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Abstract Biclustering numerical data became a popular data-mining task at
the beginning of 2000’s, especially for gene expression data analysis and recom-
mender systems. A bicluster reflects a strong association between a subset of
objects and a subset of attributes in a numerical object/attribute data-table.
So-called biclusters of similar values can be thought as maximal sub-tables with
close values. Only few methods address a complete, correct and non-redundant
enumeration of such patterns, a well-known intractable problem, while no for-
mal framework exists. We introduce important links between biclustering and
Formal Concept Analysis (FCA). Indeed, FCA is known to be, among others,
a methodology for biclustering binary data. Handling numerical data is not
direct, and we argue that Triadic Concept Analysis (TCA), the extension of
FCA to ternary relations, provides a powerful mathematical and algorithmic
framework for biclustering numerical data. We discuss hence both theoretical
and computational aspects on biclustering numerical data with triadic concept
analysis. These results also scale to n-dimensional numerical datasets.
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1 Introduction

Taking roots in the work of Hartigan [13] in 1972 and extended by Mirkin in
1996 [27], numerical data biclustering then strongly attracted attention from
the beginning of 2000’s as a first answer to new challenges raised by gene ex-
pression data analysis [11] and recommender systems design [1]. Starting from
an object/attribute numerical data-table, the goal is to group together some
objects with some attributes according to the values taken by these attributes
for these objects. The main idea of biclustering is to overcome the limitation of
standard clustering techniques producing partitions of objects where distance
functions that use all the attributes may be ineffective and hard to inter-
pret [2]. For example, in gene expression data, it is known that genes (objects)
may share a common behavior for a subset of biological situations (attributes)
only: one should accordingly produce local patterns to characterize biological
processes, the latter should possibly overlap, since a gene may be involved in
several processes. The same remark applies for recommender systems, where
the taste of users for some items is realized by a so-called utility matrix (usu-
ally very sparse): one is interested in local patterns characterizing groups of
users that strongly share almost the same tastes for a subset of items [1].

Accordingly, a bicluster is formally defined as a pair composed of a set
of objects and a set of attributes. Such a pair can be represented as a rect-
angle in a numerical table, modulo rows and columns permutations. Table 1
is a numerical dataset with objects in rows and attributes in columns, while
each table entry corresponds to the value taken by the attribute in column
for the object in row. Table 2 illustrates bicluster ({g1, 92,93}, {m1,m2,m3})
as a grey rectangle that can be understood as a sub-table of the original one.
There are several types of biclusters in the literature, depending on the relation
between the values taken by their attributes for their objects (as surveyed by
Madeira and Oliveira [26]). The most simple case can be understood as rectan-
gles of equal values: a bicluster corresponds to a set of objects whose attributes
take exactly the same value, e.g. ({g1, g2, g3}, {ms}). Constant biclusters only
appear in idyllic situations. Accordingly, a straightforward generalization of
such biclusters lies in so-called biclusters of similar values: they are repre-
sented by rectangles with almost identical, say similar, values (see [26,6,19]
and to a similar extent [9]). Table 2 illustrates a bicluster of similar values
({91, 92,95}, {m1,m2, ms}) where two values are said to be similar if their
difference is no more than 1. Moreover, this bicluster is maximal: neither an
object nor an attribute can be added without violating the similarity condi-
tion. The problem of biclustering that we investigate in this paper consists in
extracting all pairs (A, B), such that A and B are maximal sets with respect
to a similarity constraint between values.

To better understand our investigation, we recall a definition of bicluster of
Prelic et al. in binary data or relation, i.e. an object has or not an attribute [32]:
inclusion-mazimal biclusters are defined as maximal sets of objects related to
a maximal set of attributes. As shown in [21], this definition exactly meets the
one of formal concepts in the Formal Concept Analysis theory (FCA, [12]).
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Table 1: A numerical dataset Table 2: A bicluster of similar values
[ mi ma m3 mg  ms [ mi my m3 m4  ms

a1 T 2 2 il 6 91 1 2 2 T 6

go 2 1 1 0 6 g2 2 1 1 0 6

g3 2 2 1 7 6 g3 2 2 1 7 6

g4 8 9 2 6 7 ga 8 9 2 6 7

Hence, our general intuition is that FCA can be used to answer the problem
of biclustering numerical data, which is not straightforward, FCA basically
applying to binary data.

Formal Concept Analysis is a branch of applied lattice theory that appeared
in the 1980’s [38,12] and proved to be very useful in data analysis. It aims at
representing data as a formal concept hierarchy, the later being useful for
many tasks of, among others, knowledge management and data-mining [39,
36,33,4]. Starting from a binary relation between a set of objects and their
attributes, so-called formal concepts are built as maximal sets of objects in
relation with a maximal set of attributes. If we represent the binary relation as
a binary table (with objects as rows, attributes as columns and 0/1 as values
if an object has/has not an attribute), a formal concept is represented as a
maximal rectangle of 1 values (or crosses x in the following of this paper such
as in Figure 1). The ordering of concepts among a complete lattice makes
overlapping of such local and maximal patterns natural. Then a complete
enumeration of patterns respecting some constraints like closure and minimal
frequency is possible [7,24]. Indeed, the subsets of patterns satisfying these
constraints is an order ideal of the lattice of patterns.

It is now natural to argue that FCA can be considered as a kind of biclus-
tering method for binary data. As such, it has been applied to numerical data,
and especially to gene expression data after an adequate transformation, see
e.g. [31,32,7,30]. The process that turns numerical data into binary data (dis-
cretization), usually called conceptual scaling in FCA, generally comes with a
loss of information, and thus the obtained formal concepts are not exactly and
formally related with biclusters (although they are good representatives). This
being stated, biclustering binary data is still attracting a lot of attention, to
cope with several issues such as the number of produced patterns and enabling
a fault tolerance to leverage the strict notion of maximality of formal concepts,
see e.g. [28,5,10,29,14]. Biclustering directly numerical data, without a priori
binarization, has also been widely studied, and several ad hoc algorithms have
been proposed to extract specific kind of biclusters with different algorithmic
strategies (such as divide-and-conquer, greedy iterative search, exhaustive enu-
meration as deeply surveyed in [26]). Indeed enumerating all biclusters of a
given type is an intractable problem and complete approaches generally fail.
Our main contribution states that such approach is possible when considering
the problem of extracting maximal bicluster of similar values in formal concept
analysis settings, outperforming the other existing algorithms for this task [6,
19]. Other advances biclustering are to be able to consider multi-dimensional
data (e.g. when the expression of a gene is monitored in several situations



4 Mehdi Kaytoue et al.

across time [40,35]) and parallelization of the algorithms [8] which both are
important issues we address in this paper. This leads us to our main contri-
butions.

