Skip to main content
Log in

Convenient adjacencies for structuring the digital plane

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We study graphs with the vertex set \(\mathbb Z^{2}\) which are subgraphs of the 8-adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate \(\mathbb Z^{2}\) into exactly two connected components. Of these graphs, we determine the minimal ones and study their quotient graphs. The results obtained are used to prove digital analogues of the Jordan curve theorem for several graphs on \(\mathbb Z^{2}\). Thus, these graphs are shown to provide background structures on the digital plane \(\mathbb Z^{2}\) convenient for studying digital images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  2. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36, 1–17 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. J. Appl. Math. Stoch. Anal. 3, 27–55 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kiselman, C.O.: Digital Jordan curve theorems. Lect. Notes Comput. Sci. 1953, 46–56 (2000)

    Article  Google Scholar 

  5. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Am. Math. Mon. 98, 902–917 (1991)

    Article  MathSciNet  Google Scholar 

  6. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discret. Comput. Geom. 6, 155–161 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Process. 46, 141–161 (1989)

    Article  Google Scholar 

  8. Nagy, B.: Cellular topology on the triangular grid. Lect. Notes Comput. Sci. 7655, 143–153 (2012)

    Article  Google Scholar 

  9. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rosenfeld, A.: Picture Languages. Academic, New York (1979)

    MATH  Google Scholar 

  11. Šlapal, J.: Closure operations for digital topology. Theor. Comput. Sci. 305, 457–471 (2003)

    Article  MATH  Google Scholar 

  12. Šlapal, J.: A digital analogue of the Jordan curve theorem. Discret. Appl. Math. 139, 231–251 (2004)

    Article  MATH  Google Scholar 

  13. Šlapal, J.: Digital Jordan curves. Topol. Appl. 153, 3255–3264 (2006)

    Article  MATH  Google Scholar 

  14. Šlapal, J.: A quotient universal digital topology. Theor. Comput. Sci. 405, 164–175 (2008)

    Article  MATH  Google Scholar 

  15. Šlapal, J.: Convenient closure operators on \(\mathbb Z^{2}\). Lect. Notes Comput. Sci. 5852, 425–436 (2009)

    Article  Google Scholar 

  16. Šlapal, J.: Adjacencies for structuring the digital plane. Lect. Notes Comput. Sci. 7655, 123–137 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Šlapal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šlapal, J. Convenient adjacencies for structuring the digital plane. Ann Math Artif Intell 75, 69–88 (2015). https://doi.org/10.1007/s10472-013-9394-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9394-2

Keywords

Mathematics Subject Classifications (2010)

Navigation