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Abstract

Formal concept analysis associates a lattice of formal concepts to a binary relation.
The structure of the relation can then be described in terms of lattice theory. On the
other hand Q-analysis associates a simplicial complex to a binary relation and studies
its properties using topological methods. This paper investigates which mathematical
invariants studied in one approach can be captured in the other. Our main result is that
all homotopy invariant properties of the simplicial complex can be recovered from the
structure of the concept lattice. This not only clarifies the relationships between two
frameworks widely used in symbolic data analysis but also offers an effective new method
to establish homotopy equivalence in the context of Q-analysis. As a musical application,
we will investigate Olivier Messiaen’s modes of limited transposition. We will use our
theoretical result to show that the simplicial complex associated to a maximal mode with
m transpositions is homotopy equivalent to the (m− 2)–dimensional sphere.

Keywords. formal concept analysis; Q-analysis; simplicial complex; homotopy
invariance; Betti numbers; combinatorial classification of harmonies; mode of lim-
ited transposition

1 Introduction

Formal concept analysis (FCA) relies on lattice theory for the analysis of binary relations. It
has been developed around 1980 by Rudolph Wille [Wil82], Marc Barbut, Bernard Monjardet
[BM70] and others. Another approach to the analysis of binary relations is to give them a
topological representation in terms of a simplicial complex. Originating in Dowker’s research
on the homology groups of relations [Dow52], this idea has been developed by Ronald Atkin
under the name of Q-analysis1 since the beginning of the 1970s [Atk72] and has been applied
to many problems in the social sciences [Cas79, Fre80, Joh91, DN97, BKLW01].

Both frameworks heavily rely on lattice theory, an enabling instrument for rigorous anal-
ysis and design in AI [Kab11]. Both focus on the backcloth representation of binary relations

1This methodology is not to be confused with an algorithm that groups objects (from variables) and is
called Q-analysis or Q-factor analysis (in opposition to R-analysis that groups variables).
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relating two sets of indicators, features or characteristics. They both have been developed
for and applied to the qualitative analysis of symbolic data where they have proven espe-
cially useful in solving problems involving systems with complex structures. They provide
respectively algebraic and topological tools for data reduction that facilitate an agnostic and
macroscopic conceptualization of the systems. Yet, it does not exist a thorough comparison
of these two theoretical approaches.

Contributions. The aim of this article is to compare the two approaches from a mathe-
matical point of view: A first observation will be that each approach captures information
which is neglected in the other. To see this we will exhibit different relations which give
rise to equal (more precisely: isomorphic) concept lattices but to different (non-isomorphic)
simplicial complexes, and vice versa. This means that neither the concept lattice nor the
simplicial complex can in general be fully reconstructed from the other object.

In contrast to this negative result we will show that (the isomorphism class of) the concept
lattice alone allows to determine the homotopy type of the simplicial complex, i.e. most
properties typically studied in the topological approach. Sections 2 to 6 of the present paper
are devoted to these theoretic questions.

This result is of fundamental interest: it relates two approaches in the analysis of a binary
relation, an order theoretic one and a topological one. It has also a practical interest because
some topological questions are more simple to answer in the framework of lattice theory and
vice versa. We show an application in the field of mathematical music theory in section 8:
We use the results of the previous sections to investigate simplicial complexes associated to
modes of limited transposition. This is inspired by Michael Catanzaro’s [Cat11] classification
of the simplicial complexes associated to prime forms with three chromas.

2 A brief tour in FCA and Q-analysis

Both FCA and Q-analysis study the relationships between two finite sets by looking at the
boolean matrix specifying the interactions between elements of the sets. Following the ter-
minology of formal concept analysis we associate rows of this incidence matrix with objects
and columns with attributes. Then the table contains the value true at position (i, j) if the
i-th object has the j-th attribute. See figure 1 (top center) for an example (crosses represent
the value true).

2.1 FCA background

The formal notion corresponding to such a table is that of a formal context. We will often
drop the specification “formal”.

Definition 2.1. A formal context2 is a triple K = (G,M, I) where I ⊂ G ×M is a binary
relation. Elements of G are called objects and elements of M are called attributes. We always
assume that G and M are finite, and that the formal context is clarified. The latter means
that no object has all attributes and that no attribute holds for all objects.

The requirement of finiteness and the interdiction of full rows and columns is usually not
included in the definition. As shown in [GW99, p. 27] the latter is not actually a restriction

2Our presentation of formal concept analysis, including contexts, relies on [GW99].
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from the perspective of formal concept analysis. Finiteness is given in most applications. The
reasons for this restriction will be seen in the sequel.