Problem. We consider here maximal biclusters of similar values, denoted
by (A, B) where A and B are respectively maximal sets of objects and at-
tributes, such that the values taken by these attributes for these objects are
pairwise similar. Given a similarity parameter 0, the similarity relation is de-
fined as a ~p b <= |b— a| < 6, for any numbers a and b. The problem is to
design an approach that allows an exact, correct and complete extraction of
maximal biclusters of similar values.

Contribution 1. Triadic Concept Analysis (TCA) [25] is an extension of
FCA to handle ternary relations: an object has an attribute under a given
condition. This leads to triadic contexts, i.e. data are represented as a "box”,
where so-called triadic concepts can be seen as maximal sets of objects in
relation with a maximal set of attributes under a maximal set of conditions,
i.e. a maximal "sub-box” of X in the context (still with rows, columns and
layers permutations). We show then, that after turning the original numer-
ical data in a triadic context without loss of information (with interordinal
scaling [12]), the resulting triadic concepts are in 1-1-correspondence with the
maximal biclusters of similar values for any similarity parameter 6 (stating
if two values are similar or not). Then, such concepts can be organized in a
trilattice whose diagram gives a visualization of biclusters in the numerical
dataset. Finally, we show that this result naturally holds when considering
n-dimensional numerical datasets.

Contribution 2. Maximal biclusters of similar values for a user-defined
similarity parameter have been studied with complete approaches in [6,19]. In
[6], an algorithm for extracting such biclusters is presented, while [19] shows
how such biclusters can be characterized by post-processing a concept lattice
built from the numerical data directly. We show that our first contribution
can be easily adapted to answer this problem, with a new generic algorithm
TRIMAX that shows better results than its competitors and can be naturally
parallelized.

For summarizing, this research article is two-fold: first, theoretical new
links are emphasized between biclustering and FCA in general, and TCA in
particular, for a better understanding of numerical pattern mining with closure
operators. Secondly, a computational aspect is investigated using these links:
it allows one to bring back a problem of biclustering into well known-settings
(i.e. FCA and pattern-mining) and comes with better computational properties
and several perspectives of research. Note that this paper paper extends our
previous work [18] by adapting the methodology to n-dimensional data and
showing how the set of concepts can be represented by line diagrams.

The paper is organized as follows. Firstly, we present the preliminaries
regarding FCA and TCA in Section 2. Thanks to the introduced notations, we
formally state the problem in Section 3. The sections 4,5 respectively tackle our
two main contributions. The paper ends with a conclusion suggesting further
research.
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2 Formal Concept Analysis

Formal Concept Analysis (FCA) [12] is a mathematical framework for allowing
one to derive implicit relationships from a set of objects and their attributes.
Starting from a relation stating which objects have which attributes, it allows
one to build a so-called concept lattice. A concept is there seen as a maximal
set of objects sharing a maximal set of attributes. Ordering concepts with
a specialization/generalization relation gives rise to a concept lattice. This
structure can be represented by a diagram where classes of objects/attributes
and ordering relations between classes can be drawn, interpreted and used for
data-mining, knowledge management and discovery [39,36].

2.1 Dyadic concept analysis

We use standard definitions from [12]. Let G and M be arbitrary sets and I C
G x M be an arbitrary binary relation between G and M. The triple (G, M, I)
is called a formal context, or dyadic context. Each g € G is interpreted as
an object, each m € M is interpreted as an attribute. The fact (g,m) € I is
interpreted as “g has attribute m”. The two following derivation operators (-)':

A'={me M |Vge A:glm} for ACG,
B'={geG|Vme B:glm} for BC M

define a Galois connection between the powersets of G and M. The derivation
operators {(-)’,(-)’} put in relation elements of the lattices (p(G), C) of ob-
jects and (p(M), C) of attributes and vice-versa. A Galois connection induces
closure operators ()" and realizes a one-to-one correspondence between all
closed sets of objects and all closed sets of attributes. For A C G, B C M,
a pair (A, B) such that A’ = B and B’ = A, is called a formal concept, or
dyadic concept. Concepts are partially ordered by (A1, B1) < (As, B) & A C
As (& By C By). (A1, By) is a sub-concept of (As, By), while the latter is a
super-concept of (A1, By). With respect to this partial order, the set of all for-
mal concepts forms a complete lattice called the concept lattice of the formal
context (G, M, I), i.e. any subset of concepts has both a supremum (join) and
an infimum (meet), see Theorem 1. For a concept (A, B) the set A is called
the extent and the set B the intent of the concept.

Theorem 1 (The Basic Theorem on Concept Lattices [12]) The con-
cept lattice of a context (G, M,I) is a complete lattice in which infimum and
supremum are given by:

)

tET teT teT

oo ([ 0

teT teT teT
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Fig. 1: A dyadic context (with a concept in grey) and its concept lattice.

Ezample Figure 1 shows a dyadic context and its concept lattice. Starting
from an arbitrary set of objects, say {gs}, one obtains concept ({g3}”,{g3}) =
({93, 94}, {ma, m3}) (in grey). The diagram shows the resulting concept lattice:
each node denotes a concept while a line denotes an order relation between
two concepts. The top (resp. bottom) concept is the highest (resp. lowest)
concept w.r.t. <. Reduced labeling avoids to display the whole concept extents
and intents. The extent of a concept has to be considered as composed of all
object labels attached to it and its sub-concepts; the intent of a concept is
composed of all attributes attached to it and its super-concepts®.

2.2 Triadic concept analysis

Lehmann and Wille introduced Triadic Concept Analysis (TCA [25]) to handle
ternary relations between objects, attributes and conditions. Data are formal-
ized by a triadic context in which triadic concepts are defined.

Definition 1 (Triadic context) Data are represented by a triadic context
K= (G,M,B,Y), where G, M, and B are respectively called sets of objects,
attributes and conditions, and Y C G x M x B. The fact (¢g,m,b) € Y is
interpreted as the statement “Object g has attribute m under condition b”.

Ezample. An example of such triadic context is given in Table 3 where the very
first cross (to the left) denotes the fact ”Object go has attribute m; under the
condition by, i.e. (g2, m1,b1) € Y. In this tabular representation, each table
corresponds to the projection of the triadic context for one condition. Another
choice could have been made.

