation quality of 2-opt on a given instance based on the candidate features.

We used MARS with second degree interaction effects to model the relation-
ship between the approximation quality and the calculated instance features.
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Figure 16: Nearest neighbor distance features: Approximation quality and fea-
ture values for different a levels of all conducted morphing experiments.

Other modeling approaches, such as k-nearest neighbors and linear models, were
also considered but some initial experiments on a subset of the data showed that
MARS provided competitive results and scaled well to the full dataset. The final
model is shown in Table 2] We achieved a root mean squared error (RMSE) of
0.016964 for rnd and 0.016502 for nrnd. This compares favorably to a simple
model that always predicts the mean (RMSE for rnd equals 0.5115443 and for
nrnd 0.0516154) which we outperform by a factor of 3. In other words, given the
features of a TSP instance, we expect to predict, on average, the approximation
quality of a 2-opt solution to within +1.6% of the true approximation ratio. In
the following, we concentrate our analysis on rnd as the results almost coincide.

Because MARS models are highly non-linear, it is hard to visualize them.
In Fig. nine features which are frequently used in the splines of the model
are visualized. The top of the figure shows a scatter plot of the feature against
the approximation quality.

The color of each point represents the error the model makes when predicting
this point and gives us some insight into where the model fits the data well and
were it deviates significantly. The only real structure to be seen in the plots is a
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Spline Coefficient
(Intercept) 1.133

h(mst_dists_sd-0.0369208) -0.716

h(0.0369208-mst_dists_sd) 1.707
h(angle_mean-1.45864) 0.100
h(1.45864-angle_mean) 0.012
h(chull_points_on_hull-0.28) -0.012
h(0.28-chull_points_on_hull) -0.147
h(mst_depth_max-12) 0.005
h(12-mst_depth_max) 0.001
h(distance_max-1.26151) -0.199
h(1.26151-distance_max) 0.039
h(cluster_10pct_mean_distance_to_centroid-0.496846) -0.788
h(0.496846-cluster_10pct_mean_distance_to_centroid) -0.003
h(angle_mean-1.45864)*h(distance_mean-0.606019) -0.795
h(angle_mean-1.45864)*h(0.606019-distance_mean) -0.561
h(mst_depth_median-12) -0.018
h(12-mst_depth_median) 0.002
h(distance_sd-0.307304) -0.458
h(0.307304-distance_sd) 0.695
h(centroid_max_distance_to_centroid-0.72554)*h(1.26151-distance_max) 22.418
h(0.72554-centroid_max_distance_to_centroid)*h(1.26151-distance_max) -0.718
h(0.28-chull_points_on_hull)*h(mst_dists_mean-0.0671864) 1.737
h(0.28-chull_points_on_hull)*h(0.0671864-mst_dists_mean) -15.553
h(distance_mean_tour_length-56.3844) 0.005
h(56.3844-distance_mean_tour_length) -0.002
h(mst_dists_mean-0.105423) -0.224
h(0.105423-mst_dists_mean) -1.681
h(centroid_min_distance_to_centroid-0.314769)*h(mst_depth_max-12) 0.089
h(0.314769-centroid_min_distance_to_centroid)*h(mst_depth_max-12) -0.003
h(angle_mean-1.45864)*h(angle_median-2.16409) -0.006
h(angle_mean-1.45864)*h(2.16409-angle_median) -0.100
h(angle_mean-1.81252)*h(mst_depth_max-12) -0.013
h(1.81252-angle_mean)*h(mst_depth_max-12) -0.003
h(mst_dists_sd-0.0369208)*h(mst_dists_sum-0.0178643) 170.696
h(distance_sd-0.274633)*h(12-mst_depth_median) 0.075
h(mst_depth_sd-11.632) 0.011
h(11.632-mst_depth_sd) 0.025
h(mst_depth_mean-18.8) 0.011
h(18.8-mst_depth_mean) -0.017
h(angle_mean-1.82054)*h(0.105423-mst_dists_mean) 6.850
h(1.82054-angle_mean)*h(0.105423-mst_dists_mean) 0.699
h(distance_max-1.26151)*h(mst_dists_sd-0.0495085) 3.614
h(distance_max-1.26151)*h(0.0495085-mst_dists_sd) 5.079
h(mst_depth-max-12)*h(mst_dists_mean-0.0829785) 0.066
h(mst_depth_max-12)*h(0.0829785-mst_dists_mean) 0.082

Table 2: Results of tthGMARS model for rnd.



small cluster of red points with an approximation quality of about 1.15 that is
visible in every panel of the plot. This shows that our model fits the data fairly
well. The bottom part of the figure shows a variant of a partial dependency
plot. Instead of averaging over all observations as in the partial dependency
plot, we use a weighted average, where we give observations that are close to
the feature value a higher weight - we call this the weighted partial dependency
plot. That is, for a feature z with value x*, we calculate

1 - -
¥) = ——— w; () *m((x*,d; \ =
) = o ) (e, \0)

where J; denotes the features of the i-th instance, w;(z*) the weight assigned
to the i-th observation and m((z*,d; \ )) the predicted approximation quality
for the i-th feature vector if we set feature = to x*. We chose to use a Gaussian
weighting function

w;(z") = ag(z; — z*)

where « is set to a fourth of the standard deviation of the feature and ¢ de-
notes the density function of the standard normal distribution. We see that the
average response of the model fits the point clouds quite well.

