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Abstract In this paper, we show how the existence of taxonomies on objects and/or
attributes can be used in Formal Concept Analysis to help discover generalized concepts.
To that end, we analyze three generalization cases (∃, ∀, and α) and present different sce-
narios of a simultaneous generalization on both objects and attributes. We also discuss the
cardinality of the generalized pattern set against the number of simple patterns produced
from the initial data set.
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1 Introduction

In many real-life applications and research trends in Computer Science, the semantics of
data can be advantageously exploited to better retrieve and efficiently manage information
and discover unexpected and relevant patterns which are a concise and semantically rich
representation of data. Patterns can be clusters, concepts, association rules, outliers, and so
on. In this work we present alternate ways to abstract or group objects such as communities
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of individuals and/or attributes like geographical locations at different levels of granularity
to get generalized concepts by using taxonomies on attributes and/or objects.

Formal Concept Analysis (FCA) is a formalism for knowledge representation which is
based on the formalization of “concepts” and “concept hierarchies” [16]. One recurrent
problem in FCA is the number of concepts that can be exponential in the size of the context.
To control the size of the context and the corresponding concept lattice many techniques
have been proposed [5]. One of them is to show the iceberg lattice with frequent concepts
only rather than the whole lattice [29]. Other techniques aim to produce reduced lattices
through selection on objects and/or projection on attributes [20] or by exploiting a taxonomy
on attributes or objects. Beside the ability to potentially reduce the size of the lattice, the
generalization on attributes or objects can lead to new meaningful and possibly unexpected
generalized patterns as illustrated in Section 6.

The rest of this contribution is organized as follows. In Section 2 we introduce the basic
notions of FCA. Section 3 presents three different generalization schemes, presents different
scenarios of generalizing both objects and attributes. It also discusses the visualization issue
of generalized patterns and provides the real meaning of the three generalization cases.
In Section 4 the size of the generalized concept set is compared to the size of the initial
concept set (i.e., before generalization). Existing work about combining FCA with ontology
is briefly described in Section 5. Finally, an empirical study about the link between the size
of a lattice before and after an ∃ or α generalization is given in Section 6.

2 Formal Concept Analysis and data mining

2.1 Elementary information systems, contexts and concepts

In Formal Concept Analysis, a context is a triple K := (G,M, I) where G, M and I stand
for a set of objects, a set of attributes, and a binary relation between G and M respectively.
A formal concept is a pair (A,B) such that B is exactly the set of all properties shared
by the objects in A and A is the set of all objects that have all the properties in B . We set
A′ := {m ∈ M | aIm for all a ∈ A} and B ′ := {g ∈ G | gIb for all b ∈ B}. Then (A,B)

is a concept of K iff A′ = B and B ′ = A. The extent of the concept (A,B) is A (also
denoted by ext(A,B)) while its intent is B . We denote by B(K), Int(K) and Ext(K) the set
of concepts, intents and extents of K, respectively. A subset X is closed if X′′ = X. Closed
subsets of G are exactly extents while closed subsets of M are intents of K. Fig. 1 describes

Fig. 1 A formal context
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items a, . . . , h that appear in eight transactions (customers) of a basket market analysis
application. Such a setting defines a binary relation I between the set G of transactions and
the set M of items.

The concept hierarchy is formalized with a relation ≤ defined on B(K) by A ⊆
C ⇐⇒ : (A,B) ≤ (C,D) : ⇐⇒ B ⊇ D. This is an order relation and is also called a
specialization/generalization relation on concepts. In fact, a concept (A,B) is a specializa-
tion of a concept (C,D), or (C,D) is a generalization of (A,B) iff (A,B) ≤ (C,D) holds.
For any list C of concepts of K, there is a concept u of K which is more general than every
concept in C and is a specialization of every generalization of all concepts in C (u is the
supremum of C and is denoted by

∨ C), and there is a concept v of K which is a specializa-
tion of every concept in C and a generalization of every specialization of all concepts in C
(v is the infimum of C and is denoted by

∧ C).1 Hence, B(K) is a complete lattice called
the concept lattice of the context K.

For g ∈ G and m ∈ M we set g′ := {g}′ and m′ := {m}′. The object concepts (γg :=(
g′′, g′

)
)g∈G and the attribute concepts (μm := (

m′,m′′))m∈M form the “building blocks”
of B(K). In fact, every concept of K is a supremum of some γg’s and infimum of some
μm’s.2

The size of a concept lattice can be extremely large, even exponential in the size of the
context. To handle such large sets of concepts many techniques have been proposed [16],
based on context decomposition or lattice pruning/reduction (atlas decomposition, direct or
subdirect decomposition, iceberg concept lattices, nested line diagrams, . . . ). We believe
that using taxonomies on objects and attributes can contribute to the extraction of unex-
pected and relevant generalized patterns and in most cases to the reduction of the size of
discovered patterns.