Definition 2 (Triadic concept) A triadic concept of (G, M, B,Y) is a triple
(A1, As, Ag) with A; C G, As C M and A3 C B satisfying the two following
statements: (i) A; X A2 x A3 C Y and (ii) for X1 x X3 x X3 C Y, we have A; C
Xl, AQ g X2 A3 Q X3 implies (Al,AQ,Ag) = (Xl,X27X3). If (G,M,B,Y) is
represented by a three dimensional table, (i) means that a concept stands for

1 More details on the ConExp software: http://conexp.sourceforge.net/
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Table 3: A triadic context (G, M, B,Y) with the triadic concept ({gs, g4},
{m2,ms}, {b1,b2,b3})

by ba b3
L [[mi[me[ms] [ Tma[me[ms] [ [[r[me]ms]
g1 X a1 X X X g1 X X
g2 X X g2 X X g2 X
g3 X X g3 X X X g3 X X X
94 X X 94 X X 94 X X

a rectangular parallelepiped full of crosses while (i7) characterizes component-
wise maximality of concepts. For a triadic concept (A1, As, Asz), A; is called
the extent, A, the intent and A3 the modus.

Ezxample. ({93, 94}, {ma,ms},{b1,b2,b3}) is a triadic concept in the triadic
context represented by Table 3. Representing the triadic context as a box,
where each condition is a layer, one can observe that this triadic concept
denotes a maximal rectangular parallelepiped of crosses (modulo lines, columns
and layers permutations).

Definition 3 (Outer derivation operators) To describe the derivation op-
erators, it is convenient to represent a triadic context as (K7, Ko, K3,Y). Then,
for {i,7,k} ={1,2,3}, j <k, X C K, and Z C K; x K}, (i)-derivation oper-
ators are defined by:
D: X = XD {(aj,ar) € Kj x Ky, | (ai,a;,a;) €Y for all a; € X}
& 772D {a; € K; | (a;,aj,a) €Y for all (aj,a) € Z}
This definition leads to dyadic contexts
KM = (K, Ky x K3, Y1)
K® = (K, K; x K3,Y®)
K(3) = <K33K1 X KQaY(3)>

where gY'!(m,b) <= mY?(g,b) <= bY3(g,m).

Ezxample. Consider t =1, j =2 and k = 3,1.e. K1 =G, Ko = M and K3 = B.
Given an arbitratry set of objects X = {g4}, we have:

¢(X) = {(mQa bl)a (m3’ bl)’ (m27 b2)7 (m3a b2)a (mQa b3)a (m37 b3)}
P'O(X) = {g3, 94}
Definition 4 (Inner derivation operators) Further derivation operators
are defined as follows: for {i, 7, k} = {1,2,3}, X; C K;, X; C K, and Ay, C K,
the (4, j, Ag)-derivation operators are defined by:
v:X; — Xi(z’]’A’“) H{a; € Kj | (ai,a5,a,) €Y for all (a;,ar) € X; x Ag}
v’ X — Xj(.w’A’“) H{a; € Ki | (ai,a5,a,) €Y for all (aj,ar) € X; xAg}

This definition yields the derivation operators of dyadic contexts defined
by
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ng = <Ki7Kj7 ngjk>
where (a;,a;) € Yj{c <= aj,a;,ay are related by Y for all a, € Ay

Example. Consider it =1, j =2 and k = 3,1.e. K1 =G, Ky = M and K3 = B,
Az ={b1,ba} and X = {g3}:

U(X) = {mg, ms} U'W(X) = {g3, 94}

Operators @ and @ are called outer operators, a composition of both oper-
ators is called outer closer. Operators ¥ and ¥ are called inner operators, a
composition of them is called inner closure.

Definition 5 (Triadic concept formation) A concept having X; in its
extent can be constructed as follows.

1,2,45)(1,2,A 1,2,A 1,2,45)(1,2,A 1,2,A
(Xl( 3)( 3),X1( 3)7 (Xl( 3)( 3) % Xl( 3))(3))

Ezample. In the previous example, we have ({gs, g4}, {ma, ms}, {b1,b2,b3}).

From a computational point of view, [15] developed the algorithm TRIAS
for extracting frequent triadic concepts, i.e. whose extent, intent and modus
cardinalities are higher than user-defined thresholds (see also [16]). Cerf et al.
presented a more efficient algorithm called DATA-PEELER able to handle n-ary
relations [10], the formal definitions being given in terms of Polyadic Concept
Analysis [37].

3 Problem settings

A numerical dataset is formalized by a many-valued context [12] and we define
accordingly (maximal) biclusters of similar values.

Definition 6 (Many-valued context) (G, M,W,I) is called many-valued
context, or simply numerical dataset in this paper, with G being a set of
objects, M a set of attributes, W the set of attribute values and I a ternary
relation defined on G x M x W. The fact (g, m,w) € I, also written m(g) = w,
means that “Attribute m takes the value w for the object ¢”.

Ezxample 1 Table 1 is a numerical dataset, or many-valued context, with ob-
jects G = {q1,92,93,94}, attributes M = {mq, ma, ms, my, ms}, attribute
values W = {0,1,2,6,7,8,9} and for example ms(g2) = 6.

Definition 7 (Bicluster) In a numerical dataset (G, M, W, I), a bicluster is
a tuple (A, B) with A C G and B C M.
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Definition 8 (Similarity relation and bicluster of similar values) Let
wy,ws € W be two attribute values and 6 € R be a user-defined parameter,
called similarity parameter or threshold. wy, and wy are said to be similar iff
|wr — wa| < 0, which we denote by wy ~p wa. (A, B) is bicluster of similar
values if m(g) ~¢ n(h) for all g,h € A and for all m,n € B.

Definition 9 (Maximal bicluster of similar values) A bicluster of similar
values (4, B) is maximal if adding either an object in A or an attribute in B
does not result in a bicluster of similar values.

Ezample 2 (From Table 1) ({g1, g4}, {m2,m4}) is a bicluster. ({g1, g2}, {m2})
is a bicluster of similar values with 8 > 1. However, it is not maximal. With
1<0<5, ({91,992, 93}, {m1,ma, m3g}) is maximal. Finally, with § = 7 the
bicluster ({g1, g2, 93}, {m1, m2, ms, mg, ms}) is maximal. Note that a constant
(maximal) bicluster is a (maximal) bicluster of similar values with 6 = 0.

Thus the problem that we address in this article is the extraction of all
maximal biclusters of similar values from a numerical dataset. We desire the
extraction to be complete, correct and non-redundant compared to most of
existing methods of the literature based on heuristics [26]. We will show that
FCA is a good candidate as a formal framework for such a task.

