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Abstract. This paper studies how to encode the problem of computing
the extensions of an argumentation framework (under a given semantics)
as a constraint satisfaction problem (CSP). Such encoding is of great
importance since it makes it possible to use the very efficient solvers
(developed by the CSP community) for computing the extensions. We
focus on three families of frameworks: Dung’s abstract framework, its
constrained version and preference-based argumentation frameworks.

Keywords: Default Reasoning, Argumentation, CSP.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation
of interacting arguments. An argument is a reason for believing in a statement,
doing an action, pursuing a goal, etc.

Argumentation theory is gaining an increasing interest in Artificial Intelli-
gence, namely for reasoning about defeasible/uncertain information, making de-
cisions under uncertainty, learning concepts, and modeling agents’ interactions
(see [1]).

The most abstract argumentation framework has been proposed in the seminal
paper [15] by Dung. It consists of a set of arguments, a binary relation repre-
senting attacks among arguments, and semantics for evaluating the arguments.
A semantics describes when a set of arguments, called extension, is acceptable
without bothering on how to compute that set. This framework has been ex-
tended in different ways in the literature. In [2,3], arguments are assumed to not
have the same strength while in [9] an additional constraint on arguments may
be available. In both works, Dung’s semantics are used to evaluate arguments,
thus to compute the extensions.

In [9,12,13,17], different decision problems related to the implementation of
those semantics have been identified and the computational complexity of each
problem studied. The results are a bit disappointing since they show that the
most important decision problems (like for instance testing whether a frame-
work has a stable set of arguments) are costly. Some algorithms that compute
extensions under some semantics have been developed, for instance in [8,11,18].
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However, the efficiency of those algorithms was not proved. They are neither
tested on benchmarks nor compared to other algorithms developed for the same
purpose.

Besides, there is a huge literature on Constraints Satisfaction Problems (CSP)
since many real-world problems can be described as CSPs. A CSP consists of a set
of variables, a (generally finite) domain for each variable and a set of constraints.
Each constraint is defined over a subset of variables and limits the combination of
values that the variables in this subset can take. The goal is to find an assignment
to the variables which satisfies all the constraints. In some problems, the goal
is to find all such assignments. Solving a constraint satisfaction problem on a
finite domain is an NP-complete problem in general. In order to be solved in a
reasonable time, different solvers have been developed. They use a form of search
based on variants of backtracking, constraint propagation and local search [19].

Our aim is to be able to use those powerful solvers for computing the exten-
sions of an argumentation framework. For that purpose, we study in this paper
how to encode an argumentation framework as a CSP. We particularly focus
on three families of frameworks: Dung’s framework, constrained argumentation
framework and preference-based argumentation framework (where arguments
may have different strengths). For each family, we propose different CSPs which
compute the extensions of the framework under different acceptability seman-
tics. In each CSP, arguments play the role of variables and the attacks represent
mainly the constraints.

This paper is organized as follows: Section 2 recalls the basic concepts of a
CSP. Section 3 recalls Dung’s argumentation framework and shows how it is
encoded as a CSP. Section 4 recalls the constrained version of Dung’s frame-
work and presents its encoding as a CSP. Section 5 presents preference-based
argumentation frameworks as well as their encoding as CSPs. In Section 6, we
compare our approach to existing works on the topic. The last section is devoted
to concluding remarks and perspectives. Due to space limitation, the proofs are
not included in the paper.

2 Constraint Satisfaction Problems (CSPs)

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a
set of variables, x1, . . . , xn, and a set of constraints c1, . . . , cm. Each variable xi

takes its values from a finite domain Di, and each constraint ci involves some
subset of the variables and specifies the allowable combinations of values for that
subset.

Definition 1 (CSP). A CSP instance is a triple (X ,D, C) where:

– X = {x1, . . . , xn} is a set of variables,
– D = {D1, . . . ,Dn} is a set of finite domains for the variables, and
– C = {c1, . . . , cm} is a set of constraints.