2.2 Labeled line diagrams of concept lattices

One of the strengths of FCA is the ability to pictorially display knowledge, at least for
contexts of reasonable size. Finite concept lattices can be represented by reduced labeled
Hasse diagrams (see Fig. 2). Each node represents a concept. The label g is written below γg

and m above μm. The extent of a concept represented by a node a is given by all labels in G

from the node a downwards, and the intent by all labels in M from a upwards. For example,
the label 5 in the left side of Fig. 2 represents the object concept γ 5 = ({5,6}, {a, c, d}).
Diagrams are valuable tools for visualizing data. However drawing a good diagram for
complex structures is a big challenge [7]. Therefore, we need tools to abstract the output
by reducing the size of the input, making the structure nicer, or by exploring the diagram
layer by layer. For the last case, FCA offers nested line diagrams as a means to visualize the
concepts level-wise [16]. Before we move to generalized patterns, let us see how data are
transformed into binary contexts, the suitable format for our data.

2.3 Scaling

Frequently, data are not directly encoded in a “binary” form, but rather as a many-valued
context, i.e., a tuple (G,M,W, I) such that G is the set of objects, M the set of attribute

1For two concepts x1 and x2 we set x1 ∨ x2 := ∨{x1, x2} and x1 ∧ x2 := ∧{x1, x2}.
2For (A,B) ∈ B(G,M, I) we have

∨

g∈A
γg = (A,B) =

∧

m∈B
μm.
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Fig. 2 Concept lattice of the context in Fig. 1

names, W the set of attribute values, I ⊆ G×M×W and every m ∈ M is a partial map from
G to W with (g,m,w) ∈ I iff m(g) = w. Many-valued contexts can be transformed into
binary contexts via conceptual scaling. A conceptual scale for an attribute m of (G,M,W, I)
is a binary context Sm := (Gm,Mm, Im) such that m(G) ⊆ Gm. Intuitively, Mm discretizes
or groups the attribute values into m(G), and Im describes how each attribute value m(g)

is related to the elements in Mm. For an attribute m of (G,M,W, I) and a conceptual scale
Sm we derive a binary context Km := (G,Mm, Im) with g Im sm : ⇐⇒ m(g) Im sm,
where sm ∈ Mm. This means that an object g ∈ G is in relation with a scaled attribute
sm iff the value of m on g is in relation with sm in Sm. With a conceptual scale for each
attribute we get the derived context KS := (G,N, IS) where N := ⋃{Mm | m ∈ M} and
g IS sm ⇐⇒ m(g) Im sm. In practice, the set of objects remains unchanged; each attribute
name m is replaced by the scaled attributes sm ∈ Mm. The choice of a suitable set of scales
depends on the interpretation, and is usually done with the help of a domain expert. A Con-
ceptual Information System is a many-valued context together with a set of conceptual scales
[25, 27]. The methods presented in Section 3 are actually a form of scaling.

3 Generalized patterns

In the field of data mining, generalized patterns are pieces of knowledge extracted from
data when an ontology is used. In the following we formalize the way generalized patterns
are produced. Let K := (G,M, I) be a context. The attributes of K can be grouped together
to form another set S of attributes. For the basket market analysis example, items/products
can be generalized into product lines and then product categories, and customers may be
generalized to groups according to some specific features (e.g., income, education). The
context K is then replaced with a context (G,S, J) as in the scaling process where S can be
seen as an index set such that {ms | s ∈ S} covers M . We will usually identify the group ms

with the index s.
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Generalized pattern extraction from concept lattices

3.1 Types of generalization

There are mainly three ways to express the relation J (see Table 1):

(∃) g J s : ⇐⇒ ∃m ∈ s, g Im. Consider an information table describing companies
and their branches in USA. We first set up a context whose objects are companies
and whose attributes are the cities where these companies have branches. If there
are too many cities, we can decide to group them into states to reduce the number
of attributes. Then, the (new) set of attributes is now a set S whose elements are
states. It is quite natural to assert that a company g has a branch in a state s if g has
a branch in a city m which belongs to the state s.

(∀) g J s : ⇐⇒ ∀m ∈ s, g Im. Consider an information system about Ph.D. students
and the components of the comprehensive exam (CE). Assume that components
are: the written part, the oral part, and the thesis proposal, and a student succeeds
in his exam if he succeeds in the three components of that exam. The objects of
the context are Ph.D. students and the attributes are the different exams taken by
students. If we group together the different components, for example

CE.written, CE.oral,CE.proposal → CE.exam,

then it becomes natural to state that a student g succeeds in his comprehensive
exam CE.exam if he succeeds in all the exam parts of CE.