4 Biclusters of similar values in Triadic Concept Analysis

This first contribution considers the problem of generating maximal biclusters
for any 6 with TCA after a scaling procedure. We then show how to represent
the resulting set of concepts with line diagrams, and extend the methodology
to n-dimensional numerical datasets.

4.1 Scaling numerical data into a triadic context

Starting from a numerical dataset (G, M, W, I), the basic idea lies in building
a triadic context (G, M,T,Y) where the two first dimensions remain formal
objects and formal attributes, while W is scaled into a third dimension denoted
by T'. This new dimension T is called the scale dimension: intuitively, it gives
different “spaces of values” that each object-attribute pair (g,m) € G x M
can take. Once the scale is given, a triadic context is derived and it gives rise
to triadic concepts.

We use the interordinal scaling [12] to build the scale dimension. It allows
one to encode in 27 all possible intervals of values in . This scale allows
one to derive a triadic context from which any bicluster of similar values can
be characterized as a triadic concept. We make these statements more precise
and illustrate the whole procedure with examples.

Definition 10 (Interordinal Scaling) A scale is a binary relation J C W x
T associating original elements from the set of values W to their derived
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S - I )
==} — [a] =) ~ 0 [=2) [=2] [=2] - - - -
~ -~ -~ - -~ -~ - © I~ 0 [=2)
BT T = e A
T T T T T R L
— 2l el < 0 © I~ 0 (=2} S :4 ﬁ 2

J - - +~ + -~ -~ - + - - + + +

0 X X X X X X X

1 X X X X X X X

2 X X X X X X X

6 X X X X X X X

7 X X X X X X X

8 X X X X X X X

9 X X X X X X X

Table 4: Interordinal scale of the set of attribute values W.

elements in 7. In the case of interordinal scaling, T' = {[min(W),w],Vw €
WU {[w, max(W)],Yw € W}. Then (w,t) € J iff w € ¢.

Ezxample 3 Table 4 gives the tabular representation of the interordinal scale
for Table 1. Each row describes a single value, while dyadic concepts represent
all possible intervals over W. An example of dyadic concept in this table
is given by ({6,7,8}, {ts,t7,ts,to,t10}), rewritten as ({6,7,8},{[6,8]}) since
{ts, t7,ts, tg, t10} represents the interval [0, 8]N[0, 9]N[1, 9]N[2, 9]N[6,9] = [6, 8].

Definition 11 (Triadic scaled context) Let Y be a ternary relation Y C
G x M x T. Then (g,m,t) € Y iff (m(g),t) € J, or simply m(g) € t. We
call the tuple (G, M, T,Y) the triadic scaled context of the numerical dataset
(G, M, W, I).

Ezample 4 The object-attribute pair (gi,m1) taking value my(g1) = 1 is
scaled into triples (g1,m1,t) € Y, where ¢ takes any interval in {[0, 1], [0, 2],
[0,6],]0,7], [0,8],[0,9],[1,9]}. The intersection of intervals in this set is the
original value itself, i.e. m1(g1) = 1, a basic property of interordinal scaling.
As a result, Table 5 illustrates the whole scaled triadic context derived from
the numerical dataset given in Table 1 using interordinal scaling. The very first
cross (X) in this table (upper left) represents the tuple (ga,my4,t1), meaning
that my4(g2) € [0,0].

We present now our first main result: there is a one-to-one correspondence
between (i) the set of maximal biclusters of similar values in a given numerical
dataset for any similarity parameter 6 and (ii) the set of all triadic concepts
in the triadic context derived with interordinal scaling. Consider first the fol-
lowing definition and notations.

Definition 12 (Standard order of interordinal scale attributes) The
values of the interordinal scale are intervals. Define the standard order on
2k — 1 attributes of the interordinal scale based on k first natural numbers as
follows: [1,1],[1,2],...,[1, k], [2, k], . .., [k, k]. Having the standard order on the
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attributes of the interordinal scale one can think of attributes having numbers
from 1 to 2k + 1. Note the obvious main property of the standard order on
attributes of the interordinal scale: if an object has two scale attributes with
numbers r and s, 7 < s, then it has all scale attributes with numbers in [r, s].

For a many-valued context (G, M, W, I), let the set W (|W| = ¢) be the set
of numerical values enumerated in the ascending order from 1 to ¢, and let g(m)
be a map taking attribute m to its value w € W for object g. Let the numerical
values from W be interordinally scaled with the standard order on the scale
attributes, so we can denote the scale attributes by my, ..., mg, ..., mag—1. Let
B ={mq,...,mq,...mog_1} and (G, M, B,Y) be the triadic context such that
(g,m,b) € Y iff g(m) lies in the interval given by the interordinal attribute b.

Proposition 1 (A, D) is a mazimal bicluster of similar values (A C G, D C
M) with the values lying in the interval [t,t+0] fort € N,§ > 0 iff (A, D,U) is
a triadic concept of the context (G, M,B,Y) , whereU = {t+0,...q,...,q+t—
1}. Moreover, every triadic concept of the interordinally scaled triadic context
(G,M,B,Y) is of the form (A, D,U), where AC G,D C M, and U = {t +
0,...q,...,q+t—1} for somet € N and 6 > 0.

Proof Let (A, D) be a maximal bicluster of similar values (A C G, D C
M), then the values of attributes of the bicluster are lying in the interval
[t,t + 0] for some t € N,;0 > 0, i.e. g(m) € [t,t + 0] for every g € A, m € D.
Due to the standard order on interordinal attributes, this implies that in the
triadic context (G, M, B,Y) one has (g,m,b) € Y for all g € A;m € D
and b € {t+6,...q,...,q+ 1t — 1} and there is a rectangular parallelepiped
(A,D,{t+0,...q,...,q+t—1}) filled with crosses in the triadic cross-table of
Y,ie (A, D,{t+6,...q,...,q+t—1} CY. This parallelepiped is inclusion-
maximal, since otherwise this would mean that one can add either another
object, or another attribute, or another scale value to its respective component.
The possibility of adding another object or attribute would contradict the fact
that (A, D) is a maximal bicluster, the possibility of adding another scale value
would contradict the fact that the attribute values of the bicluster lie strictly
in the interval [t,t + 6] . Thus, (A, D,{t+0,...q,...,q+t —1}) is a triadic
concept.

