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Abstract Embedding planning systems in real-world domains has led to the necessity
of Distributed Continual Planning (DCP) systems where planning activities are dis-
tributed across multiple agents and plan generation may occur concurrently with plan
execution. A key challenge in DCP systems is how to coordinate activities for a group
of planning agents. This problem is compounded when these agents are situated in a
real-world dynamic domain where the agents often encounter differing, incomplete,
and possibly inconsistent views of their environment. To date, DCP systems have
only focused on cases where agents’ behavior is designed to optimize a global plan.
In contrast, this paper presents a temporal reasoning mechanism for self-interested
planning agents. To do so, we model agents’ behavior based on the Belief-Desire-
Intention (BDI) theoretical model of cooperation, while modeling dynamic joint
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plans with group time constraints through creating hierarchical abstraction plans
integrated with temporal constraints network. The contribution of this paper is
threefold: (i) the BDI model specifies a behavior for self interested agents working
in a group, permitting an individual agent to schedule its activities in an autonomous
fashion, while taking into consideration temporal constraints of its group members;
(ii) abstract plans allow the group to plan a joint action without explicitly describing
all possible states in advance, making it possible to reduce the number of states which
need to be considered in a BDI-based approach; and (iii) a temporal constraints net-
work enables each agent to reason by itself about the best time for scheduling activi-
ties, making it possible to reduce coordination messages among a group. The mecha-
nism ensures temporal consistency of a cooperative plan, enables the interleaving
of planning and execution at both individual and group levels. We report on
how the mechanism was implemented within a commercial training and simulation
application, and present empirical evidence of its effectiveness in real-life scenarios
and in reducing communication to coordinate group members’ activities.

Keywords Artificial intelligence · Multiagent system · Planning · Cooperation ·
Coordination · Time constraints

Mathematics Subject Classification (2010) 68T42

1 Introduction

Embedding planning systems in real-world domains is a challenging problem that has
wide-ranging importance and applications [11, 18, 19, 21, 44, 70, 82, 86]. Examples
of these settings are problems that are inherently distributed, such as training and
educational settings, Internet information sharing, interactive entertainment, search
and rescue missions and robotic space missions [44, 82]. Additionally, using multiple
agents to create a plan often yields increased performance and task reliability even
in situations where the task can theoretically be performed by a single agent [19].

A key challenge in these planning systems is the ability to address real-world
dynamics, typically done through interleaving planning and execution [21]. This type
of planning could potentially address the following types of dynamics: the world
changes in ways that are beyond the agent’s control; the features of the world
are revealed incrementally; temporal constraints force execution to begin before a
complete plan can be generated; new goals evolve over time [18]. It is impractical
to plan for all possible eventualities in such scenarios, particularly due to the highly
dynamic nature of multiple agents systems [70]. Moreover, as planning systems are
implemented in real-world applications, they raise the issue of temporal constraints
in the environments in which they operate [11, 86].

The first contribution of this paper lies in presenting a temporal reasoning
mechanism for multiple self-interested planning agents that must coordinate their
actions in order to accomplish a joint action under temporal constraints. The mech-
anism utilizes a temporal constraint network technique to guarantee the temporal
consistency of a cooperative plan. The major novelty of the reasoning mechanism is
its integration within a distributed planning system based on a well-grounded BDI
theoretical model of cooperation, namely the SharedPlan [26] model. SharedPlan
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is generally used to define essential characteristics of teamwork for supporting the
design and construction of collaborative systems. This includes allowing agents in a
group to plan a joint action, perform the action or carry out activities in order to help
facilitate their cooperative plan.

This paper also contains two key contributions about how the BDI model is
implemented, which are equally applicable for cases of selfless or self-interested
agents. First, we present how abstraction can be used to implement teamwork,
allowing for joint action to be defined without explicitly describing all possible states
in advance, as is done in former frameworks of teamwork [41, 82], making it possible
to reduce the number of states which need to be considered.1 Second, as each agent
may reason by itself about the best time to perform its activities, the mechanism
reduces coordination messages among the group members. Keeping the search space
as small as possible is critical for implementing a working application, especially one
capable of running in real-time even as it handles dynamics. Keeping the number of
messages small is important for environments where communication is costly, noisy
or otherwise problematic.

Applying our mechanism in a real-world application raises new questions regard-
ing the order of plan generation and the commitment of the group to partial plans.
We discuss these questions in the next sections and explore them by implementing
different methods in a synthetic rescue environment. The results demonstrate that
for environments which we have tested, it is better to commit as late as possible.
Furthermore, when group members use a similar order to plan parts of their joint
action, they have a better chance of succeeding in finding a cooperative plan that
satisfies all of the temporal constraints. We have implemented the mechanism as a
part of the SharedPlan system and integrated it within a military commercial training
and simulation application. The mechanism enables the successful simulation of real-
life scenarios where a group of agents has to jointly achieve military missions under
temporal constraints. We present empirical evidence for the effectiveness of the
mechanism in reducing communication to coordinate the group members’ activities.

This work is strongly based on the SharedPlan framework [26]. In Section 2,
we briefly describe this framework. In Section 3 we provide formalization of
temporal constraint networks in the context of the SharedPlan. Then, we present
the temporal reasoning algorithm including methods for exchanging and merging
temporal information among the group members. The algorithm ensures temporal
consistency of the plans, determines times for executing actions, and coordinates the
agents’ activities in such a way that all of the temporal constraints are satisfied. In
Section 4 we prove the correctness of the temporal reasoning algorithm and discuss
its complexity. In Section 5 we discuss methods for exchanging and merging temporal
information among the agents, and we study the behavior of these methods in a
synthetic rescue environment. An additional problem that we explore relates to
the order in which the group members should plan the subsidiary actions of their
joint activity. In this section we also discuss how the mechanism was successfully
implemented within a commercial training and simulation system for a military
domain. In Section 6, we survey related research fields on planning systems with
temporal reasoning and scheduling and compare them with our work. Finally, in
Section 7, we conclude and present possible directions of future research.

1The empirical evidence is beyond the scope of this paper and can be found at [32].
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2 Overview of the SharedPlan model

In this section we overview basic concepts and planning processes of the theoretical
SharedPlan model [26]. We then describe the major component of the SharedPlan
system which we developed in [29] that we use in this paper. To motivate the
discussion we start with an informal example of “rescue disaster survivors” by two
rescue robots. We refer to this example throughout the paper.

2.1 A motivating example

Assume two rescue robots A1 and A2 must jointly perform the action “rescue disaster
survivors” denoted by α. Suppose that A1 and A2 have different capabilities. Robot
A1 is small and flexible and is able to maneuver deep into crevices in the rubble,
flatten itself to crawl through tight spaces, or rear up to climb and look over objects.
The second robot, A2, is large and strong. It is designed to pick up concrete slabs,
pipes, broken boards, etc., in the collapsed area. Thus, A1 and A2 must collaborate
on some activities in order to succeed in performing action α. Robots A1 and
A2 may have various temporal constraints. For instance: A1 and A2 arrive at the
collapsed area at 4:00 P.M.; the batteries of A2 are restricted for 150 min.; A1 and
A2 must finish the joint action by 7:30 P.M. In this paper we wish to address queries
such as: “When should A1 inform A2 that it has completed its activities?”; “Which
temporal information do A1 and A2 exchange?”; “Which robot checks the temporal
consistency of a joint action?”; “Can the robots complete their activities on time, or
do they perhaps need some help?”, and so on.

Consider in the previous example that A1 and A2 have agreed to the follow-
ing plan in order to perform action α, “rescue disaster survivors”: Suppose that
action α is divided into subactions β1, β2, . . . , β5 which are respectively defined as
follows: “f ind and identify the victims in area A”, “f ind and identify the victims
in area B”, “clear obstructions blocking doorways in area A”, “rescue the victims
outside the building in area A” and “rescue the victims outside the building in area
B”. Also assume that they divide the responsibility among themselves as follows: A1

performs subactions β1, β2, β4 and β5, and A2 performs subactions β3, β4 and β5. Note
that some subactions are performed by a single agent and others (i.e., β4 and β5) are
multi-agent actions that require cooperation between A1 and A2.

These subactions may include several “precedent constraints”. For example, as-
sume that A2 must know the location of the “victims” before it begins to clear
blocked doorways in the area (i.e., β1 must be carried out before β3). Also, since
area B is less dangerous than area A, area B will be scanned by A1 only after area
A is scanned (i.e., β1 will be performed before β2). In addition, they will “rescue the
victims outside the building in area A” only after A2 clears the blocked doorways in
area A (i.e., β3 will be performed before β5), and after A1 “f inds and identif ies the
victims in area B” (i.e., β2 will be performed before β4). They will “rescue the victims
outside the building in area B" after A1 “f inds and identif ies the victims in area B”
(β2 is performed before β5).

The directed graph of Fig. 1 illustrates the precedence relations between subac-
tions β1, β2, . . . , β5 above. We denote the start and finish time of action βi by the
variables sβi and fβi , respectively, and they are represented as vertices in the graph.
Note that agent A2, for example, cannot perform β3 without knowing the finish time
of β1 (because β1 precedes β3).
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Fig. 1 An example of a
precedence graph for
multi-agent action α; time(βi)

within which βi must begin and
finish; sβ j and fβ j are variables
representing start and finish
time points of β j, respectively;
delayij is the interval that
denotes a possible delay
between the finish time of
action βi and the start time of
action β j
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This example raises the following key questions: At what stage should an agent
commit to a time for performing an action, and inform the rest of the group members
of its commitment? If the individual agent commits to a specific time early on and
announces this commitment to the other agents, it may need to negotiate with the
other agents if it needs to change its schedule later. Alternatively, if the commitment
is made and announced as late as possible, e.g., only when requested by other group
members, it may delay the other group members’ planning. Another question refers
to the order in which each individual in the group plans its subactions in the joint
plan and identifies the values of the time variables. For example, suppose that there
is no precedent relation between β1 and β2. Then, A1 can either plan β1 before β2 or
vice versa. We explore these questions empirically in Section 5.1.

2.2 Basic definitions of a collaborative plan

In this section we briefly describe basic definitions of the SharedPlan model that are
the formal basis of the temporal reasoning mechanism. The definitions are based on
the original formalization but augmented to include time constraints in an explicit
way. The planning approach contains many similarities to the previous Hierarchical
Task Network (HTN) [23, 25, 37, 65] but includes extensions for joint action planning
in a multi-agent environment.

An action, in the model, is an abstract entity which has various properties
associated with it such as action type, agent, time of performance, and other objects
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involved in performing the action. An action may be either a basic action or a
complex action. A basic action is an action that can be directly executed by the agent
and cannot be subdivided into subactions (e.g., crawl, look over objects, pick-up).
A (higher-level) complex action is one that cannot be executed directly and is de-
composed into subactions (e.g., find and identify the victims). In addition, an action
may be either a single-agent action or a multi-agent action. A single-agent action
can be executed by a single agent and a multi-agent action requires two or more
cooperative agents to complete the action jointly. To execute a high-level complex
action the agents must identify a recipe for it. They may know several recipes for the
same action. The model assumes that each agent has a library of recipes. A recipe
for action α, denoted by Rα , refers to a set of actions, which we denote by βi (1 ≤
i ≤ n), and appropriate constraints, denoted by ρ j (1 ≤ j ≤ m), specifying how the
actions can be performed and which agents can perform which action. A constraint
ρk, contains variables Xi defined in a certain domain Domi. Examples of recipe
constraints are agents constraints, precedence constraints and metric constraints. The
agents constraints specify the capabilities that are required of the agents to perform
specific actions in the recipe. For example, the number of agents required to perform
an action in a recipe may be between 2 and 5—or formally, 2 ≤ XagentNun ≤ 5.
Alternatively, these constraints may specify the type of agent that can perform a
certain action, e.g., the agent must be a small robot. Precedence constraints refer
to the execution order of the actions. Metric constraints indicate specific times for
executing actions in the recipe.

In order to perform some complex action βi, the agents have to identify a
recipe Rβi for it. There may be several recipes for βi. The recipe Rβi may include
subactions δiv . Each δiv may similarly be either basic or complex. An illustration of
decomposition of α when the plan is fully initiated is depicted in a complete recipe tree
for α of agent Ak. Formally, recipe tree for α of agent Ak is represented by an acyclic
digraph Tk

α = (Vk
α, Ek

α) in which Vk
α is the nodes set, Ek

α is the edge set, and each
node v ∈ Vk

α contains an action. We assert that Tα = (V1
α ∪ . . . ∪ Vn

α, E1
α ∪ . . . ∪ En

α)

is the union recipe tree of a group of agents Aα = {A1, . . . , An} that jointly execute a
multi-agent action α.

Figure 2 demonstrates an example of possible recipe trees for the action “rescue
disaster survivors” in a specific world-state. The bold edges represent the actions
performed by both robots and the dashed edges are the actions performed by a
single agent (A1, or A2). The trees differ with respect to single-agent actions but
are identical with respect to the first level of each multi-agent action. For example,
action α is a multi-agent action and must be performed by A1 and A2; thus, the trees
of both robots consist of the first level of α (i.e., β1, . . . , β5). On the other hand, β1

is a single-agent action which has to be performed by A1; thus, A2 does not know
about actions γ11 and γ12 which are selected by A1 in order to perform action β1.
Similarly, β3 has to be performed by A2 and thus A1 does not know about A2’s plan
to perform β3.