(α%) g J s : ⇐⇒ |{m∈s | g Im}|
|s| ≥ αs where αs is a threshold set by the user for the

generalized attribute s. This case generalizes the (∃)-case with α = 1
|M| and the

(∀)-case with α = 1. To illustrate this case, let us consider a context describing
different specializations in a given Master degree program. For each program there
is a set of mandatory courses and a set of optional ones. Moreover, there is a pre-
defined number of courses that a student should succeed to get a degree in a given
specialization. Assume that to get a Master in Computer Science with a specializa-
tion in “computational logic”, a student must succeed seven courses from a set s1

of mandatory courses and three courses from a set s2 of optional ones. Then, we
can introduce two generalized attributes s1 and s2 so that a student g succeeds in
the group s1 if he succeeds in at least seven courses from s1, and succeeds in s2 if
he succeeds in at least three courses from s2. So, αs1 := 7

|s1| , αs2 := 3
|s2 | , and

g J si ⇐⇒ |{m ∈ si | g Im}|
|si | ≥ αsi , 1 ≤ i ≤ 2.

Table 1 Three generalizations of the context in Fig. 1

The ∃-generalized attributes are A := {e, g}, B := {b, c}, C := {a, d} and D := {f, h}. The ∀-generalized
attributes are S := {e, g}, T := {b, c}, U := {a, d} and V := {f, h}. The α-generalized attributes are
E := {a, b, c}, F := {d, e, f } and H := {g, h} with α = 60 %
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Attribute generalization reduces the number of attributes in the partition case. One may
therefore expect a reduction in the number of concepts. Unfortunately, this is not always
the case. Therefore, it is interesting to investigate under which condition generalizing pat-
terns leads to a “generalized” lattice of smaller size than the initial one. Moreover, finding
the connections between the implications and more generally association rules of the gen-
eralized context and the initial one is also an important problem to be considered in the
future.

If data represent customers (transactions) and items (products), the usage of a taxon-
omy on attributes leads to new useful patterns that could not be seen before generalizing
attributes. For example, the ∃-case (see Fig. 3, left) helps the user acquire the following
knowledge:

– Customer 3 (at the bottom of the lattice) buys at least one item from each product line
– Whenever a customer buys at least one item from the product line D, then he/she

necessarily buys at least one item from the product line A.

From the ∀-case in Fig. 3 (middle), one may learn for example that Customers 4
and 6 have distinct behaviors in the sense that the former buys all the items of the
product lines V and S while the latter purchases all the items of the product lines
U and T .

An illustration of the α-case is shown in Fig. 3 (right). One can learn that any customer
who buys at least 60 % of items in H necessarily purchases at least 60 % of items in
F . Moreover, the product line E (respectively H ) seems to be the most (resp. the least)
popular among the four product lines since five out of eight customers (resp. only one
customer) bought at least 60 % of items in E (resp. H ). The fact that Customer 1 appears
at the supremum of the lattice means that he buys less than 60 % of items in each one
of the product lines. Note that if all groups in an α-case have two elements, then any α-
generalization would be either an ∃-generalization (α ≤ 0.5) or a ∀-generalization (α >

0.5).
Generalization can also be conducted on objects to replace some (or all) of them

with generalized objects, or even more, can be done simultaneously on objects and
attributes.

Fig. 3 Concept lattices of generalized contexts in Table 1. ∃-generalization (left), ∀-generalization (middle)
and α-generalization with α := 60 % (right)
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3.2 Generalization on objects and attributes

Done simultaneously on attributes and on objects, the generalization will give a kind of
hypercontext (similar to hypergraphs [4]), since the objects are subsets of G and attributes
are subsets of M . Let A be a group of objects and B a group attributes in K. A rela-
tion J between groups of objects and groups of attributes can be defined using one or a
combination of the following cases:

(1) A J1 B iff ∃a ∈ A, ∃b ∈ B such that a I b, i.e. some objects from the group A are in
relation with some attributes in the group B; i.e. A×B ∩ I �= ∅. This is the weakest
condition one can impose on A and B , and is probably not useful in real life situations.
Its dual, Jd1 , is defined by: A Jd1 B iff ∀a ∈ A, ∀b ∈ B a I b, i.e. A×B ∩ I = A×B .
The following statements are equivalent: (a) A Jd1 B , (b) A×B ⊆ I , (c) A ⊆ B ′, (d)
B ⊆ A′, and (e) (A,B) is a preconcept [32].

(2) A J2 B iff ∀a ∈ A, ∃b ∈ B such that a I b, i.e. every object in the group A has at least
one attribute from the group B; Thus A J2 B iff A ⊆ ⋃{b′ | b ∈ B}. The dual, Jd2 is
defined by: A Jd2 B iff B ⊆ ⋃{a′ | a ∈ A}. Note that

{
A J2 B =⇒ |A×B ∩ I | ≥ |A|

The converse is not true.A Jd2 B =⇒ |A×B ∩ I | ≥ |B|.
(3) A J3 B iff ∃b ∈ B such that ∀a ∈ A a I b, i.e. there is an attribute in the group B that

belongs to all objects of the group A. (b is a kind of federating attribute for the objects
in A.) Thus A J3 B iff B ∩ A′ �= ∅. Its dual, Jd3 is defined by: A Jd3 B iff A ∩ B ′ �= ∅.
Moreover,

{
A J3 B =⇒ |A×B ∩ I | ≥ |A|

The converse is not true.A Jd3 B =⇒ |A×B ∩ I | ≥ |B|.