112 L. Amgoud and C. Devred

Each constraint ci is a pair (hi, Hi) where

– hi = (xi1, . . . , xik) is a k-tuple of variables
– Hi is a k-ary relation over D, i.e. Hi is a subset of all possible variable

values representing the allowed combinations of simultaneous values for the
variables in hi.

A state of the problem is defined by an assignment of values to some or all of
the variables.

Definition 2 (Assignment). An assignment v for a CSP instance (X ,D, C) is
a mapping that assigns to every variable xi ∈ X an element v(xi) ∈ Di. An as-
signment v satisfies a constraint ((xi1, . . . , xik), Hi) ∈ C iff (v(xi1), . . . , v(xik)) ∈
Hi.

Finally, a solution of a CSP is defined as follows:

Definition 3 (Solution). A solution of a CSP instance (X ,D, C) is an assign-
ment v that satisfies all the constraints in C and in which all the variables of X
are assigned a value. We write (v(x1), . . . , v(xn)) to denote the solution.

3 Abstract Frameworks

This section recalls Dung’s argumentation framework and presents the different
corresponding CSPs which return its extensions under various semantics.

3.1 Dung’s Framework

In [15], Dung has developed the most abstract argumentation framework in the
literature. It consists of a set of arguments and an attack relation between them.

Definition 4 (Argumentation framework). An argumentation framework
(AF) is a pair F = (A,R) where A is a set of arguments and R is an attack
relation (R ⊆ A×A). The notations aRb or (a, b) ∈ R mean that the argument
a attacks the argument b.

Different acceptability semantics for evaluating arguments have been proposed in
the same paper [15]. Each semantics amounts to define sets of acceptable argu-
ments, called extensions. Before recalling those semantics, let us first introduce
the two basic properties underlying them, namely conflict-freeness and defence.

Definition 5 (Conflict-free, Defence). Let F = (A,R) be an AF and B ⊆
A.

– B is conflict-free iff � a, b ∈ B s.t. aRb.
– B defends an argument a iff for all b ∈ A s.t. bRa, there exists c ∈ B s.t.

cRb.
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The following definition recalls the acceptability semantics proposed in [15].

Definition 6 (Acceptability semantics). Let F = (A,R) be an AF and B
⊆ A.

– B is an admissible set iff it is conflict-free and defends its elements.
– B is a preferred extension iff it is a maximal (for set ⊆) admissible set.
– B is a stable extension iff it is a preferred extension that attacks any argu-

ment in A \ B.
– B is a complete extension iff it is conflict-free and it contains all the argu-

ments it defends.
– B is a grounded extension iff it is a minimal (for set ⊆) complete extension.

Example 1. Let us consider the framework F1 = (A1,R1) where A1 = {a, b, c, d}
and R1 = {(a, b), (b, c), (c, d), (d, a)}. F1 has two preferred and stable extensions:
B1 = {a, c} and B2 = {b, d} while its grounded extension is the empty set.

3.2 Computing Dung’s Semantics by CSPs

In this section, we propose four mappings of Dung’s argumentation framework
into CSP instances. The idea is: starting from an argumentation framework, we
define a CSP instance whose solutions are the extensions of the framework under
a given acceptability semantics. In the four instances, arguments play the role of
variables that is, a variable is associated to each argument. Each variable may
take two values 0 or 1 meaning that the corresponding argument is rejected or
accepted. Thus, the domains of the variables are all binary. Things are different
with the constraints. We show that according to the semantics that is studied,
the definition of a constraint changes.

Let us start with a CSP instance that computes the conflict-free sets of ar-
guments. In this case, each attack (a, b) ∈ R gives birth to a constraint which
says that the two variables a and b cannot take value 1 at the same time. This
means that the two corresponding arguments cannot belong to the same set. This
constraint has the following form: ((a, b), ((0, 0), (0, 1), (1, 0))). Note that this is
equivalent to the cases where the propositional formula a ⇒ ¬b is true (i.e. gets
value 1). For simplicity reasons, throughout the paper we will use propositional
formulas for encoding constraints. Solving a CSP amounts thus to finding the
models of the set of constraints.