The SharedPlan formalism proposes several collaborative planning processes to
identify a plan for a joint action α. The formalism distinguishes between five different
types of plans. A full individual plan specifies those conditions under which an indi-
vidual agent can be said to have a fully initiated plan to perform a single-agent ac-
tion α. A partial individual plan deals with both partiality of knowledge and partiality
of intention. A SharedPlan representing that a group of agents has a collaborative
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Fig. 2 Part of possible recipe trees for the action “rescue disaster survivors”, the top tree is planned
by the large robot and the bottom is planned by the small robot. The dashed edges represent
individual plans. The gray boxes represent basic actions.

plan to perform together some action α is defined recursively in terms of a full
SharedPlan and a partial SharedPlan. A full SharedPlan is the collaborative correlate
of a full individual plan and includes full individual plans among its constituents. A
partial SharedPlan is the collaborative correlate of a partial individual plan. A prin-
cipal way in which the SharedPlan differs from the individual plan is that knowledge
about how to act, ability to act and commitment to act are distributed in the
SharedPlan.

The SharedPlan model presents several planning processes for the individual and
group to expand partial plans into more complete ones. Even though all of planning
processes are implemented in the system, in order to simplify the presentation of
the temporal reasoning mechanism we omit the details. More discussion of the
SharedPlan definitions and of the planning processes is given in [26, 27].

2.3 An example of a collaborative plan with time constraints

A collaborative plan of a multi-agent action can be illustrated by the rescue robots
example introduced above. In this example, a multi-agent action α, “rescue disaster
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survivors”, that needs to be executed by rescue robots A1 and A2 jointly is a complex
action. Since this action is a multi-agent action, A1 and A2 need to agree on how they
are going to perform it. This is accomplished by the process which is responsible for
identifying a recipe for this action. Suppose that the robots have agreed upon the plan
in Section 2.1. In this case, the identified recipe Rα consists of subactions {β1, . . . , β5}.
Figure 3 presents the structure of recipe Rα as implemented in the SharedPlan
system. As shown in this figure, the recipe consists of: action-type, name, apply-
condition, subactions, agents constraints and temporal constraints. Each subaction
βi, (i = 1, . . . , 5), is associated with variables of agents, denoted by ?Ak (k = 1, 2),
and with variables of a temporal interval, denoted by [?sβ1 , ? fβ1 ], [?sβ2 , ? fβ2 ], etc. The
variables sβi and fβi represent the start time and the finish time of the corresponding
subaction βi, respectively. The recipe includes two types of temporal constraints,
precedence constraints and metric constraints. In our example, the identified recipe
is associated with precedence constraints {β1 before β2; β1 before β3; β2 before β4;
β2 before β5; β3 before β5}. We assume that Rα is associated with the following
metric constraints: A1 and A2 must start β4 within 40 min. after A1 has started
β1; A1 and A2 must start β5 within 60 min. after A2 has started β3; A2 must start
β3 after 5:00 P.M. The apply-condition refers to a set of propositions such as: a
building has collapsed in area B (i.e., “(BUILDING24, B, collapsed)”) and a victim
is buried under the destruction in area B (i.e., “(VICTIM1, B, under-destruction)”).
The necessary capabilities for performing a complex level action are given in the
agent-constraints.

In this phase of their planning process, the agents have a partial SharedPlan for
the shared action α, “rescue disaster survivors”. Also, A1 has a partial individual plan
for subaction β1, “f ind and identify the victims in area A”. While in partial plans
the values of the variables may not be identified, for the agents to achieve a full
plan the values of the variables must be set such that the appropriate constraints
are satisfied. The problem with reasoning about the temporal values is a result of
partial knowledge and the uncertain environment of the agents. When a high-level
action is broken up into sequences of subactions and finally into basic actions, the

Fig. 3 An example of a possible recipe for the complex action “rescue disaster survivors” (α)
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Fig. 4 The architecture of a
single-agent. The AIP, RTS
and the beliefs components are
part of the SharedPlan system.
The physical functionalities
are responsible for the
execution of basic actions

time available to achieve the high-level action must also be split into intervals for
each subaction. Doing this correctly requires the modified SharedPlan system to
have a mechanism of how long it takes to accomplish the subactions. However,
as a result of the dynamic nature of plans, any of the components of the agent’s
plan may be incomplete and thus it may be impossible to know how long it will
take to solve the subactions. Furthermore, in some cases the agent must interleave
planning and execution. In the next section we suggest a mechanism for the agent to
reason autonomously and in a dynamic fashion to identify the temporal values of the
appropriate variables.

2.4 The SharedPlan system

The SharedPlan system implements a group of agents that interact with each other
and with an external environment where the communication channels of the system
are reliable and synchronized. Figure 4 illustrates the high-level architecture of an
agent in the SharedPlan system.2 Each agent is comprised of two separate compo-
nents that interact with each other: (i) Physical functionalities and (ii) SharedPlan
functionalities. The physical functionalities refer to a predefined set of basic actions
that are designed within the core of a single agent and which can be directly
executed in the environment. Examples include: maneuver to a specific destination;
crawl; climb; look over objects; pick up and so on. We did not implement these
functionalities but used existing implementation of the applications we explored
(e.g., the military training and simulation system). The SharedPlan functionalities
include two major components. One of them is an Artificial Intelligence Planning
(AIP) component. The second is a Real-Time Scheduling (RTS) component. The
temporal reasoning mechanism presented in this paper is implemented as part of

2The full specification of the system’s architecture and details of the algorithms can be found at the
project site: http://homedir.jct.ac.il/~rosenfa/research/amai.htm.

http://homedir.jct.ac.il/~rosenfa/research/amai.htm
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the AIP component. The AIP component includes collaborative planning processes
which we previously discussed.

In addition to the above functionalities, each agent may access the data of
beliefs. The beliefs may be either static or dynamic. Static beliefs are predefined
and include a library of recipes, description of domain actions, knowledge about
the agent capabilities and so on. The recipe tree is a part of the dynamic beliefs as
the agent modifies it during the execution. The beliefs about the states of the other
group members are also dynamic. The external environment (e.g., the simulator) is
designed to test the validity of a predefined set of propositions in the agent arena
(e.g, ‘is there an obstacle on the left side?’) and to answer a predefined set of queries
(e.g., ‘what is the level of my energy?’). The answers are also referred to as dynamic
beliefs.

The AIP component plans the agent’s activities while interacting with the envi-
ronment (including other agents). It identifies, incrementally, a set of basic actions,
and a set of temporal requirements associated with the basic actions, to perform α

without conflict. During the planning process each basic action β is sent to the RTS
component, along with its temporal requirements 〈Dβ, dβ, rβ, pβ〉 where Dβ is the
Duration time, i.e., the time necessary for the agent to execute β without interruption;
dβ denotes the deadline, i.e., the time by which β must be completed; rβ refers to
the release time, i.e., the time at which β is ready for execution; pβ denotes the
predecessor actions, i.e., the set {β j|1 ≤ j ≤ n} of basic actions whose execution must
terminate before beginning β. The RTS component receives the basic actions set
with the associated requirements and inserts these actions into the agent’s schedule
as described in the following section. The RTS component is responsible for the
scheduling and dispatching of basic actions for execution. The scheduling problem
that our RTS component faces is NP-hard [24]. We describe the heuristic algorithm
which is used in the RTS component in [33].

3 Mechanism for group temporal reasoning

We consider a problem where a group of agents Aα = {A1, . . . , An} must jointly
execute a multi-agent action α. We assume that α is a complex action. The agents
are acquainted with a set of actions (either basic or complex), library of recipes and
an initial set of beliefs. We present a mechanism for Aα to identify a full shared plan
in order to execute α without violating temporal constraints. Each agent in Aα should
perform its own part in the plan by identifying a set of basic actions along with their
temporal requirements 〈Dβ, dβ, rβ, pβ〉 and dispatching them for execution under
these requirements. We begin the section with basic definitions. A summary of the
notations used in the temporal reasoning mechanism is given in Table 1.

3.1 Supporting definitions and notations

As described in previous sections, a contribution of this paper is how we model
the agents’ behavior based on the theoretical SharedPlan model of cooperation yet
extend this framework to allow for self-interested agents to plan joint activities with
temporal constraints. A second novel contribution of this papers lies within how we
implemented this extended framework. Specifically, we model dynamics by using
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Table 1 Summary of notations used for special variables and constants

Notation Meaning Comments

α Action Also: β, βi

Rα Recipe for α

sα Start time of α

fα Finish time of α

Ak A single agent Also: Ai

Aα The group of agents that performs α

Gp
α = (V p

α ,Ep
α ) Precedence graph of α Definition 3.1

Gk
α = (Vk

α, Ek
α) Ak’s Temporal Constraints Graph of action α Definition 3.3

H(β) Set of actions which hinder β’s performance Definition 3.4
Dβ Duration time of β Section 2.4
rβ Release time of β Section 2.4
dβ Deadline of β Section 2.4
pβ Predecessor actions of β Section 2.4
ENABLED Enabled vertex Section 3.3.1
EXPLORED Enabled and explored vertex Section 3.3.1
UNEXPLORED Unexplored vertex Section 3.3.1
ES Explored single-agent vertex Section 3.3.1
EM Explored multi-agent vertex Section 3.3.1
ENPT Explored non-participant terminated vertex Section 3.3.1
ENPW Explored non-participant wait vertex Section 3.3.1
E Set of enabled explored vertices Section 3.3.1
U Set of enabled unexplored vertices Section 3.3.1
W Set of explored non-participant wait vertices Section 3.3.1

hierarchical abstraction plans and a temporal constraints network. To do so, we
define a new structure, called a Temporal Constraints Graph. The main structure
which is used in building the Temporal Constraints Graph is the Precedence Graph.
The precedence graph represents a recipe in the form of a constraints network
where the vertices of the graph represent the subactions in the recipe and the edges
represent the order relationship between the subactions.

Definition 3.1 (Precedence graph of α, Gp
α) Let α be a complex action, and let Rα

be a recipe for α. Let β1, . . . , βn be the subactions of Rα with precedence constraints
defined by the relation θα = {(βi, β j)| βi before β j; i �= j}. The Precedence Graph of α,
Gp

α= (V p
α ,Ep

α) with reference to Rα and its precedence constraints is a directed graph,
defined as follows: The vertex set is V p

α ={sβ1 , . . . , sβn , fβ1 , . . . , fβn} where sβi and fβi

represent variables of the start and finish time of βi, 1 ≤ i ≤ n, respectively and are
associated with the action βi. The edge set, Ep

α , consists of two types of edges:

1. For each βi, 1 ≤ i ≤ n, there is an edge (sβi , fβi) representing the time required to
perform βi.

2. For each pair (βi, β j) ∈ θα , there is an edge ( fβi , sβ j) denoting that subaction βi

must terminate before β j starts. The edge represents the delay between βi and β j.

The vertices sβi ∈ V p
α with an in-degree zero are called initial vertices. The vertices

fβi ∈ V p
α with an out-degree zero are called terminal vertices.
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Example 3.1 The gray vertices and edges of the graph in Fig. 5 illustrate the
Precedence Graph, Gp

α , of a possible recipe Rα where V p
α = {sβ1 , . . . , sβ5 , fβ1 , . . . , fβ5}

and Ep
α = { (sβ1 , fβ1), (sβ2 , fβ2), (sβ3 , fβ3), (sβ4 , fβ4), (sβ5 , fβ5), ( fβ1 , sβ2), ( fβ1 , sβ3),

( fβ2 , sβ4), ( fβ2 , sβ5), ( fβ3 , sβ5) }. The vertex sβ1 is an initial vertex, and vertices fβ4 , fβ5

are terminal vertices.

Using a recipe to create the temporal constraints graph forms an abstract hierar-
chical structure of a partial plan where several vertices are associated with different
agents. The precedence relationship between subactions which are not associated
with the same group of agents is called a Multi-Precedence Constraint.

Definition 3.2 (Multi-precedence constraint) A precedence relation “βi before β j”
is called a Multi-Precedence Constraint if subactions βi and β j are performed by
different groups of agents, i.e. Aβi �= Aβ j .

Example 3.2 As shown in the Precedence Graph Gp
α in Fig. 5, actions β1 and β2

are single-agent actions which have to be performed by A1. Similarly, action β3

is a single-agent action which has to be performed by A2. Actions β4 and β5 are
multi-agent actions which have to be performed by A1 and A2 jointly, that is,
Aβ4 = {A1, A2} and also Aβ5 = {A1, A2}. The precedence relations: (β1, β3), (β2, β4),
(β2, β5) and (β3, β5) are multi-precedence constraints. Agent A2, for example, cannot
decide on the start time of β3 without knowing the temporal requirements of its
preceding action β1, which is planned by A1.