(4) A J4 B iff

∣
∣
∣{a∈A| |a′∩B||B| ≥βB }

∣
∣
∣

|A| ≥ αA, i.e. at least αA fraction of objects in the group A

have each at least βB fraction of the attributes in the group B . Setting AβB := {a ∈
A | |a′ ∩ B| ≥ |B|βB}, we get A J4 B iff |AβB | ≥ αA|A|. Thus A J4 B implies

|A×B ∩ I | =
∑

a∈A
|a′ ∩ B| ≥

∑

a∈AβB

|a′ ∩ B| ≥ |AβB ||B|βB ≥ αA|A||B|βB.

i.e. the density of A × B is at least αAβB . The dual of J4 is defined by: A Jd4 B iff
∣
∣
∣
{
b ∈ B | |b′∩A|

|A| ≥ αA

}∣
∣
∣ ≥ |B| · βB . Similarly, A Jd4 B =⇒ |A×B ∩ I |

|A×B| ≥ αAβB .

(5) A J5 B iff |A×B∩I |
|A×B| ≥ α, i.e. the density of the rectangle A × B is at least α. All the

cases above satisfy J5 for some given α, but these cases cannot be recovered just by
setting a value for α.

Remark 1 One particular annoying situation that we could encounter is when we have to
declare (apart from Jd1 ) that a group A of objects is in relation with a group B of attributes
although some objects in A have none of the attributes in B or some attributes of B are sat-
isfied by none of the objects in A. To avoid this situation we could require that all relations
we defined on generalized objects/attributes should be a subrelation of J̃2 := J2 ∩ Jd2 . This
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means that AJ̃2B iff A × B contains no empty row and no empty column. Thus AJ̃2B iff
A ⊆ ⋃

b∈B
b′ and B ⊆ ⋃

a∈A
a′.

Remark 2 The relations J4 and Jd4 are enough to generalize J1, J2, J3 and their dual.
Moreover, if A J4 B or A Jd4 B then A J5 B for every α ≤ αAβB .

An example of generalization on both objects and attributes would be one of customers
grouped according to common features and items grouped into product lines. We can also
assign to each group all items bought by their members (an ∃-generalization) or only their
common items (a ∀-generalization), or just some of the frequent items among their members
(similar to an α-generalization). We could also decide, as in J̃2, to assign a product line B

to a group of customers A only if every customer from A buys at least one product in line
B and every product from line B is bought by at least one customer in A.

Remark 3 In [30] the authors discuss α-lattices, an approach to reduce the size of the con-
cept lattice by grouping the attributes and/or objects and defining an α-satisfaction |=α

between objects or groups of objects and groups of attributes. The starting point was to state
that the extent of the attribute concept μms in the new context (G, S, J) is equal to the extent
of the concept generated by ms in the initial context; i.e., mJ

s = m′
s = ⋂

m∈ms

m′. This cor-

responds to the ∀-generalization as presented in Section 3.1. To generalize this case, they
define an α-satisfaction (with α ∈ [0, 1]) between a set of objects A and a set of attributes
B by: A |=α B ⇐⇒ |B ′ ∩ A| ≥ α|A|. This is a generalization of Jd3 , since instead of
just requiring B ′ ∩ A to be non-empty, they set a threshold α for the proportion of B ′ ∩ A

in A. To bring this α-satisfaction to the object level, they assumed that the grouping of
objects form a partition (then each object g belongs to a unique group go) and state that
g |=α B ⇐⇒ g ∈ B ′ and |go ∩ B ′| ≥ α|go|; i.e., g should satisfy all properties in B and
the proportion of objects in go satisfying all attributes in B is at least equal to α. This is a
bit different from the α-case as presented in the present paper.

3.3 Visualizing generalized patterns on line diagrams

Let K be a formal context and (G, S, J) a context obtained from K via a generalization on
attributes. The usual action is to directly construct a line diagram of B(G, S, J). (See Fig. 3).
One may be interested in refining the line diagram of B(G, S, J) further to the attributes in
M , for example in order to recover the concept lattice of K.

If storage space is not a constraint, the attributes in M and the generalized attributes
can be kept all together. This is done using the apposition of (G,M, I) and (G, S, J) to get
(G,M ∪ S, I∪ J).

