Skip to main content
Log in

Combinatorial properties of support vectors of separating hyperplanes

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper we study the relationship between separating hyperplanes and the Radon partitions of their support vectors. This study is relevant for maximal margin separations, which appear in Support Vector Machines (SVM), as well as for separations that optimize a Chebyshev norm. We propose a new version of the Stiefel exchange algorithm where we exploit the property that each Stiefel exchange is in fact a Radon exchange. Originally, the Stiefel exchange algorithm was developed to find Chebyshev approximations, but we show that it is also suited for finding hyperplane separations. We also show that many important properties in approximation theory are closely related to fundamental results in convex set theory, in particular to Helly’s, Radon’s and Caratheodory’s Theorem. Within this context, we prove a new result that generalizes both Radon’s and Caratheodory’s Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialon, P.: A linear support vector machine solver for a large number of training examples. Control Cybern. 38(1), 281–300 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) COLT, pp. 144–152. ACM (1992)

  3. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Cadzow, J.A.: Minimum l 1, l 2, and l\(_{\infty }\) norm approximate solutions to an overdetermined system of linear equations. Digital Signal Process. 12 (4), 524–560 (2002)

    Article  Google Scholar 

  5. Chapelle, O.: Training a support vector machine in the primal. Neural Comput. 19(5), 1155–1178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill (1966)

  7. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer (1996)

  8. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J Robot Autom 4, 193–203 (1988)

    Article  Google Scholar 

  9. Goodman, J., Pollack, R.: Hadwiger’s transversal theorem in higher dimensions. J. Amer. Math. Soc. 1, 301–309 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Hawkins, D.M., Bradu, D., Kass, G.: Location of several outliers in multiple regression data using elemental sets. Technometrics 26, 197–208 (1984)

    Article  MathSciNet  Google Scholar 

  11. Joachims, T.: Advances in Kernel Methods - Support Vector Learning, chap. Making Large-Scale SVM Learning Practical, pp. 169–184. MIT Press (1999)

  12. Joachims, T.: Training linear svms in linear time. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos D. (eds.) KDD, pp. 217–226. ACM (2006)

  13. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans Neural Netw 11, 124–136 (2000)

    Article  Google Scholar 

  14. Keerthi, S.S., Chapelle, O., DeCoste, D.: Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res. 7, 1493–1515 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and efficient computational geometry via controlled perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP (1), Lecture Notes in Computer Science, vol. 4051, pp. 299–310. Springer (2006)

  16. Mitchell, B.F., Amd, V.N., Malozemov, V.F.D.: Finding the point of a polyhedron closest to the origin. SIAM J. Control 12, 19–26 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Musicant, D.R., Feinberg, A.: Active set support vector regression. IEEE Trans Neural Netw 15(2), 268–275 (2004)

    Article  Google Scholar 

  18. Osborne, M.R., Watson, G.A.: On the best linear Chebyshev approximation. Comput. J. 10, 172–177 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  19. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Principe, J., Abd L.G., Morgan, N., Wilson, E. (eds.) Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, pp. 276–285 (1997)

  20. Platt, J.: Advaces in Kernel Methods: Support Vector Machines, chap. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. MIT Press (1998)

  21. Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  22. Stiefel, E.: über diskrete und lineare tschebyscheff-approximationen. Numerische Mathematik 1, 1–28 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 6, 363–392 (2005)

    MATH  MathSciNet  Google Scholar 

  24. de la Vallée Poussin, C.J.: Sur la methode de l’ approximation minimum. Societe Scientifique de Bruxellles. Annales Memoires 35, 1–16 (1911)

    Google Scholar 

  25. Veelaert, P.: Constructive fitting and extraction of geometric primitives. Graph. Models Image Process. 59 (4), 233–251 (1997)

    Article  Google Scholar 

  26. Veelaert, P.: Digital Geometry Algorithms, Lecture Notes in Computational Vision and Biomechanics, vol. 2, chap. Separability and Tight Enclosure of Point Sets, pp. 215–243. Springer (2012)

  27. Veelaert, P.: Fast combinatorial algorithm for tightly separating hyperplanes. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA, Lecture Notes in Computer Science, vol. 7655, pp. 31–44. Springer (2012)

  28. Watson, G.A.: Approximation in normed linear spaces. J. Comput. Appl. Math. 121, 1–36 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, Vol. 152. Springer-Verlag, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Veelaert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veelaert, P. Combinatorial properties of support vectors of separating hyperplanes. Ann Math Artif Intell 75, 89–115 (2015). https://doi.org/10.1007/s10472-014-9430-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9430-x

Keywords

Mathematics Subject Classification (2010)

Navigation