Such a context can be analysed using the methods of formal concept analysis. The central
notion is that of a (formal) concept. To get some intuition, let us consider the context in the
upper middle of figure 1. Following an example of Atkin [Atk78], one can imagine that the
five objects g1, . . . , g5 represent five people working on a joint project. To coordinate their
work they have established four regular meetings m1, . . . ,m4, each with different participants.
There is a cross at position (i, j) if the i-th person is a member of the j-th meeting group.

How can we find reasonable organisational substructures of that collaboration? Let us
think about people first: Do person 1 and person 3 constitute an interesting subgroup? An
answer in the spirit of formal concept analysis is no: The only meeting at which both of them
participate is m1. However m1 has an additional participant, namely person g2. So if we are
looking for an organisational group containing g1 and g3, then we should also include g2, who
is present at all their joint meetings.

We can also think the other way around: Do meeting m1 and m2 form an interesting
collection of meetings? Our answer is yes: The only people who are participating at both of
these meetings are g1 and g2. Furthermore m1 and m2 are the only meetings which these two
people share. So this seems to be their forum.

Generalizing the example, a formal concept is a pair consisting of a set of objects and
a set of attributes of a formal context. The two sets have to be maximal in the sense that
there are no other objects having all attributes in the list and no other attributes that hold
for all the objects. As before we drop the specification “formal” when talking about formal
concepts.

Definition 2.2. Let K = (G,M, I) be a context. For sets A ⊂ G and B ⊂ M we define
associated sets A′ ⊂M and B′ ⊂ G as

A′ := {m ∈M | (g,m) ∈ I for all g ∈ A} and

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.

A pair (A,B) of sets A ⊂ G and B ⊂ M is called a formal concept if we have A′ = B and
B′ = A. The set A is called the extent of the concept and the set B is called its intent.

As shown in [GW99, p. 19] the prime operators in the two directions induce a Galois
connection. We will not need this notion in general but shall eventually invoke certain facts
that it implies. We can order concepts according to set-theoretic inclusion of their extents,
making one concept bigger than another if it includes all objets falling under the competitor,
and more. It is proved in [GW99, p. 20] that the resulting order is a lattice. Staying in the
above example a meeting is termed bigger — or superordinate — compared with another if it
has at least all the participants of the smaller meeting. Figure 1 (top left) depicts the whole
concept lattice of the example.

Definition 2.3. Let K be a context. We define an ordering ≤ on its concepts by putting

(A,B) ≤ (C,D) if and only if A ⊂ C,

for two concepts (A,B) and (C,D). The resulting order is called the concept lattice of K and
is denoted by BK.
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Figure 1: In the upper part of the diagram one finds a formal context (center),
the associated concept lattice (left) and the associated simplicial complex (right). The
formal concepts of the concept lattice are given as c0 = (∅, {m1, . . . ,m4}), c1 =
({g3}, {m1,m3}), c2 = ({g4}, {m2,m3}), c3 = ({g1}, {m1,m2,m4}), c4 = ({g1, g2}, {m1,m2}),
c5 = ({g3, g4, g5}, {m3}), c6 = ({g1, g2, g3}, {m1}), c7 = ({g1, g2, g4}, {m2}) and c8 =
({g1, . . . , g5}, ∅). In the simplicial complex filled triangles correspond to 2-dimensional sim-
plices while the triangle in the middle is a hole. The lower part of the diagram, in particular
the meaning of ∆, Γ, ζ and the dashed arrow, is explained in Section 3.

Invoking definition 2.2 it is straightforward to show that (A,B) ≤ (C,D) as defined is
equivalent to B ⊃ D. Note that our definition of context implies that (∅,M) and (G, ∅) are
always concepts. They are the least and the greatest element of the lattice.

We are mostly interested in properties of the concept lattice which do not depend on the
labelling but only on the form of the lattice. Formally these are properties which are preserved
under isomorphisms of partial orders. An example of such a property is the number of atoms
(upper neighbours of the least element) of the lattice.

2.2 Q-analysis background

Another way to represent a table for data analysis is in the form of a simplicial complex. Such
a complex represents a generalized polyhedron in a suitable multidimensional Euclidian space
whose vertices are the objects (the rows) or alternatively the attributes (the columns) of the
table.

A simplicial complex is composed of a number of simplices. A simplex is defined by its
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vertices which may be pictured as the target points of linearly independent vectors in some
Euclidian space. The simplex is then the convex hull of its vertex set. For instance, a simplex
with three vertices is a triangle and a simplex with four vertices is a tetrahedron. By glueing
such simplices along their vertices, edges and higher-dimensional sub-simplices we obtain
what is called a simplicial complex. We could glue for example three line segments to form
the boundary of a triangle, with the interior of the triangle left empty.

Typical topological questions about a simplicial complex are: Is it connected? i.e. can
we find a path from any point of the simplicial complex to any other without leaving it? For
the boundary of a triangle this is the case. Is it simply connected? i.e. can every closed
curve on the simplicial complex be contracted to a single point, or are there “holes” in the
simplicial complex which prevent this? For example a filled triangle is simply connected, but
the boundary of a triangle is not, since a curve which goes around once cannot be contracted
without “jumping” over the hole in the middle.