A nested line diagram [16] can be used to display the resulting lattice, with (G, S, J)
at the first level and K at the second one, i.e., a line diagram is constructed for B(G, S, J)
with nodes large enough to contain copies of the line diagram of B(K). This is probably
here not so interesting since each node of B(G, S, J) will contain a copy of B(K), which is
probably already large enough.

An alternate way to visualize generalized concepts is to conduct a projection of (G,M ∪
S, I∪ J) on the generalized attributes in S and attach to each node of B(G,M ∪ S, J) its
equivalence class. Here, two nodes are equivalent iff their intents have the same restric-
tion on S [20]. For our example of ∀-generalization, we display in Fig. 4 the projection of
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Fig. 4 Projection of the lattice in Fig. 2 onto the ∀-generalized attributes

B(G,M ∪ S, I∪ J) on S by marking the equivalence classes on B(G,M ∪ S, I∪ J). This is
a refinement of the lattice in the middle of Fig. 3.

3.4 Are generalized attributes really generalizations?

For attributes a, b ∈ M ∪ S, we should normally assert that a is a generalization of b (or b
is a specialization of a) whenever more objects satisfy a than b, i.e. μa ≥ μb.

For the ∃-case we have, m′
s = ⋃{m′ | m ∈ ms}. Thus, μms ≥ μm for all m ∈ ms ; i.e.

ms really generalizes every attribute m ∈ ms .
For the ∀-case we have, m′

s =
⋂{m′ | m ∈ ms}. Thus, μms ≤ μm, ∀m ∈ ms ; i.e. ms

specializes every attribute m ∈ ms .

For the α-case, g Jms iff α ≤ |{m∈ms |g Im}|
|ms | . For the α-generalization in Table 1 the

concept lattice of (G,M ∪ S, I∪ J) is depicted in Fig. 5 and shows that:

– There is a generalized attribute ms ∈ S with at least one attribute m ∈ ms such that
μms � μm in B(G,M ∪ S, I ∪ J ); i.e μms is not a specialization of μm. E.g.,
ms := E = {a, b, c} and m = b.

– There is a generalized attribute ms ∈ S with at least one attribute m ∈ ms such that
μm � μms in B(G,M ∪ S, I ∪ J ); i.e μms is not a generalization of μm. E.g.,
ms := E = {a, b, c} and m = b.

Therefore, in α-case, there are generalized attributes ms that are neither a generalization
of the m’s nor a specialization of the m’s. Thus, we should better call the α-case an attribute
approximation, the ∀-case a specialization and only the ∃-case a generalization.

4 Controlling the size of generalized concepts

A generalized concept is a concept whose intent (or extent) contains generalized attributes
(or objects). Fig. 6 displays an ∃-generalization that leads to a larger number of concepts. In
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Fig. 5 α-generalization with μE‖μb. E = {a, b, c}, F = {d, e, f }, H = {g, h}, α = 0.6, where x ‖ y

means that x and y are incomparable

the following, we analyze the impact of ∃ and ∀ attribute generalizations on the size of the
resulting set of generalized concepts.

4.1 An ∃-generalization on attributes

Let (G,M, I) be a context and (G, S, J) a context obtained by an ∃-generalization on
attributes. We set S = {ms | s ∈ S}, with ms ⊆ M . Then g Jms iff ∃m ∈ ms, g Im. To com-
pare the sizes of the corresponding concept lattices, we define some mappings. We assume
that (ms)s∈S forms a partition of M . Then for each m ∈ M there is a unique generalized
attribute ms such that m ∈ ms , and g Im implies g Jms , for every g ∈ G. To distinguish

Fig. 6 B4 (left) and an ∃-generalization: m1 and m3 are generalized to m13 and then removed from the
context. The size does increase
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between derivations in (G,M, I) and in (G, S, J), we will replace ′ by the name of the cor-
responding relation. For example gI = {m ∈ M | g Im} and gJ = {s ∈ S | g J s}. Two
canonical maps γ̄ and μ̄ defined by

γ̄ : G → B(G, S, J )

g → (gJ J, gJ)
and

μ̄ : M → B(G, S, J )

m → (sJ, sJJ), where m ∈ ms

induce two order preserving maps ϕ and ψ defined by

ϕ : B(G,M, I) → B(G, S, J )

(A,B) → ∨{γ̄ g | g ∈ A} and
ψ : B(G,M, I) → B(G, S, J )

(A,B) → ∧{μ̄m | m ∈ B}.
If ϕ or ψ is surjective, then the concept lattice of the generalized context is of smaller

or equal cardinality. As we have seen on Fig. 6 these maps can be both not surjective.
Obviously ϕ(A,B) ≤ ψ(A,B) since g Im implies g Jms and γ̄ g ≤ μ̄ms . When do we
have the equality? Does the equality imply surjectivity?

Here are some special cases where the number of concepts does not increase after a
generalization.