Definition 7 (Free CSP). Let F = (A,R) be an argumentation framework. A
free CSP associated with F is a tuple (X ,D, C) where X = A, for each ai ∈ X ,
Di = {0, 1} and C = {a ⇒ ¬b | (b, a) ∈ R}.
It can be checked that |C| = |R|. The following result shows that the solutions
of this CSP are the conflict-free sets of arguments of the corresponding AF.

Theorem 1. Let (X ,D, C) be the CSP instance associated with the AF F =
(A,R). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk}
s.t. v(xi) = 1 is conflict-free (with i = j . . . , k).
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Let us consider the argumentation framework F1 defined in Example 1.

Example 1 (Cont): The CSP corresponding to F1 is (X ,D, C) s.t. X =
{a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, C = {a ⇒ ¬d, b ⇒ ¬a, c ⇒ ¬b,
d ⇒ ¬c}. This CSP has the following solutions: (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0) and (0, 1, 0, 1). Thus, the sets {}, {a}, {b}, {c},
{d}, {a, c} and {b, d} are conflict-free.

Let us now study the case of stable semantics. Stable extensions are computed
by a CSP which considers that an argument and its attackers cannot have the
same value.

Definition 8 (Stable CSP). Let F = (A,R) be an argumentation framework.
A stable CSP associated with F is a tuple (X ,D, C) where X = A, ∀ai ∈ X ,
Di = {0, 1} and C = {a ⇔ ∧

b:(b,a)∈R
¬b | a ∈ A}.

It is worth mentioning that the previous definition is inspired from [10].

Theorem 2. Let (X ,D, C) be a stable CSP associated with F = (A,R). The
tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk} s.t.
v(xi) = 1 is a stable extension of F .

Let us illustrate this result on the following example.

Example 1 (Cont): The stable CSP corresponding to F1 is (X ,D, C) s.t.
X = {a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, and C = {a ⇔ ¬d, b ⇔ ¬a,
c ⇔ ¬b, d ⇔ ¬c}. This CSP has two solutions: (1, 0, 1, 0) and (0, 1, 0, 1). The
sets {a, c} and {b, d} are the two stable extensions of F1.

The two previous CSPs are simple since attacks are directly transformed into
constraints. The notion of defence is not needed in both cases. However, things
are not so obvious with admissible semantics. The following definition shows
that a CSP which computes the admissible sets of an AF should consider both
the attacks and the defence in its constraints.

Definition 9 (Admissible CSP). Let F = (A,R) be an argumentation frame-
work. An admissible CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a ⇒ ∧

b:(b,a)∈R
¬b)∧(a ⇒ ∧

b:(b,a)∈R
(

∨
c:(c,b)∈R

c)) |
a ∈ A}.
The following result shows that the solutions of an admissible CSP provide the
admissible extensions of the corresponding argumentation framework.

Theorem 3. Let (X ,D, C) be an admissible CSP associated with an AF F .
(v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk} s.t. v(xi) = 1
is an admissible set of F .
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Let us illustrate the notion of admissible CSP with a simple example.

Example 2. Let us consider the framework F2 = (A2,R2) where A2 = {a, b, c, d}
and R2 = {(c, b), (d, b), (b, a)}. The admissible CSP associated with F2 is (X ,D, C)
where: X = A2, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}} and C = {d ⇒ �, c ⇒ �,
b ⇒ ¬c∧¬d, a ⇒ ¬b, a ⇒ c∨d}. This CSP has the following solutions: (0, 0, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1) (1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 1). These solutions
return the admissible sets of F2, that is: {}, {c}, {d}, {c, d}, {a, c}, {a, d} and
{a, c, d}.
As preferred extensions are maximal (for set inclusion) admissible sets, then they
are computed by an admissible CSP.

Theorem 4. Let (X ,D, C) be an admissible CSP associated with an AF F . Each
maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and (v(x1), . . . , v(xn))
is a solution of the CSP, is a preferred extension of F .

Let us come back to Example 2.

Example 2 (Cont): It is clear that the last solution (1, 0, 1, 1) is the one which
returns the only preferred extension of F2, i.e. {a, c, d}.
Complete extensions are also computed by a CSP which takes into account the
notion of defence in the constraints.