In the opposite direction, consider a triadic concept (A, D, V) in the in-
terordinally scaled three-dimensional context, the attributes of V being or-
dered in the standard way. By the main property of the standard order on
attributes of the interordinal scale, this would mean that for any two values
r and s of V, the set V also contains all values in the interval [r, s]. Hence
there are some t and g such that the values of V' lie in the interval [t, t + 6] for
all object-attribute pairs from A x D. This means that (A, D) is a bicluster
of similar values, which is maximal, since otherwise (A4, D, V') would not have
been a triadic concept.

Ezample 5 ({g1, 92,93}, {m1, ma, ms}, {t3,t4, 5,16, t7,ts}) is a triadic concept
corresponding to the maximal bicluster ({g1, 92, g3}, {m1, m2,m3}) with § =1
since {ts,t4,ts5,ts, t7,ts} is a modus characterizing interval [1, 2] of length 1.
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[ G D A - extent [ M 2O B - intent [ T O C - modus [ Interval over W ]
A={g1} B = {mi1,ma2,m3,ma} | C = [t3,1s] 1,2
A ={g1,92} B = {m4 C = [t2, t7] 0,1
A:{gl,gg,gg} B:{ml,mg,mg} C = tg,tg] 1,2
A={g1,92,93,91a} | B={ms} C = [t3, ts] 1,2
A={g1,92,93,94} | B={ms} C = [ts, t10] 6,7
A={g2 B = {ma, m3, ma} C = [t2, t7] 0,1
A={g3,94} B = {m4, ms C = [t5, t10] 6,7
A ={ga} B = {m1, ma} C = [tr,t12] 8,9
A={ga} B ={mi,ms} C = [ts, t11] 7,8

Table 7: Triadic concepts with 6 = 1.

4.2 Trilattice diagram

In their seminal paper on TCA, Lehman and Wille proposed a way to visualize
the ordered structure of triadic concepts [25]. This visualization possibility has
not attracted a lot of attention since, hence we propose to illustrate it with
derived triadic contexts from numerical data. Let us firstly recall notations of
TCA: a triadic context is denoted by K = (K7, K, K3,Y), the set of all its
triadic concepts by Z(K) and its corresponding triadic diagram by Z(K).

Definition 13 (Quasi-order <; and equivalence relation ~; on Z(K))
Given two triadic concepts (Aj, As, A3) and (By, Be, Bs), three quasi-order
and three equivalence are defined as follows, for i = 1,2,3

(A1, As, A3) Si (B1, B2, Bs) <= A; C B;, (1)
(A1, Az, Az) ~; (B1,B2,B3) <= A; = B;. (2)

Definition 14 (Anti-ordinal dependencies) A triadic concept is uniquely
determined by two of its components since the three quasi-orders satisfy the
anti-ordinal dependencies: For {i, j, k} = {1,2,3}, (A1, A, A3) <, (B, B2, Bs)
and (Al, AQ, Ag) < (Bl, BQ7 Bg) imply (Al, Ag, Ag) Zk (Bl, BQ,B?,) for any

~.

two concepts (A1, Aa, A3) and (By, Be, B3).

Definition 15 (Equivalence and factor sets) For i = 1,2, 3, the equiva-
lence class of the relation ~; which contains the concept (A1, A, A3) is denoted
by [(A1, Ag, A3)];. <; induces an order <; on the factor set Z(K)/ ~;:

[(A1, A2, A3)]; <; [(B1, B2, Bs)]; <= A; C B;.

Accordingly, (Z(K)/ ~;, <;) is the ordered set of all extents (i = 1), or intents
(1 = 2) and modi (i = 3) of K.

Definition 16 (Triadic diagram) This relational structure Z(K) can be
understood as two types of structures:

— The geometric structure: (Z(K), ~1,~g,~3): It is represented as a partial
3-net, i.e. a triangular pattern. The three equivalence relations are here
represented by 3 systems of parallel lines. For example, consider the equiv-
alence relation on concepts with ¢ = 1: concepts of an equivalence class
have same extent and are depicted on the same line. As such, the classes
of equivalence meet at most in one element for a given concept.
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Fig. 2: Trilattice from multi-valued context (Table 1) interordinally scaled to
Table 5. Note, that only biclusters maximal for § = 1 are depicted.

— The ordered structures: (Z(K)/ ~;, <;): Each of them is represented by a
Hasse diagram.

Figure 2 presents the trilattice obtained from our running example (i.e. Ta-
ble 5). For sake of readability, we highlight there only the biclusters that are
maximal for § = 1. Taking the concept ({g4},{m1, ms},[6,11]) from the Ta-
ble 7, the three (pairwise non parallel) lines, corresponding respectively to
the equivalence class of the extent {g4}, the intent {m,,ms} and the modus
[6,11], only meet in one point of the triangular pattern which represents this
concept. The three quasi-order structures of extents, intents and modi, i.e.
Hasse diagrams of all (Z(K)/ ~;, <;), lie around the trilattice.

4.3 Handling n-ary numerical dataset

A straightforward generalization of the presented approach lies in its potential
extension to m-ary numerical datasets. The basic idea is as follows. Consider
a numerical dataset with n dimensions, e.g. genes X biological situations x
timestamps when n = 3. Then, one can extract n-clusters of similar values
by scaling the numerical data into a n + 1-dimensional binary dataset. So-
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called polyadic concepts [37] in the binary dataset are here again in 1-to-
1-correspondence with maximal n-clusters of similar values of the numerical
dataset. We present here theoretical aspects while computing aspects can be
regarded with the existing algorithms DATA-PEELER [10].

Recall that the standard order on 2k — 1 attributes of the interordinal
scale is as follows: [v1,v1], [v1, V2], .., [v1,Vk], [V2, VK] - .., [Uk, vg]. Having the
standard order on the attributes of the interordinal scale one can enumerate
them from 1 to 2k + 1. Let (Gy,...,Gn, W, I) be an n-dimensional many-
valued context, i.e., an n + 1-dimensional relation I C Gy X ... X G,, x W
and W (|[W]| = q) be the set of numerical values enumerated in the ascending
order from 1 to ¢, and let v(¢g1,...,gn) be a map taking the tuple g1,...,gn
to the value w € W. Let the numerical values from W be interordinally scaled
with the standard order on the scale attributes, so we can denote the scale

attributes by ma,...,mg,...,Mog—1. Let B = {mq,...,mgy,...mog—1} and
Y C Gy x...xG, x Bbe an n+ 1-ary relation such that (g1,...,g,,m) € Y iff
the value w of the n-tuple g1, ..., g, lies in the interval given by the interordinal

attribute m.

