Skip to main content
Log in

Abstract

Comparing heuristics has been a major issue from the early days of heuristic search. From the very beginning, measures of the accuracy of heuristic functions were strongly based on the number of nodes generated, and they are often still based on it. In this work, an alternative approach is suggested: to model the accuracy of admissible heuristic functions as the probability of the heuristic hill-climbing search algorithm to find the goal state in a number of steps that equals the heuristic value of an arbitrary node. The resulting method serves to assess on the accuracy of both consistent and inconsistent heuristic functions. Comparisons with different sizes of the sliding-tile puzzle show that the model suggested predicts the accuracy of the heuristic function with a good precision. The resulting procedure is used to derive figures on the accuracy of a large number of heuristics for the 15-Puzzle with different variants of the search algorithm IDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334 (1998)

    Article  MathSciNet  Google Scholar 

  2. Dillenburg, J.F., Nelson, P.C.: Perimeter search. Artif. Intell. 65, 165–178 (1994)

    Article  Google Scholar 

  3. Doran, J., Michie, D.: Experiments with the graph traverser program. Proceedings of the Royal Society A 294(1437), 235–259 (1966)

    Article  Google Scholar 

  4. Dweighter, H.: Problem E2569. Am. Math. Mon. 1010(82) (1975)

  5. Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. J. Artif. Intell. Res. 22, 279–318 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Felner, A., Korf, R.E., Meshulam, R., Holte, R.: Compressed pattern databases. J. Artif. Intell. Res. 30, 213–247 (2007)

    MATH  Google Scholar 

  7. Felner, A., Zahavi, U., Holte, R., Schaeffer, J., Sturtevant, N., Zhang, Z.: Inconsistent heuristics in theory and practice. Artif. Intell. 175, 1570–1603 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Felner, A., Zahavi, U., Schaeffer, J., Holte, R.C.: Dual lookups in pattern databases. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 103–108. Edinburgh, Scotland (2005)

  9. Hansson, O., Mayer, A., Yung, M.: Criticizing solutions to relaxed models yields powerful admissible heuristics. Inf. Sci. 63, 207–222 (1992)

    Article  Google Scholar 

  10. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybernet. 4(2), 100–107 (1968)

    Article  Google Scholar 

  11. Holte, R., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern databases. In: Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-04), pp. 122–131. Whistler, British Columbia, Canada (2004)

  12. Holte, R.C., Felner, A., Newton, J., Meshulam, R., Furcy, D.: Maximizing over multiple pattern databases speeds up heuristic search. Artif. Intell. 170(16–17), 1123–1136 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Johnson, W.A.: Notes on the 15 puzzle 1. Am. J. Math. 2(4), 397–399 (1879)

    Article  MATH  Google Scholar 

  14. Joyner, D.: Adventures in group theory: Rubik’s Cube, Merlin’s machine, and other mathematical toys. JHU Press (2002)

  15. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 27, 97–109 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Korf, R.E.: Finding optimal solutions to Rubik’s cube using pattern databases. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pp. 700–705.Providence, Rhode Island, United States (1997)

  17. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artif. Intell. 134(1–2), 9–22 (2002)

    Article  MATH  Google Scholar 

  18. Korf, R.E., Reid, M.: Complexity analysis of admissible heuristic search. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 305–310. Madison, Wisconsin, United States (1998)

  19. Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of iterative-deepening-A. Artif. Intell. 129(1–2), 199–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Korf, R.E., Taylor, L.A.: Finding optimal solutions to the twenty-four puzzle. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp. 1202–1207 (1996)

  21. Lelis, L., Zilles, S., Holte, R.C.: Improved prediction of IDAs performance via 𝜖-truncation. In: The Fourth Annual Symposium on Combinatorial Search (SOCS-11), pp. 108–116. Barcelona, Spain (2011)

  22. Lelis, L.H.S., Stern, R., Felner, A., Zilles, S., Holte, R.C.: Predicting optimal solution cost with conditional probabilities. Ann. Math. Artif. Intell., 1–29 (2014)

  23. Manzini, G.: BIDA: an improved perimeter search algorithm. Artif. Intell. 75, 347–360 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, Inc., San Francisco (1998)

    MATH  Google Scholar 

  25. Pearl, J.: Heuristics. Addison-Wesley, Reading MA (1984)

    Google Scholar 

  26. Pohl, I.: Machine Intelligence, vol. 8, chap. Practical and theoretical considerations in heuristic search algorithms, pp. 55–72. Wiley, New York (1977)

  27. Ratner, D., Warmuth, M.: Finding a shortest solution for the n×n extension of the 15-puzzle is intractable. In: Proceedings AAAI-86, pp. 168–172. Philadelphia, Pennsylvania, United States (1986)

  28. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  29. Storey, W.E.: Notes on the 15 puzzle 2. Am. J. Math. 2(4), 399–404 (1879)

    Google Scholar 

  30. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. Journal of Combinatorial Theory 16, 86–96 (1974)

    Article  MATH  Google Scholar 

  31. Yang, F., Culberson, J.C., Holte, R., Zahavi, U., Felner, A.: A general theory of additive state space abstractions. J. Artif. Intell. Res. 32, 631–662 (2008)

    MATH  MathSciNet  Google Scholar 

  32. Zahavi, U., Felner, A., Burch, N., Holte, R.C.: Predicting the performance of IDA using conditional distributions. J. Artif. Intell. Res. 37, 41–83 (2010)

    MATH  MathSciNet  Google Scholar 

  33. Zahavi, U., Felner, A., Holte, R.C., Schaeffer, J.: Duality in permutation state spaces and the dual search algorithm. Artif. Intell. 172, 514–540 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Linares López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linares López, C. Heuristics as Markov chains. Ann Math Artif Intell 73, 275–309 (2015). https://doi.org/10.1007/s10472-014-9439-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9439-1

Keywords

Mathematics Subject Classifications (2010)

Navigation