Skip to main content
Log in

Fitting discrete polynomial curve and surface to noisy data

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Fitting geometric models such as lines, circles or planes is an essential task in image analysis and computer vision. This paper deals with the problem of fitting a discrete polynomial curve to given 2D integer points in the presence of outliers. A 2D discrete polynomial curve is defined as a set of integer points lying between two polynomial curves. We formulate the problem as a discrete optimization problem in which the number of points included in the discrete polynomial curve, i.e., the number of inliers, is maximized. We then propose a robust method that effectively achieves a solution guaranteeing local maximality by using a local search, called rock climbing, with a seed obtained by RANSAC. We also extend our method to deal with a 3D discrete polynomial surface. Experimental results demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdoulaye, S., Oumarou, S., Andres, E.: Extended standard hough transform for analytical line recognition. Int. J. (2013)

  2. Aiger, D., Kenmochi, Y., Talbot, H., Buzer, L.: Efficient robust digital hyperplane fitting with bounded error In: Proceedings of the 16th IAPR international conference on Discrete Geometry for Computer Imagery (DGCI2011), LNCS, Vol. 6607, pp 223–234. Springer (2011)

  3. Andres, E.: Discrete linear objects in dimension n: the standard model. Graph. model. 65 (1), 92–111 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theor. Comput. Sci. 406 (1), 8–14 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beckermann, B.: The condition number of real vandermonde, krylov and positive definite hankel matrices. Numer. Math. 85 (4), 553–577 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20 (2), 100–106 (1977)

    Article  MATH  Google Scholar 

  7. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4 (1), 25–30 (1965)

    Article  Google Scholar 

  8. Brimkov, V.E., Dantchev, S.: Digital hyperplane recognition in arbitrary fixed dimension within an algebraic computation model. Image Vis. Comput. 25 (10), 1631–1643 (2007)

    Article  Google Scholar 

  9. Buzer, L.: An incremental linear time algorithm for digital line and plane recognition using a linear incremental feasibility problem In: Discrete Geometry for Computer Imagery, pp 372–381. Springer (2002)

  10. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition In: Discrete Geometry for Computer Imagery, pp 346–357. Springer (2008)

  11. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC In: Pattern Recognition, pp 236–243. Springer (2003)

  12. Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane recognition. Discret. Appl. Math. 157 (3), 476–489 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15 (1), 11–15 (1972)

    Article  MATH  Google Scholar 

  14. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24 (6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers In: Proceedings of the 16th IAPR international conference on Discrete Geometry for Computer Imagery (DGCI2011), LNCS, Vol. 6607, pp 83–94. Springer (2011)

  16. Hough, V., Paul, C.: Method and means for recognizing complex patterns (1962). US Patent 3,069,654

  17. Largeteau-Skapin, G., Zrour, R., Andres, E.: O (n 3 log n) time complexity for the optimal consensus set computation for 4-connected digital circles In: Proceedings of the 17th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI2013), LNCS, Vol. 7749, pp 241–252. Springer (2013)

  18. Largeteau-Skapin, G., Zrour, R., Andres, E., Sugimoto, A., Kenmochi, Y.: Optimal consensus set and preimage of 4-connected circles in a noisy environment In: Proceedings of the 21st IAPR International Conference on Pattern Recognition (ICPR2012), pp 3774–3777. IEEE (2012)

  19. Narula, S.C., Wellington, J.F.: The minimum sum of absolute errors regression: A state of the art survey. Int. Stat. Rev./Revue Internationale de Statistique, 317–326 (1982)

  20. Phan, M.S., Kenmochi, Y., Sugimoto, A., Talbot, H., Andres, E., Zrour, R.: Efficient robust digital annulus fitting with bounded error In: Proceedings of the 17th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI2013), LNCS, Vol. 7749, pp 253–264. Springer (2013)

  21. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with a convergent bounded error In: Proceedings of the 16th IAPR international conference on Discrete Geometry for Computer Imagery (DGCI2011), LNCS, Vol. 6607, pp 284–295. Springer (2011)

  22. Provot, L., Gerard, Y.: Recognition of digital hyperplanes and level layers with forbidden points In: Combinatorial Image Analysis, pp 144–156 (2011)

  23. Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus In: Computer Vision–ECCV 2008, pp 500–513. Springer (2008)

  24. Rousseeuw, P.: Least median of squares regression. J. Am. Stat. Assoc., 871–880 (1984)

  25. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley (2005)

  26. Sekiya, F., Sugimoto, A.: Discrete polynomial curve fitting to noisy data In: Proceedings of the 15th International Workshop on Combinatorial Image Analaysis (IWCIA2012), LNCS, Vol. 7655, pp 59–74. Springer (2012)

  27. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley (2005)

  28. Torr, P.H., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Comp. Vision Image Underst. 78 (1), 138–156 (2000)

    Article  Google Scholar 

  29. Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties. Discret. Appl. Math. (2013)

  30. Xu, L., Oja, E.: Randomized hough transform (rht): basic mechanisms, algorithms, and computational complexities. CVGIP: Image underst. 57 (2), 131–154 (1993)

    Article  Google Scholar 

  31. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21 (1), 45–57 (2011)

    Article  Google Scholar 

  32. Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for annulus fitting In: Proceedings of the 16th IAPR international conference on Discrete Geometry for Computer Imagery (DGCI2011), LNCS, Vol. 6607, pp 358–368. Springer (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiki Sekiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekiya, F., Sugimoto, A. Fitting discrete polynomial curve and surface to noisy data. Ann Math Artif Intell 75, 135–162 (2015). https://doi.org/10.1007/s10472-014-9425-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9425-7

Keywords

Navigation