Proposition 2 (A;,...,A4,) is a mazimal n-way cluster of similar values
(A; C G;) with the values lying in the interval [t,t + 0] for t € N, > 0
iff (Aq,..., A, U) is an n + 1-adic concept of the n + 1-dimensional context
(G1,...,Gn,U,Y), where U = {t +0,...q,...,q +t — 1}. Moreover, every
n + 1-dimensional concept of the interordinally scaled n 4+ 1-dimensional con-
text (Gy1,...,Gp,W,Y) is of the form (A1,...,A,,U), where A; C G;, and
U={t+6,...q,...,q+t—1} for somet € N and § > 0.

The proof is similar as in the triadic case and hence is omitted.

4.4 Remarks

We showed that extracting biclusters of similar values for any # in a numerical
dataset can be achieved by (i) scaling the attribute value dimension and (ii)
extracting the triadic concepts in the resulting derived triadic context. The
same applies when considering n-ary numerical datasets.

On the one hand, triadic concepts (A, B,U) with the largest sets A, B or
C represent large biclusters of similar values. Indeed, the larger |A| and |B)|
the larger the data covering of the corresponding bicluster. Furthermore, the
larger |U|, the more similar values for bicluster (A, B). Indeed, by the proper-
ties of interordinal scaling, the more intervals in U, the smaller their interval
intersection. Mining so-called top-k frequent triadic concepts can accordingly
be achieved with the existing algorithm DATA-PEELER [10].

On the other hand, extracting maximal biclusters for all § may be neither
efficient nor effective with large numerical data: their number tends to be very
large and all biclusters are not relevant for a given analysis. Furthermore, both
size and density of contexts derived with interordinal scaling are known to be
problematic w.r.t algorithmic scalability, see e.g. [20]. In existing methods of
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the literature, 6 is set a priori. We show now how to handle this case with
slight modifications, this is our second main result.

5 Extracting biclusters of similar values for a given 6

In this section, we present our second contribution. We consider the problem
of extracting maximal biclusters of similar values in TCA for a given 6 only.
It comes with slight modifications of the methodology presented in the previ-
ous section, but requires more algorithmic considerations: although all triadic
concepts correspond to biclusters of similar values with a new transformation
procedure, it is not sure that such concepts correspond to maximal biclusters.
In this way, it is not possible to use concepts extraction algorithms directly (or
it would require post-processing which is always a solution to avoid). Accord-
ingly, a modified scaling procedure will lead us to the design of the algorithm
TRIMAX for a complete and correct extraction of maximal biclusters for a
given 6. Finally, we experiment with this new algorithm.

5.1 Scaling numerical data in a triadic context

Consider the previous scaling applied on a numerical dataset (G, M, W, I). It
scales W into a dimension 7T and all subsets of T characterize all intervals
of values over W. To get maximal biclusters for a given 6 only, we should
not consider all possible intervals in W, but rather all intervals (i) having a
range size that is less or equal than 6 to avoid biclusters with non similar
values, and (ii) having a range size the closest as possible to 6 to avoid non-
maximal biclusters. For example, if we set 6 = 2, it is probably not interesting
to consider interval [0,8] in the scale dimension since 8 — 0 > 6. Similarly,
considering the interval [6, 6] may not be interesting as well, since a bicluster
with all its values equal to 6 may not be maximal. As introduced in [17],
the maximal intervals of similar values used for the scale are called blocks of
tolerance over the set of numbers W with respect to the tolerance relation
~y. We now recall basics on tolerance relations over a set of numbers. This
allows us to define a simpler scaling procedure. The resulting triadic context
is then mined with a new TCA algorithm called TRIMAX to extract maximal
biclusters of similar values for a given 6.

Blocks of tolerance over W are defined as maximal sets of pairwise similar
values from W:

Definition 17 (Tolerance blocks from a set of numbers) A binary rela-
tion ~ is called tolerance relation, i.e. reflexive, symmetric but not necessarily
transitive. Given a set W of values, a subset V' C W and a tolerance relation
~g over W, V is a block of tolerance if:

(i) YVwy,wy € V, wy ~¢ wy (pairwise similarity)

(ii) Ywy € V,Jwy € V, wy 29 we (maximality).
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From Table 1 we have W = {0,1,2,6,7,8,9}. With § = 2, one has 0 ~3 2
but 2 %5 6. Accordingly, one obtains 3 blocks of tolerance, namely the sets
{0,1,2}, {6,7,8} and {7,8,9}. These three sets can be renamed as the convex
hull of their elements on N: respectively, [0,2], [6,8] and [7,9]: any number
lying between the minimal and the maximal elements (w.r.t. natural number
ordering) of a block of tolerance is naturally similar to any other element of the
block. Then, to derive a triadic context from a numerical dataset, we simply
use tolerance blocks over W to define the scale dimension.

Definition 18 (TRIMAX scale relation) The scale relation is a binary rela-
tion J C W x C, where C is the set of blocks of tolerance over W renamed as
their convex hulls. Then, (w,c) € J iff w € c.

Ezample 6 From Table 1 we have: C = {[0,1],[1,2],[6,7],[7,8],[8,9]} with
0 =1, and C = {[0,2],[6,8],[7,9]} with 6 = 2.

In this way, we can apply the same context derivation as in the previous
section: scaling is still based on intervals, but this time it uses tolerance blocks.

Definition 19 (TrRIMAX triadic scaled context) Let Y C G x M x C be
a ternary relation. Then (g, m,c) € Y iff (m(g),c) € J, or simply m(g) € c,
where J is the scale relation. (G, M, C,Y) is called the TRIMAX triadic scaled
context.

Ezxample 7 Table 6 is the TRIMAX triadic scaled context derived from the
numerical dataset lying in Table 1 with 6 = 1.

Definition 20 (Dyadic context associated with a block of tolerance)
Consider a block of tolerance ¢ € C. The dyadic context associated with this
block is given by (G, M, Z) where z € Z denotes all (g,m) € G x M such that
m(g) € c.

Ezxample 8 In Table 6, each dyadic context is labeled by its corresponding
block of tolerance.

Now, remark that blocks of tolerance over W are totally ordered: let [vy, vs]
and [wy,ws] be two blocks of tolerance, one has [v1,vs] < [wy,we] iff v1 <
wi. Hence, associated dyadic contexts are also totally ordered and we use a
corresponding indexing set to label them. In Table 6, the contexts for blocks
([0,1],[1,2], [6,7], [7,8],[8,9]) are respectively labeled (1,2,3,4,5).