Definition 10 (Complete CSP). Let F = (A,R) be an argumentation frame-
work. A complete CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a ⇒ ∧

b:(b,a)∈R
¬b)∧(a ⇔ ∧

b:(b,a)∈R
(

∨
c:(c,b)∈R

c)) |
a ∈ A}.
Note that there is a slight difference between the constraints of an admissible
CSP and those of a complete CSP. Since a complete extension should contain
all the arguments it defends, then an argument and all its defenders should be
in the same set. However, the only requirement on an admissible set is that it
defends its arguments. This is encoded by a simple logical implication.

Theorem 5. Let (X ,D, C) be a complete CSP associated with an AF F . The
tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj, . . . , xk}, s.t.
v(xi) = 1 is a complete extension of F .

Example 2 (Cont): The complete CSP associated with F2 is (X ,D, C) where:
X = A2, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}} and C = {d ⇒ �, c ⇒ �, b ⇒ ¬c∧¬d,
a ⇒ ¬b, a ⇔ c∨d}. This CSP has one solution which is (1, 0, 1, 1). Thus, F2 has
the set {a, c, d} as its unique complete extension.
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Since grounded extension is a minimal (for set inclusion) complete extension,
then it is computed by a complete CSP as follows.

Theorem 6. Let (X ,D, C) be a complete CSP associated with an AF F . The
grounded extension of F is the minimal (for set inclusion) set {xj , . . . , xk} s.t.
v(xi) = 1 and (v(x1), . . . , v(xn)) is a solution of the CSP.

Example 2 (Cont): The grounded extension of F2 is {a, c, d} which is returned
by the unique solution of the complete CSP corresponding to F2.

4 Constrained Frameworks

This section recalls the constrained version of Dung’s argumentation framework
and proposes its mappings to CSPs.

4.1 Basic Definitions

The basic argumentation framework of Dung has been extended in [9] by adding
a constraint on arguments. This constraint should be satisfied by Dung’s exten-
sions (under a given semantics). For instance, in Example 1, one may imagine
a constraint which requires that the two arguments a and c belong to the same
extension. Note that this constraint is satisfied by B1 but not by B2. Thus, B1

would be the only extension of the framework.
The constraint is a formula of a propositional language LA whose alphabet is

exactly the set A of arguments. Thus, each argument in A is a literal of LA. LA
contains all the formulas that can be built using the usual logical operators (∧,
∨, ⇒, ¬, ⇔) and the constant symbols (� and ⊥).

Definition 11 (Constraint, Completion). Let A be a set of arguments and
LA its corresponding propositional language.

– C is a constraint on A iff C is a formula of LA.
– The completion of a set B ⊆ A is B̂ = {a | a ∈ B} ∪ {¬a | a ∈ A \ B}.
– A set B ⊆ A satisfies C iff B̂ is a model of C (B̂ |= C ).

The completion of a set B of arguments is a set in which each argument of A
appears either as a positive literal if the argument belongs to B or as a negative
one otherwise. Thus, |B̂| = |A|.

A constrained argumentation framework (CAF) is defined as follows:

Definition 12 (CAF). A constrained argumentation framework (CAF) is a
triple F = (A,R, C ) where A is a set of arguments, R ⊆ A × A is an attack
relation and C is a constraint on the set A.

Dung’s semantics are extended to the case of CAFs. The idea is to compute
Dung’s extensions (under a given semantics), and to keep among those extensions
only the ones that satisfy the constraint C .
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Definition 13 (C-admissible set). Let F = (A,R, C ) be a CAF and B ⊆ A.
The set B is C -admissible in F iff:

1. B is admissible,
2. B satisfies the constraint C .

In [15], it has been shown that the empty set is always admissible. However, it
is not always C -admissible since the set ∅̂ does not always imply C .

Definition 14 (C-preferred, C-stable extension). Let F = (A,R, C ) be a
CAF and B ⊆ A.

– B is a C -preferred extension of F iff B is maximal for set-inclusion among
the C -admissible sets.