Case 1 Every ms has a greatest element �s . Then the context (G, S, J ) is a projection of
(G,M, I) on the set MS := {�s | s ∈ S} of greatest elements of ms . Thus B(G, S, J ) ∼=
B(G,MS, I ∩ (G × MS)) and is a sub-order of B(G,M, I). Hence |B(G, S, J )| =
|B(G,MS, I ∩G×MS)| ≤ |B(G,M, I)|.

Case 2
⋃{mI | m ∈ ms} is an extent, for any ms ∈ S. Then any grouping does not

produce a new concept. Hence the number of concepts cannot increase.

The following result (Theorem 1) gives an important class of lattices for which the ∃-
generalization does not increase the size of the lattice. A context is object-reduced if no row
can be obtained as the intersection of some other rows. In this case, the object concepts γg
are

∨
-irreducible.

Theorem 1 The ∃-generalizations on distributive concept lattices whose contexts are
object-reduced do not increase the size of the concept lattice.

Proof Let K := (G,M, I) be an object-reduced context such that L := B(K) is a distribu-
tive lattice. Let (G, S, J) be a context obtained by an ∃-generalization on the attributes in
M . Let ms be a generalized attribute, i.e. a group of attributes of M . It is enough to prove
that mJ

s is an extent of (G,M, I). By definition,

mJ
s =

⋃
{mI | m ∈ ms} ⊆

(⋃
{mI | m ∈ ms}

)I I = ext
(∨

{μm | m ∈ ms}
)

For any g ∈ ext(
∨{μm | m ∈ ms}) we have γg ≤ ∨{μm | m ∈ ms} and

γg = γg ∧
∨

{μm | m ∈ ms}, since γg ≤
∨

{μm | m ∈ ms}
=

∨
{γg ∧ μm | m ∈ ms}, since L is distributive

= γg ∧ μm for some m ∈ ms, since K is object-reduced.

Therefore γg ≤ μm, and g ∈ mI. This proves that ext(
∨{μm | m ∈ ms}) ⊆ mJ

s , and

mJ
s = ext

(∨{μm | m ∈ ms}
)
.
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Fig. 7 ∃-generalization on M3 (above the line, left) and on N5 (below the line, left): m1 and m3 are
generalized to m13 and then removed from the context. The size does not increase

In [9] Marcel Erné found necessary and sufficient conditions on contexts for a concept
lattice to be distributive (see also [16]). The above discussed cases are not the only ones
where the size does not increase. It would be interesting to describe the classes of lat-
tices on which ∃-generalizations do not increase the size. Figure 7 provides some examples
satisfying none of the conditions above.

The lattices M3 and N5 are the minimal non-distributive lattices. Any generaliza-
tion on these lattices does not increase the size. On the lattice B4 (Fig. 6) there is
an ∃-generalization that increases the size of the concept lattice. In fact, putting the
attribute m1 and m3 together generates exactly one new concept: μm13 in the con-
text ({a, b, c, d}, {m1,m2, m3,m4, m13}, I).3 However, the attributes m1 and m3 become
reducible. Removing these does not reduce the size of the concept lattice. This seems to be
the main configuration that forces ∃-generalizations to increase the size, as we can see in
Proposition 1.

Proposition 1

i) The lattice B4 is the smallest lattice on which there is an ∃-generalization that
increases the size of the initial concept lattice.

ii) If a context contains attributes m1,m2, m3,m4 such that μm1 < μm2, μm3 < μm4,
μm2 ∧ μm3 ≤ μm1 and μm1 ∧ μm4 ≤ μm3, then there is an ∃-generalization that
does not decrease the size of the concept lattice.

Proof Let (G,M, I) be a context and m1,m2,m3,m4 ∈ M such that μm1 < μm2, μm3 <

μm4, μm2 ∧ μm3 ≤ μm1, μm1 ∧ μm4 < μm3. Generalizing m1 and m3 to m13 will
produce a new context (G,M ∪ {m13}). The attributes m1 and m3 become reducible since
μm1 = μm2∧μm13 and μm3 = μm4∧μm13. In fact, for any g ∈ G we have g ∈ m′

1 =⇒
g ∈ m′

2 ∩ m′
13. Conversely g ∈ m′

2 ∩ m′
13 = m′

2 ∩ (m′
1 ∪ m′

3) = (m′
2 ∩ m′

1) ∪ (m′
2 ∩

m′
3) ⊆ m′

1 since μm2 ∧ μm3 ≤ μm1. The proof that m3 is reducible is similar. Therefore
|B (G,M ∪ {m13} \ {m1, m2}, I)| = |B (G,M ∪ {m13}, I)| ≥ |B (G,M, I)|.

3We will not distinguish here between I and its restriction or extension.
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Proposition 1 states that if a concept lattice contains a copy of B4 labelled as indicated
in Fig. 6 then there is a ∃-generalization that does not decrease the size of the lattice. This
copy must not be a sublattice as we can see on Fig. 8.