We now present our next results: the scaled triadic context supports the
extraction of maximal biclusters of similar values for a given . In this case
however, existing algorithms of TCA cannot be applied directly. For example,
in Table 6, the triadic concept ({gs}, {ma},{3,4}) corresponds to a bicluster
of similar values which is not maximal. Hence we present hereafter a new TCA
algorithm for this task, called TRIMAX.

The basic idea of TRIMAX relies on the following facts. Firstly, since each
dyadic context corresponds to a block of tolerance, we do not need to compute
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intersections of contexts, such as classically done in TCA. Hence each dyadic
context is processed separately. Secondly, a dyadic concept of a dyadic context
necessarily represents a bicluster of similar values, but we cannot be sure it is
maximal (see previous example). Hence, we need to check if a concept is still a
concept in other dyadic contexts, corresponding to other classes of tolerance.
This is made precise with the following proposition.

Proposition 3 Let (A, B,U) be a triadic concept from TRIMAX triadic scaled
context (G, M,C,Y), such that U is the outer closure of a singleton {c} C C.
If [U| =1, (A, B) is a mazimal bicluster of similar values. Otherwise, (A, B)
is a maximal bicluster of similar values iff By € [min(U);maz(U)], y < ¢
such that (A, B) # !I/;(!I/y((A, B))), where !Z/;,() and W, (-) correspond to inner

derivation operators associated with y* dyadic context.

Proof When |U| = 1, (A, B) is a dyadic concept only in one dyadic context
corresponding to a block of tolerance. By properties of tolerance blocks, (4, B)
is a maximal bicluster. If |U| # 1, (A, B) is a dyadic concept in |U| dyadic
contexts. Since the tolerance block set is totally ordered, it directly implies that
modus U is the interval [min(U); maxz(U)]. Hence, if Iy € [min(U); max(U)]
such that (A, B) = LT/Z;(Wy((A, B))), then (A, B) is not a maximal bicluster of
similar values.

5.2 The TRIMAX algorithm

TRIMAX starts with scaling initial numerical data into several dyadic contexts,
each one standing for a block of tolerance over W with given 6. The set of all
dyadic contexts forms accordingly a triadic context. Then, each dyadic context
is mined with any FCA algorithm (or closed itemset mining algorithm), and
all formal concepts are extracted. For a given concept (A4, B), we compute
outer derivation @ ((A, B)), i.e. to obtain the set of dyadic contexts labels in
which the current dyadic concept holds. If this set is a singleton, this means
that (A, B) is a concept for the current block of tolerance only, i.e. it is a
maximal bicluster of similar values, and it has been, or will never be, generated
twice. Otherwise, (A, B) is a concept in other contexts, and can be generated
accordingly several times (as much as the number of contexts in which it
holds). Then, we only consider (A4, B) if we are sure it is the last time it is
computed. Finally, we need to check if current concept represents a maximal
bicluster, i.e. there should not exist a context labeled by an element of the
modus where (A, B) is not a dyadic concept.

Proposition 4 TRIMAX outputs a (i) complete, (ii) correct and (i) non
redundant collection of all maximal biclusters of similar values for a given
numerical dataset and similarity parameter 6.

Proof (i) and (ii) follow directly from Proposition 3. Statement (iii) is ensured
by the second if condition of the algorithm: a dyadic concept (or equivalently
bicluster) is considered iff it has been extracted in the last dyadic context in
which it holds.
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Algorithm 1: TriMax

input : Numerical dataset (G, M, W, I), tolerance parameter 0
output: Maximal biclusters of similar values
Let C = {[as, b;]} be the totally ordered set of all blocks over W for given 6. Indices
4 form an indexing set.
forall the [a;,b;] € C do
| Build context (G, M, Z;) such that (g,m) € Z; < m(g) € [aj, b;]
forall the (G, M, Z;) do
Use any FCA algorithm to extract all its concepts (A, B)
forall the dyadic concepts (A, B) in the current context (G, M, Z;) do
if |#'((4,B))| =1 then
| print (A, B)
else if maz(® ((A, B)) =i then
z + min(® (4, B))
if By € [z,4] s.t. (A, B) # ¥, (¥y((A, B))) then
| print (A, B)

5.3 Experimenting with TRIMAX

In this section, we present experiments carried out with the algorithm TRIMAX
and highlight various aspects of its practical complexity.

Data. We explore a gene expression dataset of the species Laccaria bicolor
available at NCBI2. More details on this dataset can be found in [20]. This
gene expression dataset monitors the behaviour of 11,930 genes in 12 biolog-
ical situations, reflecting various stages of Laccaria bicolor biological cycle.
Attribute values in W vary between 0 and 60, 000.

TRIMAX implementation. TRIMAX is written in C4++. It uses the BOOST
library 1.42 for data structures and INCLOSE®, an implementation of the al-
gorithm CLOSEBYONE [23] for dyadic concept extraction. At each iteration
of the main loop, i.e. each tolerance block, the current scaled dyadic context
is produced: We do not generated the whole triadic context which cannot fit
into memory for large databases. It turns out that the modus computation
for a given dyadic concept requires to compute scaling “on the fly”, i.e. when
computing the set of dyadic contexts in which a current concept holds. The
experiments were carried out on an Intel CPU 2.54 Ghz machine with 8 GB
RAM running under Ubuntu 11.04.

Experiment settings. The goal of the present experiments is not to give a
qualitative evaluation of the present approach (say biological interpretation),
but rather a quantitative evaluation. Indeed, the present work aims at showing
how an existing type of biclusters can be mined with Triadic Concept Analysis.
For a qualitative evaluation, the reader may refer e.g. to [6,20].

2 http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784
3 http://sourceforge.net/projects/inclose/
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Fig. 3: Monitoring with different settings (i) the number of maximal biclusters,
(ii) the execution times of TRIMAX, (iii) the number of tolerance blocks, (iv)
the derived triadic context density, (v) the number of non-maximal biclusters
generated as dyadic-concepts w.r.t. the number of maximal biclusters, and (vi)
repartition of execution time in the TRIMAX algorithm.
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Accordingly, we designed the following experiments to monitor various as-
pects of the TRIMAX algorithm. For most of the experiments, the dataset used
is composed of an increasing number of objects and all attributes. The objects
are chosen randomly once and for all so that the different experiment results
can be compared. We also vary the parameter 6 in the same way across all
experiments. Then, we monitor the following aspects, as presented in Figure 3:

i. Number of maximal biclusters of similar values

ii. Execution time (in seconds)

iii. Number of tolerance blocks

iv. Density of the triadic context, where density is defined as d(G, M,C,Y) =
[Y|/(|G| x | M| x |C]). This information is important, since contexts with
high density are known to be hard to process with FCA algorithms [24].

v. Comparison between the number of non-maximal biclusters produced by
TRrRIMAX (i.e. dyadic concepts that do not correspond to maximal biclus-
ters) with the number of maximal biclusters.

vi. Execution time profiling of the main procedures of TRIMAX. This is
achieved with the tool GNU GPROF and gives us which parts of the
algorithm are the most time consuming.

