Skip to main content
Log in

Optimizations in computing the Duquenne–Guigues basis of implications

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we consider algorithms involved in the computation of the Duquenne–Guigues basis of implications. The most widely used algorithm for constructing the basis is Ganter’s Next Closure, designed for generating closed sets of an arbitrary closure system. We show that, for the purpose of generating the basis, the algorithm can be optimized. We compare the performance of the original algorithm and its optimized version in a series of experiments using artificially generated and real-life datasets. An important computationally expensive subroutine of the algorithm generates the closure of an attribute set with respect to a set of implications. We compare the performance of three algorithms for this task on their own, as well as in conjunction with each of the two algorithms for generating the basis. We also discuss other approaches to constructing the Duquenne–Guigues basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Queries and concept learning. Mach. Learn. 2, 319–342 (1988)

    Google Scholar 

  2. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Mach. Learn. 9, 147–164 (1992)

    MATH  Google Scholar 

  3. Arias, M., Balcázar, J.L.: Construction and learnability of canonical Horn formulas. Mach. Learn. 85(3), 273–297 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Armstrong, W.W.: Dependency structures of data base relationships. In: Proc. IFIP Congress, pp. 580–583 (1974)

  5. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Description logic knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 230–235 (2007)

  6. Babin, M.A., Kuznetsov, S.O.: Recognizing pseudo-intents is coNP-complete. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proceedings of the 7th International Conference on Concept Lattices and Their Applications, pp. 294–301. University of Sevilla, Spain (2010)

    Google Scholar 

  7. Beeri, C., Bernstein, P.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

    Article  Google Scholar 

  8. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implicational basis. Theor. Comput. Sci. 411(22–24), 2155–2166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blake, C., Merz, C.: UCI repository of machine learning databases (1998). http://archive.ics.uci.edu/ml

  10. Day, A.: The lattice theory of functional dependencies and normal decompositions. Int. J. Algebra Comput. 2, 409–431 (1992)

    Article  MATH  Google Scholar 

  11. Demming, R., Duffy, D.: Introduction to the Boost C++ Libraries. Datasim Education Bv (2010). See http://www.boost.org. Accessed 3 May 2013

  12. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Appl. Math. 159, 450–466 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Technische Hochschule Darmstadt, Germany (1984)

    Google Scholar 

  14. Ganter, B.: Attribute exploration with background knowledge. Theor. Comput. Sci. 217(2), 215–233 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  16. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de donnees binaires. Math. Sci. Hum. 95(1), 5–18 (1986)

    MathSciNet  Google Scholar 

  17. Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artif. Intell. 74(1), 129–145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Khardon, R.: Translating between Horn representations and their characteristic models. J. Artif. Intell. Res. (JAIR) 3, 349–372 (1995)

    MATH  Google Scholar 

  19. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) Formal Concept Analysis, Lecture Notes in Computer Science, vol. 5986, pp. 255–266. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  20. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2/3), 189–216 (2002)

    Article  MATH  Google Scholar 

  21. Kuznetsov, S.O., Obiedkov, S.: Some decision and counting problems of the Duquenne–Guigues basis of implications. Discrete Appl. Math. 156(11), 1994–2003 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maier, D.: The theory of relational databases. Computer software engineering series. Computer Science Press, Rockville (1983)

    Google Scholar 

  23. Mannila, H., Räihä, K.J.: The design of relational databases. Addison-Wesley Longman Publishing Co., Inc., Boston, MA (1992)

    MATH  Google Scholar 

  24. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Obiedkov, S., Kourie, D., Eloff, J.: Building access control models with attribute exploration. Comput. Secur. 28(1–2), 2–7 (2009)

    Article  Google Scholar 

  26. Reeg, S., Wei, W.: Properties of Finite Lattices. Diplomarbeit, TH Darmstadt (1990)

    Google Scholar 

  27. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ryssel, U., Distel, F., Borchmann, D.: Fast computation of proper premises. In: Int. Conf. on Concept Lattices and Their Applications, pp. 101–113. INRIA Nancy–Grand Est and LORIA, France (2011)

    Google Scholar 

  29. Taouil, R., Bastide, Y.: Computing proper implications. In: Proc. ICCS-2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 290–303 (2001)

  30. Valtchev, P., Duquenne, V.: On the merge of factor canonical bases. In: Medina, R., Obiedkov, S. (eds.) ICFCA, Lecture Notes in Computer Science, vol. 4933, pp. 182–198. Springer, New York (2008)

    Google Scholar 

  31. Wild, M.: Computations with finite closure systems and implications. In: Computing and Combinatorics, pp. 111–120 (1995)

  32. Yevtushenko, S.A.: System of data analysis “Concept Explorer” (in Russian). In: Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, pp. 127–134. Russia (2000). http://conexp.sourceforge.net/. Accessed 3 May 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Obiedkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhanov, K., Obiedkov, S. Optimizations in computing the Duquenne–Guigues basis of implications. Ann Math Artif Intell 70, 5–24 (2014). https://doi.org/10.1007/s10472-013-9353-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9353-y

Keywords

Mathematics Subject Classifications (2010)

Navigation