We further studied whether we could handle the regression problem with a
substantially smaller feature set in order to simplify our model. For this purpose
we performed a sequential forward search, which iteratively adds the best feature
w.r.t. the RMSE. As regression model we again used MARS with second order
interaction effects. Such a forward search is a simple feature selection wrapper
as introduced in [19]. In this procedure we perform an outer resampling loop
(here 10-fold cross-validation) to create training and test sets. For each training
set we perform the feature selection by forward search. For each training set
and feature selection run the outer training set is resampled again (here simple
hold-out with 2/3 for training and 1/3 for testing) in a so called inner loop. The
RMSE of each feature set is measured and greedily optimized according to this
inner resampling. We stop the selection when the performance in RMSE does
not improve by at least v/5 - 10~5. The outer resampling ensures unbiased per-
formance results and the whole procedure is sometimes called nested resampling
[5].

The final results are 10 potentially different feature sets, but in our case we
always end up with the four features displayed in Table |3 which are also always
selected in the same order. We also display the (mean) RMSE for the feature
sets during the search on the inner test sets (the numbers are averaged across
all 10 feature selections). The unbiased RMSE in the outer cross-validation is
0.02037.

From the results we gain further insights into which features reduce the
RMSE the most and that we can build an acceptable model with only four
features. But it must still be noted that we perform substantially worse than
selecting the full model. The reader should be aware of the fact that a MARS
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Feature list RMSE

empty model 0.05113
+ mst_dists_sd 0.03440
+ angle_mean 0.02515
+ mst_dists_mean 0.02240
+ mst_depth_median 0.02036

Table 3: Results of the MARS model with feature selection by forward search.
model already performs an internal feature selection which is somewhat similar
to our approach, but faster. This last step was mainly undertaken to study in
further detail how well we can predict the approximation quality with a model
with a really low number of features.

4 Summary and Outlook

In this paper we investigated concepts to predict TSP problem hardness for
2-opt based local search strategies on the basis of experimental features that
characterize the properties of a TSP instance. A crucial aspect was the gener-
ation of a representative instance set as a basis for the analysis. This turned
out to be far from straightforward. Therefore, it was only possible to generate
very hard and very easy instances using sophisticated (evolutionary) strategies.
Summarizing, we managed to generate classes of easy and hard instances of
different sizes for which we are able to predict the correct instance class based
on the corresponding feature levels with only marginal errors. Several feature
combinations, which are cheap to compute even for large instances, could be
identified as key features for differentiating between hard and easy instances,
and the results are supported by exploratory analysis of the evolved instances
and the respective optimal tours. However, it should be noted that most prob-
ably not the whole space of possible hard instances is covered by using our
evolutionary method, i.e. probably only a subset of possible characteristics or
feature combinations that make a problem hard for 2-opt can be identified by
the applied methodology.

Instances of moderate difficulty were constructed by morphing hard into
easy instances where the effects of the transition on the corresponding feature
levels could be studied. A MARS model was successfully applied to predict
the approximation quality of 2-opt independent from the instance size based on
the features of the generated instances with very high accuracy. We strongly
believe that it should be straight forward to apply the same methodology to
other algorithms and use these models to derive a strategy for the algorithm
selection problem in the context of the TSP.

Moreover, we investigated two different rounding schemes within the evo-
lutionary algorithm for instance generation which either result in instances ex-
hibiting points on a regular grid or slightly perturbed points. However, the
experimental results did not show any significant differences between the differ-
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ent concepts.

The analysis offers promising perspectives for further research, specifically a
systematic comparison to other local and global search as well as hybrid solvers
with respect to the influence of the feature levels of an instance on the perfor-
mance of the respective algorithms. The investigation of much higher instances
sizes would be very interesting as well. However, it has to be kept in mind that
the computational effort intensely increases with increasing instance size as the
optimum solution, e.g. computable via Concorde, is required to calculate the
approximation quality of 2-opt.

Finally, it is open how representative the generated instances are for real-
world TSP instances. It is therefore very desirable to collect and create a much
larger pool of small to medium sized, real-world, TSP instances for comparison
experiments. There is also the question of how well these models can extrapolate
to much larger instance sizes. This would again be a desirable property in the
context of algorithm selection for very large instances for which it is not feasible
to calculate the global optimal tour.

In closing we would like to mention that all source code used in these exper-
iments is available online (see Footnote [1]) for anyone to use and extend.
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