Experiment results. Figure 3 presents the results of our experiments with
different settings. In these settings, we vary the number of objects |G| and the
parameter . A first observation arises from graph (i): the number of biclusters
is the highest when 6 ~ 30, 000. A first explanation is that 30,000 is the half of
the maximal value of W and almost all multiples of 100 in [0; 60,000] belong
to W. In the figure (ii), execution time has the same behavior as in the figure
(i). This fact can be understood by paying attention to the next figures (iii)
and (iv). In (iii) the number of tolerance blocks is monitored. The maximal
number is reached when 6 = 0, i.e. |C| = |W|. When 6 = max(W), we have
|C| = 1. Now we observe in (iv) that the density follows a reverse behavior:
When 6 = 0, the density tends towards 0%; when 6 = max(W), then density
equals exactly 1%. Combining both graph (iii) and (iv), the worst cases happen
when both density and tolerance block count are high.

Another observation, which explains also the execution times, arises from
graph (v). Here the number of maximal biclusters and the number of non-
maximal biclusters generated as dyadic concepts are compared. Here again, the
worst case is reached when 6 ~ 30,000. Looking at figure (vi), we learn that
this is however not the major problem. The mostly consuming procedure of
TRIMAX is the computation of the modus of a dyadic concept. The explanation
is that we compute modus with “on the fly scaling”.

Therefore, the bottleneck of our algorithm appears to be the modus com-
putation. In practical applications however, the analyst is not interested in
all biclusters of similar values. Some constraints are generally defined, such
as a minimal (resp. maximal) number of objects (resp. attributes) in a bi-
cluster (A, B), or a minimal area |A| x |B], etc. Interestingly, most of those
constraints can be evaluated on a generated dyadic concept. Therefore, before
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Fig. 4: Comparing performance of TRIMAX, NBS and the IPS approach (ms)

computing the modus of such concept, we can check such properties and dis-
card the concept if it does not respect the constraints. Although not reflected
in this paper, we tested how adding minimal (resp. maximal) size constraints
on a bicluster affects both the number of biclusters and the execution times.
The results are very interesting: for example with 8 = 33,000, |G| = 500, and
minimal (resp. maximal) size for |A| set to 10 (resp. 40), TRIMAX produces
only 5,332 maximal biclusters in 2.1 seconds compared to 104,226 maximal
biclusters extracted in 16.130 seconds without any constraint.

Finally, the most interesting aspect of TRIMAX is the possibility of its dis-
tributed execution. Indeed, each iteration, i.e. for each block of tolerance, can
be achieved independently from the others. Furthermore, the core of TRIMAX
consisting in extracting dyadic contexts can also be distributed, see e.g. [22].
A deeper investigation remains to be done in this case. Note that although
the method description involves W as a set of natural numbers, TRIMAX can
directly handle numerical data with real numbers.

Comparison with existing methods. Two methods in the literature also
consider the problem of extracting all maximal biclusters of similar values
from a numerical dataset. The first method is called Numerical Biset Miner
(NBS-MINER [6]). The second method is based on interval pattern structures
(IPS [19]). We compared the execution times of NBS-MINER, IPS and TRI-
MaX. Algorithms have been implemented in C++4. Figure 4 display three
experiments showing that NBS-MINER is not scalable compared to IPS and
TRIMAX. On another hand, TRIMAX outperforms IPS, but a deeper investi-
gation is required: the main problem in IPS is to find an efficient algorithm
able to compute tolerance blocks over a set of intervals.Other experiments
show the same behavior.

6 Conclusion

We addressed the problem of biclustering numerical data with Formal Concept
Analysis. So-called (maximal) biclusters of similar values can be characterized
and extracted with Triadic Concept Analysis, which turns out to be a novel
mathematical framework for this task. We properly defined a scaling procedure
turning original numerical data into triadic contexts from which biclusters can
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be extracted as triadic concepts with existing algorithms. This approach allows
a correct, complete and non-redundant extraction of all maximal biclusters, for
any similarity parameter # and can be extended to n-ary numerical datasets
while their computation can be directly distributed. The interpretation of
triadic concepts is powerful: both extent and intent allow one to characterize
a bicluster (i.e. the rectangle), while the modus gives the range of values of
the biclusters, and for which 6 is the bicluster maximal. Moreover, the larger
the modus, the more similar the values within a current bicluster. This fact
gives a particular semantics to the notion of support as defined in itemset-
mining [3]. We also adapted the TCA machinery with algorithm TRIMAX
to extract maximal biclusters for a user-defined threshold 6. It appears that
TRIMAKX is a fully customizable algorithm: any concept extraction algorithm
can be used as a core module (along with several constraints on produced
dyadic concepts), while its distributed computation is direct. Finally, our last
contribution was to highlight links between our approach rooted in TCA and
the existing method based on pattern structures. Those links are interesting
as they give a better understanding on numerical pattern mining with closure
operators.

Perspectives of further research are numerous. Firstly, a deeper algorithmic
study has to be carried out: How TRIMAX can be adapted to distributed
computation and how do the algorithm scale? Can we avoid discretization
and apply TCA directly on the numerical data as it is done with interval
pattern structures? Is it more efficient? Secondly, consider constraint-based
itemset-mining (e.g. [34]). The goal is to extract only patterns that respect
a given predicate, e.g. cardinality of the extent should be less than a given
minimal support. Concerning triadic concepts (and even polyadic concepts),
several constraints can be handled with the algorithm DATA-PEELER [10].
An interesting investigation is to list all additional constraints that could be
handled easily in our framework. Thanks to the genericity, i.e. using FCA and
existing algorithms, many of existing constraints can be handled directly: for
example DATA-PEELER can be used as a core module of TRIMAX. Finally, one
should remark that we focused our study on a particular type of biclusters.
Accordingly, can we handle other types of maximal biclusters with TCA? If
so, what would be the corresponding scaling? Can we characterize properties
that biclusters should follow so that TCA can be applied?
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