To complete the characterization a couple of questions are still to be investigated:

– How many new concepts can be generated by an ∃-generalization on just two attributes?
– Does the converse of Proposition 1 ii) hold? i.e. Is there an ∃-generalization that does

not decrease the size of the initial concept lattice only if it contains a copy of B4?
Although this seems to be plausible, we have not yet succeeded to write down a correct
proof. We will investigate this further in the future work.

4.2 A ∀-generalization on attributes

Let (G,S, J) be a context obtained from (G,M, I) by a ∀-generalization. In the context
(G,M ∪ S, I∪ J), each attribute concept μms is reducible. This means that mJ

s = ⋂{mJ |
m ∈ ms} = ⋂{mI | m ∈ ms}, and is an extent of (G,M, I). Therefore, |B(G,S, J)| ≤
|B(G,M ∪ S, I∪ J)| = |B(G,M, I)|.

Theorem 2 The ∀-generalizations on attributes do not increase the size of the concept
lattice.

5 Related work

The present section gives an overview about related work either in terms of processing gen-
eralized descriptions within the Formal Concept Analysis framework [11, 15, 19, 23] or
with respect to the exploitation of ontology (including taxonomy) to discover “generalized”
patterns from data. Our present work is much more concerned with the second topic. In
the first research topic, the generalization of concept lattice construction to contexts with
an additional order structure on the set of objects and/or attributes is proposed in [19, 23].
Ganter and Kuznetsov [15] propose an approach where objects together with their partially
ordered data descriptions (e.g., labeled graphs) form “pattern structures” that are exploited

Fig. 8 An ∃-generalization with B4 as subposet but not a sublattice
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in FCA. To simplify computation, projection is used on pattern structures to produce con-
cepts, implications and classification rules. The approach has been successfully used in [18]
to analyze gene expression data where patterns are expressed as tuples of intervals. Pernelle
et al. [24] independently used the notion of projection with the same motivation of get-
ting smaller lattices as in [15]. To that end, they first introduced extensional projections by
defining a function ext as a mapping of an object to a predefined type (or class) and intro-
ducing object set partition into clusters called basic classes. The notion of nested Galois
lattices has also been introduced where nesting makes use of not only extensional but also
intensional projections. Ferré [11] defines “Logical Concept Analysis” as a generalization
of FCA, where sets of attributes are expressions of an (almost) arbitrary logic. In such a
logical framework [12], subsumption relations can be defined and operations on concept
lattices like navigation, querying and updating can be conducted in a uniform and powerful
way.

For the second research topic, there are a set of studies [5, 6, 10, 13, 17, 28, 31] about
the possible collaborations between Formal Concept Analysis and ontology engineering
(e.g., ontology merging and mapping) to let the two formalisms benefit from each other’s
strengths. For example, starting from the observation that both domain ontologies and FCA
aim at modeling concepts, [5] shows how FCA can be exploited to support ontology engi-
neering (e.g., ontology construction and exploration), and conversely how ontologies can
be fruitfully used in FCA applications (e.g., extracting new knowledge). In [28], the authors
propose a bottom-up approach called FCA−MERGE for merging ontologies using a set
of documents as input. The method relies on techniques from natural language processing
and FCA to produce a lattice of concepts. [13] studies the role of FCA in reusing indepen-
dently developed domain ontologies. To that end, an ontology-based method for evaluating
similarity between FCA concepts is defined to perform some Semantic Web activities such
as ontology merging and ontology mapping. In [31] an approach towards the construction
of a domain ontology using FCA is proposed. The resulting ontology is represented as a
concept lattice and expressed via the Semantic Web Rule Language to facilitate ontology
sharing and reasoning.

There are many efforts to integrate knowledge in a data mining process. For example,
the study in [26] uses a taxonomy on attributes to produce generalized rules while [2] uses
a domain ontology, including relations between concepts, to discover generalized sequen-
tial patterns. In the field of FCA, Ganter [14] exploits attribute implications for attribute
exploration while in [3], the authors use attribute-dependency formulae for constraint-based
data mining, and more precisely, to only select formal concepts that meet the constraints
expressed by these formulae.

6 Tests

The goal of the experiments is twofold: (i) to show that generalization can bring new
semantically rich patterns, and (ii) to highlight the fact that in the α and ∃ cases, the size
of the lattice after attribute generalization is generally reduced except in some specific
cases such as the ∃-generalization on groups of two attributes that do not share common
attributes.

We carried out experiments on the well-known data set called mushroom from the
UCI Repository [1]. This data collection describes samples representing 23 species of
8126 gilled mushrooms in terms of 22 nominally valued attributes. Each species is iden-
tified as either edible or poisonous. The converted set into a binary context contains 119
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attributes, including two attributes for the two classes of mushrooms: edible (e) and poi-
sonous (p). The binary context has a density of 19 % and leads to a large lattice of 238711
concepts.