When group Aα works on the action α, each agent Ak ∈ Aα maintains a Temporal
Constraints Graph. The definition of the Temporal Constraints Graph is a combi-
nation of a temporal constraints network with hierarchical abstraction of a joint
plan. Hence, it utilizes the SharedPlan model to provide collaboration, Hierarchical
Task Network (HTN) to enable the construction of abstract plans and a network
of binary constraints to enable applying existing techniques in order to resolve
temporal constraints. While we assume that the reader is broadly familiar with

Fig. 5 An example of a
Temporal Constraints Graph
Gk

α , constructed from a
Precedence Graph Gp

α , which
is maintained by an agent Ak
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Temporal Constraint Satisfaction Problem (TCSP) [16, inter alia], a description of
our application of this problem is as follows:

Definition 3.3 (Temporal constraints graph of α, Gk
α) A Temporal Constraints

Graph Gk
α = (Vk

α, Ek
α) of an agent Ak is a weighted graph constructed from a

Precedence Graph Gp
α= (V p

α ,Ep
α) where Vk

α = V p
α ∪ {sαplan , sα, fα} and sαplan represents

the time point at which Ak starts to plan action α. Ek
α consists of the edges Ep

α

∪{(sαplan , sα), (sα, fα), (sαplan , fα)} with additional edges from sα to each initial vertex
in Gp

α and from each terminal vertex of Gp
α to fα . For any complex subaction βi

which is associated with Gp
α= (V p

α ,Ep
α) and in which Ak participates, the Temporal

Constraints Graph is updated recursively (i.e., Vk
α grows to be Vk

α ∪ V p
β i

and Ek
α grows

to be Ek
α ∪ Ep

β i
with additional edges from sβi to each initial vertex in Gp

β i
and from

each terminal vertex of Gp
β i

to fβi ).
Each edge in Gk

α is labeled by an interval [a, b ] which denotes an upper and lower
bound on a time gap. If e = (sβi , fβi) then [a, b ] denotes the time gap for the duration
required to complete subaction βi, and if e = ( fβi , sβ j) then [a, b ] denotes a possible
delay between the end of subaction βi and the beginning of subaction β j. Initially, all
of the edges are labeled [0,∞].

Each action β which is associated with any vertex in Vk
α contains the following

information: (a) whether β is basic or complex; (b) whether β is a multi-agent or a
single-agent action; (c) whether a plan for β has been completed; (d) whether β has
already been executed by the agent(s); and (e) the agent(s) that is (are) assigned to
perform β.

An example of a Temporal Constraints Graph Gk
α , constructed from the Prece-

dence Graph Gp
α in Fig. 1, is given in Fig. 5. A more complex example, where

G1
α �= G2

α , can be seen in the next sections in Figs. 7 and 8. Each single agent Ak

in the system runs the algorithm independently in order to construct its Temporal
Constraints Graph Gk

α . The information maintained by the graph is determined
incrementally by the algorithm which also expands the graph.

In Section 2.2 we defined the recipe trees for action α (see an illustration in Fig. 2).
This definition was formed by Definition 3.1 of Precedence Graph and Definition 3.3
of Temporal Constraints Graph. We note that given the Temporal Constraints Graph
the recipe tree is implicit in the graph and can be easily derived. Thus, similar to
recipe trees, the graph of each individual agent in Aα may be different with respect to
its individual actions, but similar with respect to the first level of multi-agent actions.

As mentioned above, in several cases Aβ ’s members are not able to complete β’s
plan without receiving relevant information about the actions preceding β from the
agents performing them. The set of these preceding actions hinders the performance
of β; this set is denoted H(β). More formally:

Definition 3.4 Hinder members of an action β j, H(β j), are defined as the set of all
minimal members3 of the set {βi|βi precedes β j and Aβ j � Aβi}.

3We recall that v is a minimal member of S in a partial order if v ∈ S and no other w ∈ S exists such
that w precedes v. Note that a minimal member is not unique.
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3.2 General description of the temporal reasoning algorithm

The Temporal Reasoning Algorithm is used by each Ak ∈ Aα . The pseudocode is
given in Fig. 6. In the initialization phase Ak constructs its initial Gk

α . Then, in the
planning and executing loop, Ak expands its Gk

α recursively according to

Fig. 6 The Temporal Reasoning Algorithm for identifying values for temporal variables which is run
by each agent Ak ∈ Aα during the performance of α
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Definition 3.3. As presented in Fig. 6, the planning and executing loop includes four
major parts.

In the first part (part I in Fig. 6), Ak chooses a vertex sβ from Gk
α such that the

action β is not previously selected by any member in Aα and all the actions which
precede β have been defined. Following the SharedPlan model, Ak distinguishes
between single-agent action and multi-agent action. In the case where β is a single-
agent action, β may be either a basic action that Ak needs to execute or a complex
action whose execution Ak needs to plan. Thus, if β is a basic action, then action β is
sent to Ak’s RTS component for execution along with β’s temporal requirements
(i.e., 〈Dβ, dβ, rβ, pβ〉). If β is a complex action then Ak plans β individually by
looking it up in its recipe library and selecting recipes that satisfy the apply-conditions
and the constraints. Then, it uses the selected recipe to expand its graph Gk

α

according to Definition 3.3 (see example in Fig. 5). We applied a heuristic algorithm
in which the first recipe that satisfies the apply-conditions and the constraints is
selected.

If β is a multi-agent action then Ak has to reach an agreement with the other
participants of β about the development of β’s plan. In our system, we applied a
mechanism in which the first agent selects the vertex which is associated with β, plans
this action by selecting an appropriate recipe and then incorporates it into the plan.
However, first it obtains an agreement to plan β from of all of the other participants
of β. If the vertex which is associated with β is selected by more than one agent (in
Aβ) simultaneously, then an agent is drawn randomly, but there is a priority for an
agent who cannot continue its plan without planning β.

In addition, the group Aβ must agree on their assignment to the subactions in the
selected recipe. In the assignment process the agents may be divided into subgroups.
In our system, the agents are assigned to perform subactions according to the agent-
constraints which are specified in the recipe. The agent-constraints referred to the
resources of the agents and to the size of the subgroup. We applied a heuristic
algorithm in which the agents which are suitable to a smaller number of subactions
are assigned first. In this paper we focus on the identification of the temporal
variables. In order to keep the algorithm simple we omit the details of the assignment
algorithm. Instead, we assume that the subactions are associated with the agents who
should perform them.

We prove in Section 4.1 that if Ak selects an applicable recipe Rβ for β, and after
the addition of the associated temporal constraints of Rβ to Gk

α , Gk
α is consistent, then

the Temporal Constraints Graphs of the other members in Aβ will also be consistent
with the associated temporal constraints. As a result, it is adequate if only one group
member selects an applicable recipe and checks the consistency of the graph. This
method decreases the computation time of the algorithm, and thus it reduces the
load on the system.

The planning and execution loop also includes the exchange of information
between the group members (part II in Fig. 6) as well as information exchanged
between the AIP and RTS component of Ak (part III in Fig. 6). Also, during the
planning and execution loop Ak may fail to achieve some action β and should
backtrack (part IV in Fig. 6). A failure occurs in the following cases: (a) when the
RTS component cannot find a feasible schedule; (b) when it is impossible to apply
a basic action to the environment because its resources were consumed; (c) when it



M. Hadad et al.

is impossible to apply a selected recipe to the environment because of unexpected
changes; (d) when its group members abandon the joint action. The backtracking
mechanism is beyond the scope of this paper.

3.3 The temporal reasoning algorithm

In the following sections we describe in detail the algorithm in Fig. 6 and then we
demonstrate the algorithm’s operation using the rescue robots example.

3.3.1 Def inition and initialization

In the main procedure, agent Ak receives action α along with the group Aα as
an input. The Temporal Constraint Graph is initialized (line 1 in Fig. 6) as well
as some variables of the algorithm. The boolean variables b IsFinishedExecuteAll,
b IsCompletedPlan and b IsFailureInPlan denote whether all of the basic actions
associated with Ak have been executed and the status of the joint plan respectively.
Initially, all of the vertices are UNEXPLORED (line 3 in Fig. 6). There are four
types of EXPLORED vertices as follows:

1. A vertex of a single-agent action which is performed by Ak becomes Explored
Single-agent (ES).

2. A vertex of a multi-agent action in which Ak participates becomes Explored
Multi-agent (EM).

3. A vertex with unknown temporal values of an action in which Ak does not
participate becomes Explored Non-Participant Wait (ENPW). In this case Ak

waits until it receives the temporal values of the vertex from an appropriate
agent.

4. A vertex with known temporal values of an action in which Ak does not
participate becomes Explored Non-Participant Terminated (ENPT).

A vertex which is associated with an action which temporal values can be defined
(because the temporal values of all of its predecessors have been defined) is called
an ENABLED vertex. We distinguish between two disjointed sets of ENABLED
vertices: The first set, denoted by U , contains the UNEXPLORED vertices, i.e., the
vertices which values can be identified but which the algorithm has not yet handled.
The second set, denoted by E , contains the EXPLORED vertices, i.e., the vertices
which values have been identified. According to the algorithm, a vertex u ∈ Vk

α

becomes ENABLED when the status of all of the preceding vertices of u becomes
EXPLORED but not ENPW. All of the vertices that are denoted as ENPW (i.e.,
the agent waits to receive the values of their temporal variables from others) are
maintained in the set W .

A vertex associated with a specific time point is called a f ixed vertex. Initially,
vertex sαplan is a fixed vertex and is denoted as EM (line 4 in Fig. 6). Then, the
U and E sets are updated recursively by an appropriate procedure which is called
update_enabled_set and is described in Fig. 17 of Appendix B. In Section 4.1 we
prove that there is no deadlock in the system. Hence, at each stage of the algorithm
there is at least one agent which may select an UNEXPLORED vertex from U . Note
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that, in the initialization phase, U set contains the ENABLED vertex sα . Thus, each
agent in Aα starts its execution and planning loop from sα .

3.3.2 Planning for a chosen action

During the planning process, a vertex sβ is selected to be planned by Ak if sβ is
an ENABLED vertex and an UNEXPLORED vertex, i.e., sβ is selected from the
UNEXPLORED (U) set (line 9 in Fig. 6). For this selected vertex which is associated
with action β, Ak checks the agents who can participate in the performance of β. In
the case that Ak does not participate in β’s performance (lines 10–17 in Fig. 6), if
the temporal values of β are unknown, it changes the status of the vertices sβ and fβ
to ENPW and adds the vertex sβ to W set (lines 12–14 in Fig. 6). Then, it attempts
to select a new ENABLED vertex from the U set. If its U set is empty but its W is
not empty, it waits for a message with temporal information from the other group
members which will allow it to change the status of some ENPW vertices to ENPT
vertices and to update its U set. If Ak does not participate in β’s performance but the
values of β are already known to Ak, it changes the status of the vertices sβ and fβ to
ENPT and then it updates its U set (lines 15–16 in Fig. 6).

Assume that the selected ENABLED vertex is associated with an action β

where Ak participates in β’s performance (lines 18–25 in Fig. 6). If Ak is the only
performer of this action then Ak distinguishes between basic actions and complex
actions (the pseudocode is given in Figs. 19 and 24 in Appendix B, respectively).
After Ak completes the planning of β’s plan, if β is a subaction in a recipe of a
multi-agent action, it should send information to its group members by running the
check_necessity_to_update_members procedure (see Fig. 25 in Appendix B). The
goal of this procedure is to determine whether β is a subaction in a recipe of a multi-
agent action and whether β is in a set of the hinder members of some action βi

(i.e., β ∈ H(βi), see Definition 3.4). If β ∈ H(βi), the procedure checks if all other
vertices in H(βi) are EXPLORED but not ENPW. If so, the temporal information
of β can be sent to the performers of βi. The methods for exchanging information
are discussed in Section 3.4. In the case where β is a multi-agent action and Ak

is one of the participants (lines 26–27 in Fig. 6), Aβ ’s members have to reach a
consensus on the recipe for β as described in Fig. 18 in Appendix B. Note that the
Select_agreeable_recipe procedure includes a process for selecting a recipe by the
group Aβ and a process for the assignment of the agents to subactions according to
the SharedPlan model.

3.3.3 An illustration of the temporal reasoning algorithm

In Sections 2.1 and 2.3 we described an example from the rescue domain. In this
section we illustrate the algorithm using that example. The rescue robots A1 and
A2 intend to perform a multi-agent action α (i.e., “rescue disaster survivors”) jointly.
Suppose that A1 and A2 arrive at the disaster area at 4:00 P.M. Thus, both robots
simultaneously begin the collaborative plan for α. Hence, planning and executing α

begin after 4:00 P.M. Suppose that the batteries of A2 are restricted to 150 min.; thus
α must be completed within 150 min. We also assume that α must be finished before
sunset, at 7:30 P.M. Thus, A1 and A2 construct their Temporal Constraints Graph
accordingly (see the bold edges in Fig. 5 in Section 3.1).
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Next, the agents need to agree on how they are going to perform action α (i.e.,
agree on a recipe for α). Suppose that the robots have agreed on Rα which is
described in Section 2.3 and Fig. 3. At this stage of the planning process, both robots
know about the selected recipe Rα and about its associated temporal constraints.
Thus, each of the robots can incorporate the associated subactions and constraints
into its Temporal Constraints Graph (see Fig. 5 in Section 3.1). Following this, the
robots update the metric constraints that are associated with the selected recipe
Rα . Then, each robot Ak, (k = 1, 2), tries to continue the planning of its Temporal
Constraints Graph by selecting an action to be planned. At this stage, G1

α is identical
to G2

α but only action β1 may be selected since this is the only action which is
associated with an ENABLED vertex (i.e., sβ1 ).