– B is a C -stable extension of F iff B is a C -preferred extension that attacks
all arguments in A\B.

The following result summarizes the links between the extensions of a CAF
F = (A,R, C ) and those of its basic version F ′ = (A,R).

Theorem 7. [9] Let F = (A,R, C ) be a CAF and F ′ = (A,R) be its basic
version.

– For each C -preferred extension B of F , there exists a preferred extension B′

of F ′ s.t. B ⊆ B′.
– Every C -stable extension of F is a stable extension of F ′. The converse does

not hold.

It is worth noticing that when the constraint of a CAF is a tautology, then
the extensions of this CAF coincide with those of its basic version (i.e. the
argumentation framework without the constraint).

Let us illustrate this notion of CAFs through a simple example.

Example 1 (Cont): Assume an extended version of the argumentation frame-
work F1 where we would like to accept the two arguments a and c. This is
encoded by a constraint C : a ∧ c. It can be checked that the CAF (A1,R1, C )
has one C -stable extension which is B1 = {a, c}. Note that B2 = {b, d} is a stable
extension of F1 but not a C -stable extension of its constrained version.

4.2 Mappings into CSPs

Let F = (A,R, C ) be a given CAF. In order to compute its C -extensions under
different semantics, we follow the same line of research as in the previous section.
The only difference is that in addition to the constraints defined in Section 3.2,
there is an additional constraint which is C .

Let us start with C -stable extensions. They are computed by the stable CSP
given in Def. 8 augmented by the constraint C in its set C.
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Definition 15 (C -stable CSP). Let F = (A,R, C ) be a constrained argumen-
tation framework. A C−stable CSP associated with F is a tuple (X ,D, C) where
X = A, for each ai ∈ X , Di = {0, 1} and C = {C } ∪ {a ⇔ ∧

b:(b,a)∈R
¬b | a ∈ A}.

Note that the constraints in C are all propositional formulas built over a language
LA whose alphabet is the set A of arguments. We show next that the solutions
of a C -stable CSP return all the C -stable extensions of the corresponding CAF.

Theorem 8. Let (X ,D, C) be a C -stable CSP associated with a CAF F =
(A,R, C ). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set
{xj , . . . , xk} such that v(xi) = 1 is a C -stable extension of F .

Example 1 (Cont): The C -stable CSP associated with the CAF extending F1

with the constraint C : a∧ c is (X ,D, C) s.t. X = {a, b, c, d}, D = {{0, 1}, {0, 1},
{0, 1}, {0, 1}}, and C = {a∧ c, a ⇔ ¬d, b ⇔ ¬a, c ⇔ ¬b, d ⇔ ¬c}. This CSP has
one solution which is (1, 0, 1, 0). It returns the C -stable extension {a, c} of the
CAF.

A CSP which computes the C -admissible sets of a CAF is grounded on the
admissible CSP introduced in Definition 9.

Definition 16 (C -admissible CSP). Let F = (A,R, C ) be a constrained
argumentation framework. A C -admissible CSP associated with F is a tuple
(X ,D, C) where X = A, for each ai ∈ X , Di = {0, 1} and C = {C } ∪ {(a ⇒∧
b:(b,a)∈R

¬b) ∧ (a ⇒ ∧
b:(b,a)∈R

(
∨

c:(c,b)∈R
c)) | a ∈ A}.

We show that the solutions of this CSP are C -admissible extensions of the cor-
responding CAF.

Theorem 9. Let (X ,D, C) be a C -admissible CSP associated with a CAF F =
(A,R, C ). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set
{xj , . . . , xk} s.t. v(xi) = 1 is a C -admissible set of the CAF F .

C -preferred extensions are maximal (for set inclusion) admissible sets, then the
following result follows from the previous one.

Theorem 10. Let (X ,D, C) be a C -admissible CSP associated with a CAF F =
(A,R, C ). Each maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and
(v(x1), . . . , v(xn)) is a solution of the CSP, is a C -preferred extension of F .