6.1 New generalized patterns

To highlight the potential of generalization in discovering new and relevant patterns, we
have performed different generalizations on attributes in the mushroom data set. Figure 9
shows one of them where two generalized attributes are created. The first one existentially
generalizes habitat = {d, g,m} and cap surface = {g, s, y} to represent the property of a
mushroom to have a habitat of either woods (d), grasses (g), or meadows (m) among the
seven possible values, or to have a cap surface of one of the three sorts: grooves (g), scaly
(y), or smooth (s). The second generalization concerns the property of having an odor of
almond (a) or anise (l) among the nine possible mushroom odors. After generalization and
projection on the generalized attributes as well as on the two classification attribute val-
ues and the narrow (n) gill-size attribute, we get Fig. 9 which clearly shows that the first
generalized attribute is owned by 96 % of mushrooms but does not allow a discrimination
between the two classes: edible or poisonous mushrooms. However, we can conclude that
mushrooms with almond or anise odor are necessarily edible. Such pattern can be hardly
seen in the initial large lattice.

Fig. 9 Two generalized attributes in the mushroom data set
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Table 2 α-generalization on 117 attributes of the mushroom data set

Nb. of generalized attributes Nb. of generalized concepts Percentage of reduction Density

6 145 99.9 0.60

9 477 99.8 0.46

20 23138 90.3 0.68

58 185138 22.4 0.34

6.2 Lattice size variation

In order to empirically analyze the variation in the size of a lattice after an ∃ or α generaliza-
tion, we have conducted two types of experiments on the mushroom data set. The first type
of tests consists in random generation of 6, then 9, 20 and finally 58 generalized attributes
among the 117 predictable elementary attributes and applying an α-generalization with a
value α = 19 % within each group of attributes in the whole set of 8126 mushrooms. For
example, in the case of nine generalized attributes, each group represents 13 elementary
attributes. Every random generation was done ten times and an average value is computed
for the number of generalized concepts and the density of the generalized context as shown
in Table 2. One can expect a lesser reduction in the size of the lattice as the number of ele-
mentary attributes per generalized attribute is getting smaller and the number of generalized
attributes is increasing. This is indeed observed when we took 58 generalized attributes per
two elementary attributes randomly identified ten times.

Our previous tests [21] on large synthetically generated contexts show that the general-
ization process does not only reduce the context size but can also considerably reduce the
size of the corresponding lattice. Moreover, the number of generalized concepts is almost
inversely proportional to the fanout, i.e., the number of simple attributes per generalized
attribute. However, we have noticed that when the fanout is equal to 2, the number of gen-
eralized concepts can be greater than the number of original concepts. This is observed in
the second type of tests (see Table 3).

The second type of empirical tests related to lattice size variation aims at observing the
impact of an ∃-generalization applied to only one pair of attributes of the whole set of
8126 mushrooms. Twenty attributes among the 117 predictable attributes are first randomly
selected five times. For each group of twenty attributes, two of them are randomly identified
ten times to form a generalized attribute. We therefore get 50 contexts of 19 attributes and
8126 objects. Table 3 shows that among the fifty contexts with only one generalized attribute
obtained from two elementary attributes, there are situations where the size of the lattice
decreases and other ones where the size increases. For example, among the fifty generated

Table 3 Lattice size variation
after an ∃-generalization on one
pair of attributes in the
mushroom data set

Size decrease Nb of tests

[−0.007,−0.004[ 8

[−0.004, 0[ 7

[0, 6[ 17

[6, 13[ 7

[13, 41[ 11
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contexts, we observe a decrease of 13 to 41 % in the size of the lattice while there are eight
cases where the lattice hardly increases by 0.004 to 0.007.

7 Conclusion

In this paper we have studied the problem of using a taxonomy on objects and/or attributes in
the framework of Formal Concept Analysis under three main cases of generalization (∃, ∀,
and α) and have shown that (i) the set of generalized concepts is in some cases smaller than
the set of patterns extracted from the original set of attributes (before generalization), and
(ii) the generalized concept lattice not only embeds new patterns on generalized attributes
but also reveals particular features of objects and may unveil a new taxonomy on objects.
A careful analysis of the three cases of attribute generalization led to the following conclu-
sion: the α-case is an attribute approximation, the ∀-case is an attribute specialization while
only the ∃-case is actually an attribute generalization. Different scenarios of a simultane-
ous generalization on objects and attributes are also discussed based on the three cases of
generalization.

Since we focused our analysis on the integration of taxonomies in FCA to produce gener-
alized concepts, our further research concerns the theoretical study of the mapping between
a rule set on original attributes and a rule set of generalized attributes as well as the exploita-
tion of other components of an ontology such as general links (other than is-a hierarchies)
between concepts/entities.
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