Since A1 is the single agent performing β1, A2 has to wait until it receives the
values of the temporal variables of β1 from A1, and the status of sβ1 and fβ1 are
changed in A2’s graph to Explored Non-Participants Wait (ENPW). Suppose that
the recipe that A1 selected for β1 consists of the basic actions: “scanning outside area
A” and “scanning under the rubble in area A”, denoted as γ11 and γ12, respectively.
Also suppose that the execution time for each of them is exactly 5 min. Figure 7
presents the Temporal Constraints Graphs Gk

α, (k = 1, 2), which are maintained
by each of the robots in this stage of their planning process. Thus, A1 should
identify 〈Dγ11 , rγ11 , dγ11 , pγ11〉 and 〈Dγ12 , rγ12 , dγ12 , pγ12〉 and send them to the Real-
Time Scheduling (RTS) component. The decision regarding the exact time in which
β1 will be executed is determined by the RTS component. In this example, we assume
that the RTS component of A1 decides to execute γ11 at 4:02 P.M. and γ12 at 4:07 P.M.
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Fig. 7 The Temporal Constraints Graphs Gk
α , (k = 1, 2), maintained by A1 (graph A) and A2 (graph

B) after adding subactions γ11 and γ12 and the appropriate metric constraints by A1. At this stage of
the planning process the graphs of A1 and A2 are distinguishable
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Thus A1 will inform A2 that it intends to terminate the execution of β1 at 4:12 P.M.
A1 commits to this schedule by adding the edge (sαplan , fβ1) with weight [12, 12].
Following this announcement, A2 changes the status of the vertices sβ1 and fβ1 from
ENPW to Explored Non-Participant Terminated (ENPT) and it uses the temporal
information it received from A1 by adding edge (sαplan , fβ1) of weight [12, 12].
Similarly, A1 commits to its announcement by adding this edge as well. In this stage
of the planning process the status of the vertices sαplan , sα, fα, sβ1 , fβ1 , sγ11 , fγ11 , sγ12 and
fγ12 are EXPLORED, where sαplan , sα, fα are Explored Multi-agent (EM) vertices
and sβ1 , fβ1 , sγ11 , fγ11 , sγ12 , fγ12 are Explored Single-agent (ES) vertices . Thus, A1 can
choose to plan the action β3 or β2. Suppose A1 chooses to plan β3. Since A1 /∈ Aβ3 ,
it changes the status of sβ3 and fβ3 to ENPW and it plans β2. Similarly, A2 can
start planning β3. We assume that A2 selected a recipe for β3 which consists of the
basic actions “pick up pipes” and “clear boards and slabs” which block the entrance,
denoted by γ31 and γ32. We assume that the execution time of γ31 is exactly 2 min.
and the execution time of γ32 is 1 min. Figure 8 depicts the Temporal Constraints
Graph Gk

α which is maintained by each agent in this stage of their collaborative
plan after applying the check_consistency procedure (see Fig. 16 in Appendix B).
Note that the implicit recipe trees of A1 and A2, at this planning stage, are part of
the trees in Fig. 2 (i.e., V1

α = {α, β1, β1, β1, β1, β1, γ11, γ12} and V2
α = {α, β1, β1, β1, β1,

β1, γ31, γ32}).
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Fig. 8 Graph A is built by A1 and graph B is built by A2 during the collaborative planning. Each
agent maintains a different graph according to its plan. The identical vertices represent the subactions
which appear in the recipe of their collaborative action
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3.4 Information exchange between agents

Identification of values for temporal variables in the collaborative plan for α requires
information exchange. Each Ak ∈ Aα exchanges information with its group members
in the following cases:

(1) When they identify a recipe for their joint action or for any joint subaction in
their plan. This exchange of messages may be about possible recipes and may
also be part of their group decision-making.

(2) Agent Ak may inform its group members about completing the plan of a
subaction in a recipe of a joint action. It informs the group members that its
plan for their joint action has been completed.

(3) Agent Ak may inform its group members about the time values that it identified
for the set H(γ ) of individual actions which hinder γ (see Definition 3.4).

(4) When agent Ak finishes the execution of all of the basic level actions in its
complete recipe tree it informs the group members.

(5) If Ak has already sent information to specific group members about some action
β but failed to perform it, then Ak backtracks and informs them about the
failure of β or about the changes in their plan that were determined as a result
of the backtracking.

The information exchange in case (1) above, is done in the select_agreeable_
recipe (β) procedure (lines 26–27 in Fig. 6). It refers to their agreement on the recipe
selection and the assignment to subactions. The information exchanges in cases (2)–
(4) are done in part II of the algorithm (lines 32–33 in Fig. 6). The last case is a case
of failure (line 44 in Fig. 6) where the agent may announce failure or replan actions.
Note that replanning of actions causes changes in the recipe tree as well as in the
Temporal Constraints Graph.

Cases (2)–(4) above are described in the handle_temporal_messages procedure
which is presented in Fig. 9. In case (2) (lines 1–8 of handle_temporal_messages

Fig. 9 In handle_temporal_messages Ak ∈ Aα listens to the other members in Aα , updates its
graph and sends the needed information. The variable subactions_of _multi_recipe indicates a set of
subactions in a recipe of a multi-agent action. In the procedure calculate_and_commit_time, the
AIP component of Ak asks the RTS component to send it the termination times of all basic actions
in the set H(γ ) and updates the graph accordingly
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procedure), Ak receives temporal information from its group members. Thus, Ak

changes the relevant vertices in its Temporal Constraints Graph to ENPT. The goal
of this message is to enable the agents to know what the status of their joint plan
is. The joint plan is completed when all of the vertices in the graphs of all of the
group members have been EXPLORED but not ENPW. In case (3), Ak may be
asked about the temporal information (lines 9–13 of handle_temporal_messages
procedure). Once Ak sends the temporal values of γ1, . . . , γm to its group members
it commits to these values. Thus, one of the main questions in a distributed planning
environment is at what stage should Ak inform its group members about the times
it will take to perform γ1, . . . , γm, thus committing itself to these times. We consider
two methods of answering this question.

In the first method, called provide-time, Ak sends the temporal information to its
group members immediately when it completes the planning of all of the actions that
directly precede γ that has to be performed by its group. Thus, Ak should commit to
the temporal values it sends. This method enables the other group members to begin
planning γ immediately upon completion of the planning of all actions preceding
action γ . Furthermore, they do not need to ask each other for the relevant times
since they are informed about them as soon as possible. However, since Ak has to
commit to these times it has less flexibility in determining the time performance
for its other actions. Having flexibility means that an individual agent has more
alternatives to change temporal values while it does not need to coordinate the
changes with the other group members. On the contrary, the flexibility is reduced
when an agent decides to change the announced temporal values and it needs to
negotiate with its group members. Thus, we also consider an alternative mechanism,
called ask-time. Following this approach, each member plans its individual actions
as long as it does not depend on its group members’ activities. When such a case
occurs, the relevant member asks for the appropriate time values from its group
members (lines 8–12 of handle_temporal_messages procedure). In this manner, the
commitment is left to the latest time possible, but it may delay the agent waiting for
an answer to plan its actions and this method results in additional messages being
exchanged.

3.5 Group planning order

An additional problem in a distributed planning environment involves the order in
which the members of the group should plan the joint action. As described above,
during the planning process, each agent Ak in the group selects a vertex sβ in Gk

α to be
expanded. Vertex sβ is selected by Ak only if it satisfies certain conditions. However,
since in most cases there is more than one vertex that satisfies all the required
conditions, the agent has to decide which of them to select in order to complete
its plan. There are several possible selection methods. In the environment that we
consider, the order of the vertices selection may affect Ak’s decision regarding the
time scheduling of its activities. In a joint activity a selection of a specific vertex by
an individual agent may influence the activity of the entire group. For instance, in
certain cases group members may need temporal information about a specific action
from another agent Ak. But the order in which Ak chooses to complete the plan of
this action may influence the temporal information that it will eventually send and
when this information will be available.
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In this work we consider three methods for determining the planning order of an
individual in the group. The first is called random-order, where Ak randomly selects
one of the several actions that can be planned. In the second method, called dfs-
order, Ak selects the action according to the depth-first search order of Gk

α . In this
order, the agent selects an action from the lowest level of its recipe tree. Thus, it
plans a subaction until it reaches the basic action level, then it continues to the next
subaction. The third is called bfs-order, where Ak selects one of the actions according
to the breadth-first search order of Gk

α . In this order, the agent tries to complete the
plans of the highest level actions in each stage of the planning process of its recipe
tree. Note that in the first method the planning order of the group members differ.
In the two latter methods, all of the agents in the group plan their subactions in the
same order. Forcing all of the group members to plan subactions in the same order
may decrease the flexibility of the individuals, but planning the activities in different
orders may delay the plans of some members of the group. Our simulation results,
presented in Section 5.1, demonstrate that the planning order influences the success
rate of the agents. We show that it is better to commit as late as possible, and thus
the bfs-order and ask-time methods perform the best.

4 Correctness and complexity of the temporal reasoning algorithm

In this section we present the correctness of the temporal reasoning algorithm for
special cases and discuss its complexity. First, we present lemmas and propositions
to prove that no deadlocks occur and that the algorithm always terminates. Then,
we show the cases of soundness and completeness. The termination of the algorithm
also depends on the following cases: (a) the agreement of the group members to
perform the selected recipe; (b) the method used to assign group members to perform
the subactions; and (c) other constraints associated with the selected recipe. In our
proofs we assume that the members always agree to perform the recipes that satisfy
the temporal constraints as well as to perform the subactions that are associated with
them. Also, the recipe does not include additional constraints, except for temporal
constraints. That is, in our proofs we focus on the consistency of the temporal
constraints in the plan.

4.1 Lemmas and propositions

In each stage of the algorithm, Ak selects a vertex v which is an ENABLED vertex
and tries to identify its temporal value. In the following proposition we prove that,
according to the algorithm, the temporal information of the selected vertex can be
identified and that this vertex is therefore ENABLED.

Proposition 4.1 Suppose that the AIP component of an agent Ak runs the Temporal
Reasoning Algorithm, which builds the Temporal Constraints Graph Gk

α = (Vk
α, Ek

α).
Let v be a vertex in Vk

α and S be the set of all minimal members4 of the set {u|u is a

4We recall that v is a minimal member of S in a partial order if v ∈ S and no other w ∈ S exists such
that w precedes v.
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f ixed vertex and u precedes v}. Then, during the building of the Temporal Constraints
Graph, if each vertex in the path from all the vertices in S to v are EXPLORED (but
not ENPW), then v is ENABLED.

Proof By induction (see Appendix A). 	


In the following proposition we prove that all of the values of the variables
associated with the basic actions which are sent by Ak to its RTS component are
not changed later by the AIP component (except for the case of backtracking). Thus,
these actions can be scheduled and executed before the agent completes its planning
for α. This fact enables the agent to interleave planning and execution.

Proposition 4.2 Suppose that the AIP component of an agent Ak runs the Temporal
Reasoning Algorithm which builds the Temporal Constraints Graph Gk

α = (Vk
α, Ek

α).
Let sβ ∈ Vk

α be an ENABLED which represents the start time of the basic level action
β which has to be performed by Ak.

Then, the values of the temporal requirements (i.e.,
〈
Dβ, dβ, rβ, pβ

〉
), which are

associated with action β and are sent by Ak to the RTS component, are not changed
during the planning process of α (unless Ak backtracks and chooses a dif ferent recipe).

Proof Since β is a basic level action it is obvious that the computation time, Dβ ,
is final.5 Now, we have to show that if v represents a start time point of β, and v

is an ENABLED, then rβ can be identified. Since v is an ENABLED, all of the
paths between all of the minimal members of the set S = {u|u is a fixed vertex and u
precedes v} to v are final, and the weights of all of the edges in these paths are final,
thus the final value of rβ can be identified. Similarly, the final value of dβ can be iden-
tified. Also, all of the basic edges in the paths between all of the minimal members
of the set S to v are final. Thus, all of the basics actions preceding v are final. 	


Proposition 4.3 Suppose that the AIP component of Ak runs the Temporal Reasoning
Algorithm which builds the Temporal Constraints Graph Gk

α . Let Tk
α be the implicit

recipe tree of Gk
α and Tα be the union of implicit recipe trees. Let β be a node in Tk

α

such that Ak ∈ Aβ . Then, according to the algorithm, a node β is a leaf in Tk
α if and

only if β is a leaf in Tα .

Proof

(⇒) Suppose that β is a leaf in Tk
α . Since Ak ∈ Aβ , then either {Ak} = Aβ or {Ak} ⊂

Aβ . However, according to the algorithm, if {Ak} = Aβ , Ak is the only planner
of this action. Thus, if β is a leaf in Tk

α , then either β is a basic action or β is
not planned, and thus β is leaf in Tα . If {Ak} ⊂ Aβ according to the algorithm
the agent who plans β informs all members in Aβ of the recipe selected for
performing β and all of them update their Temporal Constraints Graphs.

(⇐) It is easy to see that, according to the construction of union recipe trees, if β is
a leaf in Tα then β is a leaf in Tk

α . 	