5 Preference-Based Frameworks

Is is well acknowledged in argumentation literature that arguments may not
have the same strength. For instance, arguments built from certain information
are stronger than arguments built from uncertain information. Consequently, in
[2] Dung’s framework has been extended in such a way to take into account the
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strengths of arguments when evaluating them. The idea is to consider in addition
to the attack relation, another binary relation � which represents preferences
between arguments. This relation can be instantiated in different ways. Writing
a � b means that a is at least as good as b. Let 
 be the strict relation associated
with �. It is defined as follows: a 
 b iff a � b and not b � a. In Dung’s
framework, an attack always succeeds (if the attacked argument is not defended).
In preference-based frameworks, an attack may fail if the attacked argument is
stronger than its attacker.

Definition 17 (PAF). A preference-based argumentation framework (PAF) is
a tuple F = (A,R,�) where A is a set of arguments, R ⊆ A ×A is an attack
relation and � is (partial or total) preorder on A (� ⊆ A×A).
The extensions of F (under any semantics) are those of the AF (A, Def) where
(a, b) ∈ Def iff (a, b) ∈ R and not(b 
 a).

Let us now show how to compute the extensions of a PAF with a CSP. The
following CSP computes the conflict-free sets of arguments in a PAF.

Definition 18. Let F = (A,R,�) be a PAF. A CSP associated with F is a
tuple (X ,D, C) where X = A, for each ai ∈ X , Di = {0, 1} and C = {a ⇒
¬b s.t. (a, b) ∈ R and not(b 
 a)}.
Theorem 11. Let (X ,D, C) be a CSP instance associated with a PAF F =
(A,R,�). The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set{xj , . . . ,
xk} s.t. v(xi) = 1 is conflict-free in PAF F .

Stable extensions of a PAF are computed by a slightly modified version of stable
CSP.

Definition 19 (Pref-stable CSP). Let F = (A,R,�) be a PAF. A pref stable
CSP associated with F is a tuple (X ,D, C) where X = A, for each ai ∈ X ,
Di = {0, 1} and C = {a ⇔ ∧

b:(b,a)∈R and not(a�b)

¬b | a ∈ A}.

Theorem 12. Let (X ,D, C) be a pref stable CSP associated with a PAF F =
(A,R,�). The tuple (v(x1), . . . , v(xn)) is a solution of this CSP iff the set
{xj , . . . , xk} s.t. v(xi) = 1 is a stable extension of F .

Example 1 (Cont): Assume a PAF with A1 as its set of arguments, R1

its attack relation and that b 
 a and d 
 c. Its corresponding pref stable
CSP is (X ,D, C) s.t. X = {a, b, c, d}, D = {{0, 1}, {0, 1}, {0, 1}, {0, 1}}, and
C = {a ⇔ ¬d, b ⇔ �, c ⇔ ¬b, d ⇔ �}. This CSP has one solution: (0, 1, 0, 1).
Thus, the set {b, d} is the unique stable extensions of this PAF.

A CSP which computes the admissible sets of a PAF is an extended version of
admissible CSP.
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Definition 20 (Pref-admissible CSP). Let F = (A,R,�) be a PAF. A
pref-admissible CSP associated with F is a tuple (X ,D, C) where X = A, for
each ai ∈ X , Di = {0, 1} and C = {(a ⇒ ∧

b:(b,a)∈R and not(a�b)

¬b) ∧ (a ⇒
∧

b:(b,a)∈R and not(a�b)

(
∨

c:(c,b)∈R and not(b�c)

c)) | a ∈ A}.

We show that the solutions of this CSP are admissible extensions of the corre-
sponding PAF.

Theorem 13. Let (X ,D, C) be a pref-admissible CSP associated with a PAF F .
The tuple (v(x1), . . . , v(xn)) is a solution of this CSP iff the set {xj, . . . , xk} s.t.
v(xi) = 1 is an admissible set of F .

As preferred extensions are maximal (for set inclusion) admissible sets, then the
following result follows from the previous one.

Theorem 14. Let (X ,D, C) be a pref-admissible CSP associated with a PAF F .
Each maximal (for set inclusion) set {xj , . . . , xk}, s.t. v(xi) = 1 and (v(x1), . . . ,
v(xn)) is a solution of the CSP, is a preferred extension of F .