5We use the term “final” to refer to the values of the variables that will not be changed during the
planning process (unless the agent backtracks).
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In the following lemma we first prove that no deadlocks occur. In other words, at
each stage of the planning process at least one of the agents in the group has at least
one UNEXPLORED vertex in its U set. Then, we prove that the algorithm always
terminates.

Lemma 4.1 Let Gk
α = (Vk

α, Ek
α) be the Temporal Constraints Graph of agent Ak ∈

Aα . Suppose that the AIP component of Ak runs the Temporal Reasoning Algorithm
which constructs Gk

α from a given initial graph Gk
α where Vk

α = {sαplan , sα, fα} and Ek
α =

{(sαplan , sα), (sα, fα), (sαplan , fα)}. Then, during Ak’s execution:

1. If Gk
α consists of some UNEXPLORED vertex or ENPW vertex, then there is at

least one agent (in Aα) in the group whose U set is non-empty.
2. If all of the vertices in Gk

α are EXPLORED, then Ak has completed identifying all
of the values of the temporal requirements (i.e.,

〈
Dβ, dβ, rβ, pβ

〉
) of all of the basic

actions that should be executed by Ak.

Proof

1. Since Gk
α is a directed acyclic graph (DAG), we can perform a topological sort

on the graph. Let vi be the first UNEXPLORED vertex or the first ENPW in the
order of the topological sort. If vi is UNEXPLORED, then it is clear that all of
the vertices in the paths from sαplan to vi are EXPLORED (but not ENPW). Thus,
by Proposition 4.1, vi is an ENABLED and vi ∈ U of Ak. If vi is ENPW, suppose
that vi is associated with action β. By the definition of Temporal Constraints
Graph, β must be a subaction in a recipe of a multi-agent action. Since all of
the vertices which precede sβ are EXPLORED, sβ is ENABLED and thus,
according the algorithm, the temporal values of H(β) will be sent to the members
of Aβ . Consequently, sβ becomes an ENABLED in the graphs of Aβ and the U
set of these members is non-empty.

2. Suppose, by contradiction, that Ak has not finished identifying all of the values
of the temporal variables of the actions in which performance it participated.
Thus, the graph consists of at most one action β for which Ak did not identify
its time variables and Ak ∈ Aβ . But, according to the algorithm, for each basic
level action β where Ak ∈ Aβ , the vertices which represent action β have been
EXPLORED once the temporal variables of β are identified. For each complex
level action β where Ak ∈ Aβ , when the vertices which represent this action
become EXPLORED, new UNEXPLORED vertices are added to the graph
(i.e., the vertices which represent the subactions of β). Thus, the assumption that
all of the vertices in the graph are EXPLORED is contradicted. 	


Corollary 4.1 When the algorithm terminates, all of the leaves in the union of the
implicit recipe trees of individual agents are associated with basic level actions.

Proof Otherwise, if leaf β of the union recipe trees is a complex level action in which
Ak has participated in its performance, then, by Proposition 4.3, β is a leaf in the
implicit recipe tree of Ak and, according to the algorithm, the graph includes an
UNEXPLORED vertex and the algorithm has not terminated. 	
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In the following lemma we prove that in each stage of the algorithm the perfor-
mance of the actions in the leaves of the implicit recipe tree is consistent with all
temporal constraints of α.

Lemma 4.2 Suppose that a group of agents Aα plans action α. Let Tk
α be the implicit

recipe tree of Gk
α and Tα be the union implicit recipe trees. Then, during the planning

of the graph Gk
α by each Ak ∈ Aα, performing (possibly in parallel) all of the actions

(possibly complex) in the union implicit recipe trees, Tα, is consistent with α’s temporal
constraints.

Proof By induction (see Appendix A). 	


Corollary 4.2 Suppose that during the planning of graph Gk
α by Ak ∈ Aα , Ak selects

a recipe Rβ in order to perform β. Assume that after adding the associated temporal
constraints of Rβ to Gk

α , Gk
α is consistent. Then, the same action makes all Gi

α , (i �= k)

for each Ai ∈ Aβ also consistent.

Proof Otherwise, the temporal constraints of Rβ are not consistent in the union
recipe trees of α. 	


4.2 Soundness and completeness theorem

The correctness depends on the way in which TCSP is generated and solved as part
of the Temporal Reasoning Algorithm. Assume that the algorithm applies only to
special cases of TCSP that can be solved by sound and complete methods (such
as STP [16]). Then, for these cases we can prove that the Temporal Reasoning
Algorithm is sound and complete.

Theorem 4.1 Suppose that a group of agents Aα needs to perform a joint action α with
a given set of temporal constraints.

1. Soundness: Assume that for each agent, Ak ∈ Aα , the Temporal Reasoning
Algorithm terminates after having identif ied the set of basic actions along with
their temporal requirements 〈Dβ, dβ, rβ, pβ〉. Then the execution of these basic
actions (possibly in parallel), according to the identif ied temporal requirements,
is consistent with all of the temporal constraints of α.

2. Completeness: If there exists a complete recipe tree for α which satisf ies all of the
appropriate temporal constraints and for which RTS can f ind a feasible schedule,
then the Temporal Reasoning Algorithm identif ies all the basic actions along with
their corresponding values of temporal requirements for each agent, Ak ∈ Aα .
Otherwise the algorithm fails.

Proof

1. By Corollary 4.1, when the algorithm terminates, all of the leaves in the union
of the implicit recipe trees of all individual agents are associated with basic level
actions.
By Proposition 4.2, the agent can identify all of the values of the temporal
requirements of these actions. Now we have to prove that the execution of
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the basic actions under the identified values of the temporal requirements is
consistent with all of the temporal constraints of α, but by Lemma 4.2, during the
planning of the graph Gk

α by each Ak ∈ Aα , performing the actions is consistent
with the temporal constraints of α.

2. Suppose that during the planning of the implicit recipe tree for α by agent Ak ∈
Aα either Ak does not find a recipe for some complex level action which satisfies
α’s temporal constraints, or the RTS component of Ak cannot find a feasible
schedule.6 Then Ak can use some known backtracking method on the implicit
recipe tree for α, which enables it to check all of the options of all the other
appropriate available recipes (by Corollary 4.2 it is enough that only one agent
checks all of these options). As a result, only if such a recipe does not exist, the
agents fail in their plan. 	


4.3 Complexity

The planning loop of the algorithm includes four major parts: (I) planning for a
chosen action; (II) exchanging messages between group members; (III) dispatching
and scheduling basic actions by the Real-Time Scheduling (RTS) component; and
(IV) backtracking.

For the complexity analysis of part (I) and part (II), denote m as the number
of nodes of the largest partial recipe tree that has been planned by Ak during the
performance of the algorithm. Denote s as the number of times the process for
selecting a recipe is initiated by a member Ak, and h as the number of messages
with temporal information which Ak receives. Similar to the correctness proof, the
complexity analysis of resolving the temporal constraints in part (I) depends on
the way TCSP is generated and solved. The general TCSP problem is intractable
(see [16, inter alia]) but there is a simplified version, Simple Temporal Problem
(STP), in which each constraint consists of a single interval. This version can be
solved by using efficient techniques available for finding the shortest paths in a
directed graph with weighted edges such as Floyd-Warshall’s all-pairs-shortest-paths
algorithm7 [13]. Thus, in a case of STP, the number of times that Ak runs the Floyd-
Warshall algorithm is (s + h). Since the complexity of the Floyd-Warshall algorithm
is O(m3), in this case, resolving the temporal constraints is O((s + h)m3). Hence,
in a case when using STP, if there is a unique possible recipe for each complex
action (backtracking is unavailable) resolving the temporal constraints is polynomial
in reference to the number of nodes of this tree. However, the scheduling problem
that the RTS component faces (part III) is NP-hard [24]. In addition, if there is more
than one possible recipe for each complex action and backtracking is available, the
complexity analysis is equivalent to the complexity of HTN planning and may be
exponential (see the discussion of the HTN’s complexity in [25]).

6Note that the scheduling problem faced by the RTS component is NP-complete and the RTS
component employs a heuristic algorithm. Though the heuristic has been proven to be efficient in
our domain (see [33]), the RTS component does not guarantee that it will find a solution when a
solution exists.
7Floyd-Warshall’s algorithm efficiently finds the shortest paths between all pairs of vertices in a
graph.
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Thus, the overall complexity is exponential and several heuristics should be
used to limit the search. The complexity of our solution is limited by the NP-hard
component in part III, and potentially by the TCSP formalization in parts I and
II. Practically, we overcome this theoretical complexity in parts I and II by using
a simplified STP that can be solved through the Floyd-Warshall algorithm, which
assumes that the self-interested agents will always accept the plans being proposed
to them by other group members. Assuming our simplifying assumptions are not
true, the original TCSP NP-hard complexity would need to be addressed through
approximations and heuristics. Also, in Part IV, the backtracking needs heuristics
to limit the search as the problem is inherently NP-hard or may even contain an
exponentially large search space.

5 Experimental analysis and results

The goal of this section is to evaluate elements of the planner within our mechanism.
We first study the general behavior of the planning mechanism through a series
of experiments involving planning interactions between two self-interested agents.
While our work considers self-interested planning, previous leading multi-agent
planning work (e.g., [11, 47, 50, 86]) assumes that each agent acts selflessly for the
group (also see Section 6 for more about these planners). Thus, any comparison with
the previous approach is not relevant. As a result, in the first series of experiments,
we focus on elements that are unique to our self-interested planning agents, such as
when to communicate and when to commit to an action or schedule. We then study
the ability to implement this mechanism in a real-world domain while we consider
larger groups of agents (up to 12) as well as issues regarding how our teamwork
implementation is superior to previous teamwork models without planning and
temporal constraints, such as STEAM and BITE [41, 82].

5.1 Studying distributed planning methods of self-interested agents

Specifically, we studied two questions regarding the planning process of self-
interested agents. The first question concerns the stage at which an agent commits
itself to the temporal values in its schedule and communicates these values to the
relevant members. The second question refers to the planning order of the subactions
of a joint activity. We explored these questions by implementing the Temporal
Reasoning Algorithm when the agents used the provide-time and ask-time methods
for information exchange (see Section 3.4) and the random-order, dfs-order and bfs-
order methods for group planning order (see Section 3.5). The combined methods
are called random-provide, dfs-provide, bfs-provide, random-ask, dfs-ask and bfs-ask,
respectively. These six different methods of distributed planning were implemented
in the SharedPlan system separately.

We ran the SharedPlan system in a rescue-robot domain composed of two agents
with different capabilities: a small and flexible robot and a large and strong robot.
The goal of the agents was to execute the action “rescue disaster survivors” by execut-
ing all of the basic actions in such a way that each individual agent had to execute its
own part in the plan without violating the temporal constraints. As presented in our
mechanism, the agents could interact with each other and each of them planned its
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own recipe tree and decided about the values of the temporal variables of subactions
in its partial recipe tree while it sent its basic subactions to the RTS component for
scheduling and execution. At each stage in the planning process the agents selected
an appropriate recipe according to their beliefs about the world-states by looking
it up in the recipe library. To study planning elements, we intentionally focused on
problems where the duration of the executable actions are short in order to force
agents to interleave planning and execution. We created a knowledge base of actions
and recipes where each agent could execute 60 different basic level actions. The
agent’s type as well as its basic capabilities were stated as static beliefs in the agent’s
knowledge-base. Specific examples of the basic actions in the rescue-robot domain
are: “picking up”, “cutting”, “breaking”, “hitting”, “chiseling”, “shaving”, “peeling”,
“digging”, “removing”, “prying”, “pulling”, etc.

In addition, the rescue-robot domain includes several complex actions such as:
“searching for victims”, “excavation of debris”, “clear piles of rubble”, “f ind and
identify victims”, “specify locations of victims”, “rescue victims”, “clear obstructions”,
etc. Section 2 demonstrates a possible recipe (Fig. 3) and recipe trees (Fig. 2) for the
action “rescue disaster survivors” (as implemented in the SharedPlan system). The
union of the recipe trees of both robots represents the joint plan, which we term the
union recipe tree.

We conducted a set of experiments in which we produced 140 different union com-
plete recipe trees for the joint action “rescue disaster survivors” (i.e., 140 fully initiated
plans considering all actions and subactions but not associated with temporal values
and constraints) for random world-states created by the external generator. The
external generator created temporal constraints for actions (in each union complete
recipe tree) by starting with the lowest levels actions (i.e., basic actions) up to
the higher level actions recursively. All temporal constraints have been generated
randomly in such a way that they were consistent with the appropriate world-
states and the other actions in the tree. This was done by creating a consistent
schedule for the basic actions in the complete recipe tree. Then, each complex
action was generated recursively by creating a general recipe that was guaranteed
to be consistent with all possible world-states and then one constraint was chosen
at random from a set of random temporal constraints that were guaranteed to
be consistent with the schedule. Hence, for each set of generated constraints, the
recipe library did include a union complete recipe tree in which all of the temporal
constraints could be satisfied. In particular, the above process identified recipes for
the highest level action “rescue disaster survivors” and for the appropriate subactions
of each recipe and stored them in a recipe library.

We focused on world-states in which the union complete recipe tree included: (1)
a total of between 100 and 120 (between 50 and 60 for each agent) basic actions; the
duration of each basic action could be between 1 to 10 min; (2) an average of between
0.20 and 0.55 precedence constraints between actions that were to be performed by
the same agent; (3) an average of between 0.7 and 1.1 metric constraints with respect
to all of the actions in the recipe tree; and (4) a total of 3 complex multi-agent actions.

We then ran the random-provide, dfs-provide, bfs-provide, random-ask, dfs-ask
and the bfs-ask methods as part of the temporal reasoning mechanism and we tested
the success rate of each method in a given range of multi-precedence constraints.
In each test we supplied the agents with a different set of generated world-states.
As we focused on testing the distributed affect in group planning, we made the
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simplified assumption that the agents were acquainted with only one recipe for
performing a complex action in a specific world-state and backtracking was not
allowed. Consequently, the recipe library included a unique union complete recipe
tree for a given world-state. Note that the agents may become aware of new world-
states during the planning and the execution of subactions. Thus, although all of the
recipe trees with their appropriate constraints were generated by us in advance, the
agents did not know them in advance, and the trees evolve incrementally while new
world-states are revealed over time.

We assert that a group of agents, Aα , succeeds in performing the joint action α

if: (1) The AIP component of each agent Ak ∈ Aα has completed the planning for
α and by building a complete recipe tree for α which satisfies all ofthe appropriate
temporal constraints; (2) The RTS component of each Ak ∈ Aα , has found a feasible
schedule, which consists of all of the basic level actions in Ak’s complete recipe tree
for α. A failure is defined when either the AIP component of at least one agent (in
Aα) has failed to build a complete recipe tree, or the RTS component of at least one
agent (in Aα) has failed to find a feasible schedule. Accordingly, the success rate of a
method is obtained by dividing the quantity of cases that Aα succeeds in performing
α by the total cases where Aα tries to perform α.

We also compared the performance of the temporal reasoning mechanism in its
distributed planning mode, in which each agent planned its own recipe tree, with
another mode in which a union recipe tree has been planned centrally by a central
planner where each agent was equivalent to the RTS component (see Fig. 10). The
computational power of the central planner was equivalent to the computational
power of the AIP component of one agent in the distributed mode. During the
planning process, the central planner sent the basic actions with their associated
temporal constraints to the appropriate agent for scheduling and execution. Similar
to the distributed planning mode, each agent was able to execute 60 different basic
level actions according to its type. The union recipe tree has been planned according
to the bfs-order planning method. When the central planner chose to plan action
γ which had to be performed by agent A j, but γ had precedential basic actions
β1, . . . , βm that were assigned to be performed by another agent Ai, the central

Fig. 10 An illustration of the
system with a central planner
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Table 2 A comparison between the success rate of the different methods

Constraints random- dfs- bfs- random- dfs- bfs- Aggregated Central
provide provide provide ask ask ask (%) (%)
(%) (%) (%) (%) (%) (%)

0 75 94 95 86 92 98 90 80
1–2 79 75 82 87 88 88 83 91
3–4 64 66 70 84 75 83 74 72
5–6 58 53 88 84 88 84 76 66

planner requested the times of β1, . . . , βm from Ai who became committed to these
times. Note that this is relevant only for the execution time of basic actions. All other
information regarding the joint plan was locally available to the central planner. The
success rate is defined in a similar way to the distributed planning mode but here the
central planner has to complete the planning for α under the appropriate temporal
constraints.

5.1.1 The ef fects of multi-precedence constraints between actions

First, we tested how the number of multi-precedence constraints between subactions
affect the performance of the system. Our hypothesis was that a large number of
multi-precedence constraints would decrease the flexibility of the agents in deciding
about the temporal values to perform their individual activities. Thus, it would reduce
the success rate. The success rate of each method is given in Table 2. The first column
specifies the number of multi-precedence constraints and the other columns specify
the success rate of each method in a given number of multi-precedence constraints.
The aggregated column refers to the success rate of the aggregation of all of the
distributed methods and the last column refers to the success rate of the central
planner. As shown in Table 2, in some cases the behavior is non-monotonic. This
was in contrast to our hypothesis, something we discussed below.

To study our first question, we checked whether the ask-time method was better
than the provide-time method. The results in Fig. 11 show that, in the general
case (i.e., if we consider all the instances regardless of the number of precedence

Fig. 11 A comparison between the success rate of each method in the general case
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constraints) the ask-time method is significantly better8 than the provide-time method
(p-value < 0.01). The comparison between the dfs-ask and dfs-provide methods
also shows that the ask-time method is significantly better than the provide-time
method (p-value = 0.025). Similarly, when we consider the general case with all the
instances, the bfs-ask method is significantly better than the bfs-provide method (p-
value < 0.01). The reason that the success-rate is not equal for all methods when
the number of the multi-precedence constraints is “0” results from the failures of
the heuristic algorithm which is employed by the RTS component (see Section 2.4).
Nevertheless, if we consider the specific case of “0” multi-precedence constraints, the
difference between the dfs-provide and dfs-ask as well as the difference between the
bfs-provide and bfs-ask is not significant.

Thus, as we hypothesized, we can conclude that in the general case (regardless of
the number of precedence constraints), when the agents make their commitments
as late as possible, their performance is better. This is also the reason that the
success rate of the dfs-provide method decreases as the number of multi-precedence
constraints increases (see Table 2). In the dfs-order method the agent tries to
complete the entire plan of a selected action before it continues to plan another
action. Thus, the planning of certain actions are completed and the agent provides
their schedule and commits to it at an early stage. As the number of multi-precedence
constraints increases, commitments are made earlier. In the other methods the
success rate does not change monotonically as a function of the number of multi-
precedence constraints. We assume that the reason for this non-monotonic behavior
results from the fact that a high number of multi-precedence constraints provides
more knowledge about the subaction slots. As a result, the precedence constraints
direct the scheduler and the other group members to the correct solution (which
always exists in our examples). On the other hand, multi-precedence constraints
decrease the flexibility of the individuals in the group since they cause them to make
more commitments in their schedule. Lowered flexibility leads to a lower success
rate in cases of 3–4 multi-precedence constraints. We believe that these results
come about because if a problem is weakly constrained, a complete algorithm will
easily find a solution, and if the problem is very strongly constrained, the problem
is again easy since the complete algorithm can prune most of the branches in the
search tree. Therefore, the most difficult problems will exist in the middle. Thus,
this problem follows easy-hard-easy pattern noted in other constraint satisfaction
problems [53, 57, 91].

To study our second question, we explored how the planning order affects the
success rate. A comparison of dfs-provide to bfs-provide shows that when the number
of precedence constraints is “0” then the success rate of dfs-provide is equal to the
success rate of bfs-provide. However, if we consider the general case with all of the
instances (regardless of the number of precedence constraints) then the bfs-provide
method is significantly better than the other methods of distributed planning (p-value
< 0.01). These results are not surprising since the stage at which the agent makes
its commitments according to the dfs-provide method is earlier than the bfs-provide

8In the rest of this section, we used the chi-squared test for a comparison between several values. In
this case a standard t-test is not appropriate as there is more than one pair of results to compare. The
likelihood-ratio test is selected to compare two models. In the other cases we used the standard t-test.
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method, and the random-provide method is a combination of the bfs-provide and
dfs-provide methods.

The surprising results are shown in the comparison between random-ask, dfs-
ask and bfs-ask methods because in this case it is unclear which method is better
(see the right graph in Fig. 11). The reason for these results is the order in which
recipes with the multi-precedence constraints are selected affects the success-rate.
If such recipes are selected early, the commitment by the agents comes at an early
stage, thus reducing their flexibility. However, because the recipes trees were created
randomly, in certain cases the dfs-order adds these recipes to the plan before the bfs-
order while in other cases such a recipe first appears according to the bfs-order. Thus,
there is no one method that is significantly better than the others. Consequently, for
certain world-states dfs-ask is better, and for other world-states bfs-ask is better. The
random-ask, which is a random combination of bfs-ask and dfs-ask, drew the wrong
order in some cases, which caused it to fail more than the dfs-ask. But, in certain
cases, it drew the best order for a specific world-state resulting in good outcomes.
The reason for the low success rate of the random order method, in particular in the
case where there were no multi-precedence constraints, is the heuristic algorithm
for scheduling which is employed by the RTS component (see Section 2.4). The
heuristic assumes that the AIP component first sends all the basic actions which
are constituents of a specific complex action and only then sends the constituents
of another complex action. The random order does not satisfy this assumption.

The last column in Table 2 shows the success rate of the central planner. As
indicated in Fig. 11, the distributed bfs-ask is significantly better than the central
planner (p-value = 0.025). The central planner attained worse results than the bfs-
ask for two major reasons. First, the high processing time (even on the high-end Sun
Workstation that we used) to conduct planning (which is more substantial than the
overhead caused by the exchanged messages in the distributed method) leads to a
delay in sending some basic actions for execution and causes certain basic actions
to miss their deadline. This low success rate can be improved by increasing the
computational power of the central planner. Second, the central planner plans the
actions of all of the group members and a high number of precedence constraints
causes the central planner to ask the agents to make more commitments in their
schedule. Thus, similar to the provide-time method, these commitments reduce
the flexibility of the scheduling process, particularly when the multi-precedence
constraints are in the highest levels of the recipe tree and are done at an early stage.
However, if we compare the central planner to the provide-time method when using
distributed planning, the central planner is better in some cases. Note that since
the processing time to conduct planning by the central planner is high, the ask-time
method which increases the delay of this time is inefficient for the central planner.

5.1.2 The ef fects of multi-precedence constraints between complex actions

In our experiments we notice that the multi-precedence constraints between basic
actions significantly decreases the success rate of the system. This is because the
RTS schedules basic actions and not complex actions. As a result, when the agent
commits to the time of a basic action, it causes the RTS component to commit the
agent to precise time frame values. However, in the case of multi-precedence con-
straints between complex actions, the agent estimates the time frame (based on the
basic actions that constitute the complex action and have been scheduled). Thus,
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while the multi-precedence constraints between basic actions cause the agent to be
committed to a tight time frame, the multi-precedence constraints between complex
actions allow the agent to be committed to a wide range of possible values. Also,
when the constraints are between basic actions in the high level of the recipe tree, the
commitment is made at a very early stage of the planning process. In this section we
study the implications of the multi-precedence constraints between complex actions
and basic actions separately. For this purpose, we selected the planning problems
whose solutions included multi-precedence constraints only between complex ac-
tions; the total number of these problems was 111.

As we hypothesized, if we remove the cases with multi-precedence constraints
between basic actions, the performance of the system is significantly higher (p-value
< 0.01). The results are given in Table 3. As indicated from the table in bfs-provide,
the success rate is 100 % when the recipe consists of 1–2 and 5–6 multi-precedence
constraints (vs. 82 % and 88 % where multi-precedence constraints between basic
actions are allowed). The lowest success rate is 80 % with 3–4 constraints. The
lowest success rate of the bfs-ask which is significantly better than the bfs-provide (p-
value < 0.01) is 89 %. Also, the random-ask is significantly better than the random-
provide (p-value < 0.01) and the dfs-ask is significantly better than the dfs-provide
(p-value = 0.0385). These methods are also attained higher results than the case of
multi-precedence constraints between basic actions. The results also show that the
bfs-order planning method is significantly better for all the cases (p-value < 0.05).
Thus, for environments without multi precedence constraints between basic actions,
we can conclude that it is more efficient for a group to perform their plan in the same
order and to first plan the highest level actions.

Overall, these results demonstrate that planners for self-interested agents should
commit to the group as late as possible. Furthermore, when group members use a
similar order to plan the sub-actions of their joint activity, they have a better chance
of succeeding in executing the joint action under all the temporal constraints. We
have tested six different methods of distributed planning with different numbers of
multi-precedence constraints; the success rate of the aggregation of all the distributed
methods was about 80 %. Nevertheless, the results may be improved by allowing
backtracking and more choices of recipes.

5.2 Effectiveness of the mechanism in a real-world simulator

While the above results are important for testing the limits of the planner, we also
focused on how to practically implement this mechanism and how our teamwork
model compares with other implementations. Towards this goal, we present how

Table 3 A comparison between the success rate of different methods when the multi-precedence
constraints are only between complex actions

Constraints random- dfs- bfs- random- dfs- bfs- Aggregated Central
provide provide provide ask ask ask (%) (%)
(%) (%) (%) (%) (%) (%)

0 75 94 95 86 92 98 90 80
1–2 91 83 100 96 92 100 94 100
3–4 74 77 80 89 75 89 81 86
5–6 62 64 100 90 95 95 85 78
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this mechanism was implemented within a commercial training and simulation
system at BVR Systems LTD. BVR is focused on joint force, on-board training
and distributed simulation systems. BVR has already planned realistic simulators for
airplane cockpits, naval stations and ground forces. We propose a new application
that builds upon BVR’s existing simulators to simulate more complex group training
missions by using the SharedPlan system.