Complete extensions are computed by a revised version of complete CSP.

Definition 21 (Pref-complete CSP). Let F = (A,R,�) be a PAF. A pref-
complete CSP associated with F is a tuple (X ,D, C) where X = A, for each
ai ∈ X , Di = {0, 1} and C = {(a ⇒ ∧

b:(b,a)∈R and not(a�b)

¬b)

∧(a ⇔ ∧
b:(b,a)∈R and not(a�b)

(
∨

c:(c,b)∈R and not(b�c)

c)) | a ∈ A}.

Theorem 15. Let (X ,D, C) be a pref-complete CSP associated with a PAF F .
The tuple (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk}, s.t.
v(xi) = 1 is a complete extension of F .

The grounded extension of a PAF is computed by the pref-complete CSP as
follows.

Theorem 16. Let (X ,D, C) be a pref-complete CSP associated with a PAF F .
The grounded extension of F is the minimal (for set inclusion) set {xj, . . . , xk}
s.t. v(xi) = 1 and (v(x1), . . . , v(xn)) is a solution of the CSP.

6 Related Work

There are very few attempts in the literature for modeling argumentation frame-
works as a CSP. To the best of our knowledge, the only works on the topic are
[4,5].

In [5], the authors have studied the problem of encoding weighted argumen-
tation frameworks by semirings. In a weighted framework, attacks do not nec-
essarily have the same weights. Thus, a weight (i.e. a value between 0 and 1) is
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associated with each attack between two arguments. When all the attacks have
weight 1, the corresponding framework collapses with Dung’s abstract framework
recalled in Section 3.

In [5], it has been shown how to compute stable and complete extensions by
semirings. In our paper, we have proposed an alternative approach for computing
those semantics and other semantics (like preferred and grounded semantics).
The approach is simpler and more natural. While in [5], the authors have used
soft CSP, in our paper we have used simple CSP. Moreover, we have studied
more semantics and two extended versions of Dung’s framework: the constrained
version proposed in [9] and the preferred version proposed in [2].

The works presented in [4,9] are closer to our. In these papers, the authors
have encoded Dung’s framework as a satisfiability problem (SAT). In [7], it
has been shown that SAT is a particular case of CSPs and a mapping from
SAT to CSP has been given. In our paper, we took advantage of that mapping
and we presented different CSPs which encode Dung’s semantics not only for
Dung’s framework, but also for constrained frameworks and preference-based
frameworks.

In [18] an implementation of Dung’s semantics using answer set programming
(ASP) has been provided. Thus, it is complementary to our work. Moreover, the
ASP literature has shown that there are links between ASP and CSP.

7 Conclusion

In this paper, we have expressed the problem of computing the extensions of
an argumentation framework under a given semantics as a CSP. We have in-
vestigated three types of frameworks: Dung’s argumentation framework [15],
its constrained version proposed in [9], and its extension with preferences [2].
For each of these frameworks, we have proposed different CSPs which compute
their extensions under various semantics, namely admissible, preferred, stable,
complete and grounded.

Such mappings are of great importance since they allow the use of the efficient
solvers that have been developed by CSP community. Thus, the efficiency of our
different CSPs depend on that of the solver that is chosen to solve them. Note
also that the CSP version of Dung’s argumentation framework is as simple as
this latter since a CSP can be represented as a graph.

It is worth mentioning that in the particular case of grounded semantics, there
is an additional test of minimality that is required after computing the solutions
of the corresponding CSP. This increases thus the complexity of computing the
grounded extension of an argumentation framework. Consequently, this partic-
ular extension should be computed using existing algorithms in argumentation
literature [1] and not by a CSP.

There are a number of ways to extend this work. One future direction con-
sists of proposing the CSPs that return other semantics like semi-stable [6] and
ideal [14]. Another idea consists of encoding weighted argumentation frame-
works [16] as CSPs. In a weighted framework, attacks may not have the same
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importance. Such framework can be encoded by valued CSP in which constraints
are associated with weights.
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