Figure 12 depicts a high level architecture of the BVR’s simulation engine and
the SharedPlan system integration. As shown in this figure, the simulation engine
includes Train Knowledge Base (TKB) with the geographical data about the training
scenario and an exercise database with the initial data of the training exercise (e.g.,
agents types, agents’ forces, their initial location, their initial mission). Unique to
the SharedPlan system, an Agent Knowledge Base (AKB) is created containing
properties about each agent (e.g. aircraft type, max, min velocity). In addition, it
includes various types of groups (e.g., platoon, battalion) and their decomposition
methods which describe possible ways of decomposing the groups into subgroups.
Also, a Behavior Knowledge Base (BKB) is created containing a predefined set
of basic actions that the agent can execute in the simulation and complex actions
and their appropriate recipes. Agents’ decisions are based on the dynamic and
static knowledge that the agents gather from the simulation engine as well as the
information in the AKB and the BKB. The Control component enables the human
trainer to interact with the simulated arena and to influence the agents’ behavior.

In studying the usefulness of the temporal reasoning mechanism in BVR’s system,
content experts defined real-life scenarios including fixed time points and temporal
constraints on actions as may occur in practice. The temporal reasoning mechanism
determines times for executing actions and coordinates the agents’ activities. Mes-
sages have been sent between agents as described in Section 3.4. The information
of fixed vertices is not exchanged thus saving the number of exchanged messages.
The content experts defined a number of recipes for performing the same action in
different world- states, including a default recipe which enabled a 100 % success rate.
That is, in any state of the world, the agents were able to define a complete recipe
tree for their joint action in which all of the constraints were satisfied. Hence, in a

Fig. 12 A high level overview
of the simulation system
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case of failure, the agents can backtrack and re-plan actions by selecting alternative
recipes until a complete plan is achieved.

Practically speaking, we applied scenarios involving fighter jets attempting to
“destroy the enemy target”. Each scenario involved a target that needed to be
destroyed, as well as groups of attacking and defending planes. The attacking planes,
which form the blue group, consist of bomber and fighter planes (e.g. F16 fighters
and Stealth bombers), and the defending group consists exclusively of red fighter
planes (F16). The goal of the blue fighters is to disable the enemy’s red fighters, after
which the blue bombers are able to destroy the ground target. The scenarios focused
on different group sizes for the blue groups. A pictorial description of one scenario
involving 8 blue and 4 red planes is given in Fig. 13. The scenario included several
temporal constraints. For example, the blue bombers should reach the border 5 min
after the blue fighters reachit. Using our mechanism, the bombers reason that they
should leave the base 3 min. after the fighters. Hence, given that the fighters leave
the base on 4:00 P.M, based on our mechanism, the bombers should leave the base
at 4:03 P.M. Dynamic changes in this scenario may include unknown issues, such as

Fig. 13 Simulation view snapshots of “destroy the enemy target” action: 1 A blue group (8 agents)
approaches the target area; 2 The blue group splits into two subgroups. One blue subgroup
(4 fighters) approaches the red group and the second blue subgroup (4 bombers) waits; 3 The red
fighters leave the area and the bombers destroy the target; 4 The blue group returns to home base
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delays in the performance of actions which lead to time changes. For example, the
fighters may encounter an unexpected enemy on their way to the border and arrive
at the border later than planned. The bombers should update the times of leaving the
base, accordingly.

In order to generate realistic plans for the “destroy the enemy target” action, we
consulted with a group of professional fighter pilots whose expert knowledge was
then directly encoded. We relied on these experts to provide details about how they
would perform theoretical missions. We then encapsulated this information to form
complex actions and a recipe library. In creating the recipes we utilized 241 existing
predicates and 135 atomic actions of the simulation engine. To demonstrate the
above scenario we created 103 recipes and 9 types of partitions of the planes into
groups (e.g. pairs, triplets, etc.). The total number of complex actions was 79.

An example of a possible temporal constraints graph’s implicit recipe tree, main-
tained by different members in the blue group demonstrated in Fig. 13, is given in
Fig. 14. As shown in this figure, the recipe of the “destroy the enemy target” (α) action
includes the subactions: “setup” (β1), “f ly to border” (β2), “attack target” (β3) and
“return to home base” (β4). The recipe is associated with precedence constraints {β1

before β2; β2 before β3; β3 before β4}. In addition, based on the experts’ information,
we defined four landmarks with fixed times, including: time to be at the border,
finish time to disable the red fighters, time to finish waiting at the border, and time
to leave the enemy area. Accordingly, Rα was associated with the following metric
constraints: the agents must finish β2 within 20 min. of starting α and β4 must begin
at 5:00 P.M. Also, it was defined that the bomber agents should start to destroy the
ground target at 16:40 P.M. We used the mechanism to simulate groups of 2, 4, 8 and
12 blue planes which needed to destroy the target of the red group, consisting of 4
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Table 4 Comparing the
number of coordination
messages using the temporal
reasoning mechanism versus
other state-of-the art systems

No. of agents No. of messages

BITE/STEAM Our mechanism Our mechanism
with replanning

2 24 10 12
4 124 62 84
8 320 174 236
12 568 380 480

jets. Based on the results in Section 5.1 above, the agents planned their actions in the
same order and used bfs planning order whenever it was possible. In addition, the
agents used the provide-time method in order to save the number of the messages.
In all the runs the agents achieved their mission under the temporal constraints with
a 100 % success rate, which provided empirical evidence of the effectiveness of the
mechanism in real-life scenarios.

We also explored the effectiveness of the mechanism by its ability to reduce the
number of coordination messages between the group members. In particular, we
compared it with other state-of-the art systems, based on teamwork models, in which
the group members coordinate their activities via messages. We recorded the number
of messages required to coordinate teamwork in our system, based on the temporal
reasoning mechanism, in the blue group. The messages in our system are exchanged
according to Section 3.4. We then compared it to the number of messages needed in
the same set of problems as examined by previous teamwork approaches, BITE [41]
and STEAM [82], where the group members maintain coordination by broadcasting
messages. The number of necessary messages observed in previous approaches, are
given in column 2 of Table 4. Column 3 describes the number of messages in our
system. Nevertheless, in column 3 we assume that no dynamic changes appear in the
environment. In column 4 we describe the number of messages needed when the en-
vironment includes dynamic changes and the agents had to communicate and change
their temporal decisions 7 times. These changes were based on real-life changes. As
Table 4 demonstrates, we found that the temporal mechanism yielded a significant9

(p-value < 0.05) saving in the number of coordination messages between the group
members, as well as when the environment includes dynamic changes.

Overall, the results in this section demonstrate the success of our approach in
both a rescue domain and within a commercial real-world simulator. The results
from the rescue domain show that self-interested planning agents within a group
should commit to a schedule as late as possible. These results also demonstrate that if
the group members perform their plan in the same order and they first plan the high-
est level actions, they then have a better chance of succeeding in their joint activity.
We also present cases in which it is more efficient to distribute the planning among
the group members than to solve the problem via a central planner. Additionally, we
have integrated the mechanism within a commercial training and simulation applica-
tion. These results not only present empirical evidence of its effectiveness in real-life
scenarios, but also show their advantage over state-of-the-art implementation models

9We used the two-tailed t-Test.
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for teamwork [41, 82] in reducing the number of messages needed to coordinate
group members’ activities by a very large amount (between 18 to 50 %). Thus, this
mechanism should be considered to be the the state-of-the-art implementation for
teamwork.

6 Related work

This work focuses on distributed planning with time constraints for self-interested
agents. While this work is novel in how it addresses self-interested agents, distributed
planning with time constraints has been well studied previously, in general terms. des-
Jardins et al. [18] address two major approaches for the distributed planning problem.
The first approach, called Cooperative Distributed Planning (CDP), places emphasis
on how to expand a plan in a distributed environment, where the process of formu-
lating or executing a plan involves actions and interactions of multiple agents. One of
the earliest versions of the CDP approach was introduced by Corkill [12]. Additional
known versions of CDP include the COLLAGE planner which uses localization to
partition the planning [46], the Distributed SIPE-2 planner (DSIPE) [89] and the
Partial Global Planning (PGP) [20]. The second approach, called Negotiated Distrib-
uted Planning (NDP), focuses on how to control and coordinate actions of multiple
agents in a shared environment, where planning representations and algorithms are
adopted accordingly. The purpose of agents who engage in CDP is different from
the purpose of agents in NDP. Agents in CDP aim at executing the distributed parts
of the plan in a coherent and effective way. Yet, agents who act according to NDP
do not aim at forming a good collective plan but rather at ensuring that their local
goals are achieved, when viewed in a global context.

To date, the leading approach for distributed planning that considers time con-
straints falls into the CDP category in which a group of multiple agents aims to
maximize the overall utility accrued by the group. That is, group members exchange
information regarding their plans, which are iteratively refined and revised until
they fit together well with the objective to optimize a global plan. One example
is the Distributed Temporal Planner (DTP) algorithm [86] that distributes over
available processors the computation involved in finding a feasible solution to
Temporal Plan Networks (TPNs). Another example is the multi-agent executive
for scheduling temporal plans, named Chaski [74]. The most notable example is
the COORDINATORS program [45] that aimed to create hand-held coordination
assistants in order to enable military units to adapt mission plans more rapidly. The
COORDINATORS program involved hierarchical distributed planning based on
TAEMS framework [47, 72, 81] as well as methods for coordination and schedul-
ing [3, 34, 50, 51, 77]. Nevertheless, the CDP approach, which offers coordination and
scheduling methods, assumes that each agent is committed to activities that optimize
the global plan—something that cannot be assumed in our problem.

In contrast, our work is based on the SharedPlan model and considers self-
interested agents who plan their actions in a group [28]. The model supports the
reasoning of a group member and the tradeoff between its own cost of performing ac-
tivities in the context of the collaborative plan and its benefit from the success of the
joint goal. While the idea of self-interested planning agents is new to this setting, self-
interested group agents have been considered in other settings such as in cooperative



Group planning with time constraints

exploration [71]. Additionally, unlike the CDP- based approach in which agents
are not inherently involved in the generation of collaborative plans, the SharedPlan
model enables the agents to reach an agreement on the method to execute the joint
action and various subactions, as well as who is going to perform the subactions in
the plan. As the approach may be concerned with inter-agent negotiation it is typified
by [18] as Negotiated Distributed Planning (NDP). However, using this structure for
resolving temporal constraints in distributed planning is new, and to the best of our
knowledge has never been previously applied.

Several other works propose planning techniques for real-world environments,
taking into account changes in the environment while executing a plan. Although
they suggest an intelligent control system that can dynamically plan its own behavior,
they neither consider temporal constraints nor teamwork. Examples of such works
include M-SHOP [64], which is focused on domain-independent planning formaliza-
tion and planning algorithms; the Zeno system [42], which suggests a method for
building a decision-making mechanism for a planner in an uncertain environment;
and the SGP contingent planning algorithm [87], which handles planning problems
with uncertainty in initial conditions and with actions that combine causal and sen-
sory effects. It also includes the planning model of the constraint-based Excalibure
planning system [62, 63] and so on. Unlike these works, our work does handle
temporal constraints as well as teamwork activity.

Other planners, such as O-plan [14], zeno [66], ParcPlan [22, 48], Cypress [88] and
DCAPS [9] are able to handle temporal constraints. However, they do not interleave
planning and execution and are not suitable for continual planning. In other works
that combine planning and scheduling such as the Cypress [88], CASPER [10] and
SGPlan4 [8] systems, the planner is not concerned with group planning processes that
aim to facilitate self-interested teamwork agents.

Clement and Barrett [11] do consider self-interested agents that interleave plan-
ning and execution. They present the Shared Activity Coordination (SHAC) frame-
work to provide a decentralized algorithm for negotiating the scheduling of shared
activities over the lifetimes of multiple agents. Nevertheless, they suggest commu-
nication protocols for the agents but do not show any mechanism for collaborative
planning as well as for temporal reasoning, as we do.

Our work uses continual planning in which planning and execution are interleaved
through interaction between a Real-Time (RT) layer and an Artificial Intelligence
(AI) layer as presented in previous systems. Examples of such systems include Miller
and Gat’s three-layer ATLANTIS system [54], Simmons’ Task Control Architecture
(TCA) [76] and the CIRCA system [60, 61]. While these systems do include separate
RT and AI components which cooperate to achieve the overall desirable behavior,
they are not concerned with group planning. In contrast, our work presents a new
framework by utilizing the SharePlan model to implement an interaction between
the AI components in order to achieve group joint plans.

Representing and reasoning about incomplete and indefinite qualitative temporal
information is an essential part of many AI systems. Several formalisms for express-
ing and reasoning about temporal knowledge have been proposed, most notably
Allen’s interval algebra [1], Vilain and Kautz’s point algebra [85] and Dean and
McDermott’s time map [15]. Each of these representation schemes is supported by
a specialized constraint-directed reasoning algorithm. At the same time, extensive
research has been carried out on Constraint Satisfaction Problems (CSPs) which
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provide a powerful and efficient framework for describing state search problems.
Some of these (e.g., [58]) have been extended to problems involving temporal
constraint satisfaction problems (TCSPs) [4, 16] which are special cases of CSPs.

Our mechanism exploits the TCSP framework in order to resolve the temporal
constraints in the system. For that reason, the performance of our system is strongly
dependent upon the way that TCSP is generated and solved as a part of the Temporal
Reasoning Algorithm. The general TCSP problem is intractable [16, inter alia]. In the
experiments presented in this paper, we applied a simple temporal problem (STP)
[16] and solved it by using Floyd-Warshall’s all-pairs-shortest-paths algorithm [13].

Nevertheless, the performance of our system can be improved by applying more
efficient and extended algorithms to resolve the STP as well as the general TCSP.
For example, Demetrescu and Italiano [17] suggest an efficient algorithm for main-
taining all-pairs-shortest-paths in directed graphs. Mohr and Henderson [56] present
algorithms for arc and path consistency and show that the arc consistency algorithm
is optimal in time complexity. Xu and Choueiry [90] improve the performance of the
exponential-time backtrack search presented by [16]. Planken et al. [68] improve the
algorithm proposed by Xu and Choueiry and suggest the P3C algorithm for resolving
STP. In [69] they propose the IPPC algorithm that maintains partial path consistency
when new constraints are added or existing constraints are tightened. Shu et al. [75]
utilize a temporal constraint network in order to provide an Incremental Temporal
Consistency (ITC) algorithm for continuous planning. In [73] they suggest the ICA-
TCSP algorithm which reduces the space necessary to encode the TCSP solution.
Vidal et al. [59, 83, 84] extend classical temporal constraint networks to handle all the
types of temporal constraints presented by Allen [2] in dynamic environments. While
these works consider more efficient algorithms and a wider range of constraints
than we do, they do not show how to combine them within a distributed planning
environment.

Our work considers a problem in which multiple agents have to find a consistent
set of actions under given constraints. This problem is naturally modeled as a
Distributed Constraint Optimization Problem (DCOP) [35, 36, 49, 52, 55, 67]. In
DCOP, variables and constraints are distributed among multiple agents. Solving a
DCOP requires that agents not only solve their own constraints, but also coordinate
the choice of their values with other agents in order to optimize a global objective
function. The global objective function is modeled as a set of constraints, and
each agent is familiar with the set of constraints for its variables. Previous work
has proposed the DCOP for modeling a wide variety of multi-agent coordination
problems such as distributed recourse allocation [79], distributed planning [81]
and distributed scheduling [43]. In this work we exploit the SharedPlan model of
cooperation to resolve temporal constraints in a distributed fashion. Thus, unlike
DCOP approaches that optimize a global objective function, in our work we consider
self-interested agents who belong to a group, as has been described above.

The BDI theoretical model of cooperation, which has many similarities with the
approach we present, has been applied in previous teamwork systems [40, 41, 82].
Nonetheless, the key novelty of this work, and what differentiates our system from all
other state-of-the-art BDI-based systems, is in its implementation. Namely, this work
is unique in its ability to apply hierarchical abstraction planning and to incorporate
these plans within its temporal reasoning mechanism where plans and temporal
networks are built incrementally. Therefore, unlike other systems attributed to the
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NDP approach, which either suggest broadcasting messages between the group
members in order to maintain the full synchronization [41, 78, 82], or which propose
that the team leader be responsible for the timing of the individual actions [39], our
mechanism enables each agent to reason about its schedule individually, and thus
reduces the necessity for communication. Furthermore, in former systems belonging
to the NDP approach, a joint action is defined by explicitly describing all possible
states in advance, so they do not keep the search space as we do. Practically,
this difference facilitates a significant reduction in the number of messages that
agents need to send—a claim that is supported by our result that agents using our
mechanism sent far fewer messages (between 18 to 50 %) than those using other
implementations.

In our work we focus on the integration of temporal constraints networks into
multi-agent planning environments. More recent work makes use of temporal con-
straint networks in distributed dynamic environments yet does not include abstract
joint plans and the BDI model of cooperation as does our work. Hunsberger [38]
presents a mechanism whereby distributed agents can each solve different sections
of a temporal network. While this framework is novel in that it allows for real-time
execution of tasks and a novel mechanism allowing agents to partition the temporal
network, it does not specify how it might generalize to planning self-interested agents
with these types of constraints. Boerkoel and Durfee [5–7] exploit temporal con-
straints networks to find a joint schedule by distributed agents. They introduce the
Multiagent Disjunctive Temporal Problem (MaDTP), a new distributed formulation
of the widely-adopted Disjunctive Temporal Problem (DTP) [80] representation.
Similarly, they focus on the scheduling problem but do not generalize it to teamwork
with joint plans as we do.

7 Conclusion and future work

In this work we have presented a temporal reasoning mechanism for continual
distributed planning by a group of self-interested agents. We have shown how to com-
bine the BDI theoretical model of cooperation with hierarchical abstraction plans
and temporal constraints networks. The reasoning mechanism exploits collaborative
planning processes of the SharedPlan model [26] to enable each agent to decide
about its schedule individually while interacting with the other group members.
During the planning, each agent determines the duration and the time windows of
the actions it has to perform and it takes into consideration the required temporal
constraints of its activities and of collaborators. The times and the periods of the
events that occur during the agents’ activities need not be known in advance. In
addition, the agents can expand their plans in a hierarchical manner without explicitly
describing all possible states in advance. As a result, an agent may change its schedule
if it identifies new plans and constraints due to changes in the environment, or if it
receives new time constraints from other group members. Furthermore, if the agent
determines that the course of action it has adopted is not successful, then it can revise
its schedule of future actions.

We tested our approach in both a rescue domain and a commercial real-world
simulator. The results from the rescue domain check the theoretical behavior of the
self-interested planning agents acting within a group. We showed that such agents
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should commit to a schedule as late as possible and that if the group members
perform their plan in the same order and they first plan the highest level actions,
they then have a better chance of succeeding in their joint activity. We also presented
cases in which it is more efficient to distribute the planning among the group
members than to solve the problem via a central planner. Additionally, we have
integrated the mechanism within a commercial training and simulation application.
These results not only present empirical evidence of its effectiveness in real-life
scenarios, but also show their advantage over existing teamwork models [41, 82] in
reducing the number of messages needed to coordinate group members’ activities by
a very large amount.

For future work, we hope to consider how the results presented may be improved.
One option would be to change the heuristic algorithm used by the RTS component.
Another improvement may be achieved by enabling the agents to estimate the
amount of time needed by others to perform their actions, as is usually done in
distributed planning among people. This may result in a significant savings in the
amount of communication and negotiation. Such an estimation could be based, for
example, on past performance.

Appendix A: Proofs of lemmas and propositions for the correctness of the temporal
reasoning algorithm

Proposition 4.1 Suppose that the AIP component of an agent Ak runs the Temporal
Reasoning Algorithm which builds the Temporal Constraints Graph Gk

α = (Vk
α, Ek

α).
Let v be a vertex in Vk

α and S be the set of all minimal members of the set {u|u is a
f ixed vertex and u precedes v}. Then, during the building of the Temporal Constraints
Graph, if each vertex in the path from all of the vertices in S to v are EXPLORED
(but not ENPW) and then v is an ENABLED.

Proof The proof is by induction on the length of the longest path from u ∈ S to v (u is
a minimal member of S in a partial order if u ∈ S and no other w ∈ S exists such that
w precedes u). Let v be a vertex such that the longest path from all of the vertices in
S to v are EXPLORED but not ENPW. Initially, when the length of the longest path
is equal to zero, the vertex v is a fixed time point and the proposition certainly holds.
Also, when the length of the longest path is equal to 1, the proposition certainly
holds (as all of the vertices that precede v are fixed). Suppose that v is not a fixed
vertex and let S

′
be the set of all minimal members of the set {u′|u′ is a fixed vertex

and u′ precedes u} . Then, for each (u, v) ∈ Eα , the longest path from the minimal
members of the set S

′
to u is shorter than the longest path from the vertices in S to v.

Therefore, according to the inductive hypothesis, if each vertex in the path from all
of the vertices in S

′
to u are EXPLORED (but not ENPW), then u is an ENABLED

vertex. Now, it remains to be shown that the weight of each edge (u, v) ∈ Eα is
known. But according to the algorithm, the weight of an edge (u, v) ∈ Eα becomes
known if the values of all of the vertices in the path from u to v are known. These
values are known if the vertex is fixed or if the plan of the action which is associated
with the vertex is completed. Suppose, by contradiction, that there is at least one
vertex whose value is unknown to Ak. But if Ak participates in the performance of
the action which is associated with this vertex, then during the building of the graph,
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Ak changes the statues of v and u to EXPLORED only after it adds UNEXPLORED
vertices between v and u. Thus, there is a path of UNEXPLORED vertices between
u and v. If Ak does not participate in the performance of this action, the vertex
becomes ENPT only if the time value of this vertex is known (i.e., the vertex is fixed).
Consequently, the weight of the edge from S to v is known and v is therefore an
ENABLED vertex. 	


Lemma 4.2 Suppose that a group of agents Aα plans action α. Let Tk
α be the implicit

recipe tree of Gk
α and let Tα be the union implicit recipe trees. Then, during the

development of the graph Gk
α by each Ak ∈ Aα , performing (possibly in parallel) all of

the actions (possibly complex) in the union implicit recipe trees, Tα , is consistent with
α’s temporal constraints.

Proof The proof is by induction from the number of the vertices in the implicit recipe
tree of an individual agent. Initially, when the recipe-tree consists of one vertex (i.e.,
only action α), the proposition certainly holds (see the initialization phase in Fig. 6).
Suppose that the implicit recipe tree of Ak consists of n vertices. As an inductive
hypothesis we assume that all of the actions in the leaves of the recipe tree with
m vertices, where m < n, are consistent with α’s temporal constraints. Let Tk

α be a
partial implicit recipe tree, planned by Ak for α, with m vertices. According to the
algorithm Ak expands its recipe tree by selecting a leaf which represents a complex
level action β (lines 25 and 27). Suppose that Ak selected the recipe Rβ in order
to expand the recipe tree for α which consists of b subactions. According to the
algorithm (see Fig. 19), when Ak selects the recipe for β and adds it to the constraints
graph, it also checks that all of the constraints of β are consistent with temporal
constraints of α (see Fig. 20). If these constraints are consistent with the temporal
constraints of α (line 7 in Fig. 19), it continues with its plan for α and the subactions
of β become the leaves of the recipe tree of α (the “while” loop in Fig. 19). Thus,
all of the actions in the leaves of the tree which consists of n = m + b vertices are
consistent with α’s temporal constraints.

Since, according to Proposition 4.3, the leaves of the union implicit recipe trees,
Tα , are leaves of the implicit recipe trees of the appropriate agents, performing the
actions in the leaves of these implicit recipe trees is consistent with α’s temporal
constraints. 	


Appendix B: Temporal reasoning mechanism procedures

Fig. 15 Floyd-Warshall’s algorithm
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Fig. 16 check_consistency procedure finds whether Gα is consistent

Fig. 17 The procedure update_enabled_set updates the sets of the ENABLED vertices. As an
input this procedure receives a vertex u for which Ak has either completed identifying its time (if it
is a basic vertex) or completed identifying a preliminary plan for it (if it is a complex vertex) or it
has received its time values from another agent (if Ak does not participate in the performance of the
action which is associated with this vertex). First it adds vertex u to the E set. Then, for each vertex v

adjacent to u (i.e., (u, v) ∈ E) it checks if all of the vertices which enter v (i.e., for each vertex a such
that (a, v) ∈ E) belong to E (lines 4–6). If so, it checks if the status of v is an UNEXPLORED vertex.
If so, it adds v to U (lines 7–8); otherwise (if the status of v is EXPLORED but is not ENPW) the
procedure runs again recursively on v (line 9)

Fig. 18 This procedure is based on the planning processes of the SharedPlan model. That is, the
procedure includes the process for selecting a recipe by the group Aβ and the process for the
assignment of the members to subactions. In line 1 Ak informs all other members in Aβ about its
intention to plan β and receives answers from all of the other members in Aβ . If there is no member
in Aβ who objects, then Ak tries to plan β. In line 3 Ak tries to plan β according to Fig. 19. If Ak
succeeds in finding a feasible plan for β (bIsConsistent is true), then, Ak sends the information about
the selected recipe, Rβ , to the other participants and they need to reach an agreement regarding the
selected recipe (line 4) and about their assignment to the subactions of Rβ (line 5). If the other
members agree about the selected recipe and their assignment to the subactions, then each of them
adds the selected recipe to its graph (line 6) according to Fig. 20. If some member in Aβ objects to
Ak or Ak does not find an appropriated recipe in its library, then the procedure returns a failure
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Fig. 19 Planning the Temporal Constraints Graph according to a complex level action β. �β denotes
the set of recipes for β. The remove procedure removes the vertices and edges which are associated
with the subactions of Rβ from Gk

α

Fig. 20 Add relevant vertices and edges according to the selected recipe Rβ

Fig. 21 The algorithm for constructing a precedence constraint graph for a given recipe Rα

Fig. 22 The add_precedence_graph procedure which incorporates the Precedence Graph Gp
β

into Gk
α

Fig. 23 The add_metric_constraints procedure for incorporating the metric temporal constraints
of Rβ into Gk

α
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Fig. 24 Identification of the temporal values variables 〈Dβ , dβ , rβ , pβ 〉 of basic level action β.
Remark: the procedure find_precedence_actions (β, Gk

α) finds all basic actions preceding β

Fig. 25 The check_necessity_to_update_members procedure for determining whether β is a subac-
tion in a recipe of multi-agent action and whether β is in a set of the hinder members of some action
βi (i.e., β ∈ H(βi), see Definition 3.4). If β ∈ H(βi), the procedure checks if all other members in
H(βi) are EXPLORED. If so, the temporal information of β can be sent to the performers of βi
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