For our investigation it will often be useful to abstract from the geometric nature of a
simplicial complex: We do not mind which precise shape the boundary of a triangle has, as
long as it consists of three vertices which are pairwise connected but do not all three belong
to one common simplex. For more detailed explanations of topological notions we refer to
[Hat02, chap. 1]. Discarding the geometrical interpretation of simplicial complexes we get the
following definition.

Definition 2.4. An abstract simplicial complex is a set S of finite sets which contains any
subset of a set it contains, i.e. such that σ ∈ S and τ ⊂ σ together imply τ ∈ S. Elements of
S are called simplices and elements of simplices are called vertices.

The purely combinatorial definition of a simplicial complex seems to be the most suitable
for our investigation and, in the following, we drop the specification “abstract” when we
talk about simplicial complexes. However, in section 6 we will discuss notions that depend
on continuity. It will then be the easiest approach to consider the realizations of abstract
simplicial complexes in Euclidean space. Such a geometric realization of an abstract simplicial
complex is built by choosing one point for each vertex such that these points are linearly
independent, and to add a line, a triangle or a higher-dimensional polytope for each simplex.

To represent data from a table of objects and attributes as a simplicial complex one takes
the objects as vertices and agrees that a set of objects constitutes a simplex if all these objects
share a common attribute. An example can be seen in figure 1 (top right).

Definition 2.5. Let K = (G,M, I) be a context. The simplicial complex associated to K is
the set SK of those subsets σ of G that satisfy the following: There is an attribute m ∈ M
such that (g,m) ∈ I holds for all g ∈ σ.

Note that the requirement that G is finite comes in at this point. To include infinite
contexts one would have to work with finite approximations.

Let us analyse the example discussed above — people gi participating at different meetings
mj — via a simplicial complex. The formal context is again that of figure 1, and the relevant
simplicial complex can be found on the top right of that figure. The filled triangles very
conspicuously represent the three main meetings m1, m2 and m3, with the strange solo
working group m4 somewhat falling out of the picture. An obvious question would be whether
all people can somehow share ideas, possibly propagating them throughout their group via a
chain of meetings with common participants. It is clear from the picture that the answer is
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yes: If for example person 1 has a message for person 5 then he can talk to person 3 in meeting
m1. The latter can then spread the news in meeting m3 where person 5 is present. In the
topological terms introduced above this corresponds precisely to the fact that the simplicial
complex is connected. What do we make out of the fact that it is not simply connected? Well,
this corresponds to the fact that there is a chain of communication between (for example) g2,
g3 and g4 going around a “missing meeting” represented by the hole in the center.

3 Relating FCA and Q-analysis

We have seen in the example that formal concept analysis and simplicial complexes typically
capture different aspects of the same situation. What this article wants to find out is whether
this is just a matter of habit or whether it has principal reasons. Can we find characteristics
of the lattice which allow to read off everything which is present in the simplicial complex?
Or is it possible that we have two different contexts which give rise to the same concept lattice
but to two different simplicial complexes, so that from the concept lattice alone we can never
fully reconstruct the simplicial complex? And vice versa? Finally, if we can not reconstruct
all the findings of the other approach, is there an interesting part which can be reconstructed?

To see what we can expect, let us again consider the example from figure 1. Assume that
attribute m4, i.e. the solo meeting within our project, would be canceled. It is easy to see
that the simplicial complex in the upper right of the figure does not change: It didn’t really
record the solo meeting from the beginning on. However the concept lattice changes: Persons
1 and 2 now participate at precisely the same meetings, so their roles in the undertaking
become identified, and consequently the concepts c3 and c4 collapse into one.

Since the concept lattice changes while the simplicial complex remains the same, we obtain
a first negative result:

In general, the concept lattice cannot be fully reconstructed from the simplicial
complex.

The same works the other way around: If person 5 leaves the project, then the simplicial
complex changes, with the lower triangle turning into a line. However if one computes the
concept lattice for the new situation, one can see that it is the same as the one in the figure.
To be more precise, the new lattice looks the same as long as we do not consider the labelling,
i.e. it is in the same isomorphism class. Thus also:

In general, the simplicial complex cannot be fully determined from (the isomor-
phism class of) the concept lattice alone.

The goal of our article is to show that in spite of these negative outcomes, the two
approaches have an interesting and deep connection. Especially formal concept analysis has
the power to capture many important topological characteristics of the simplicial complexes
approach. In the given example two important properties of the simplicial complex were
that it is connected and that it is not simply connected, or in the somewhat biased terms of
the example that there are ways of communication between all the people in the group but
that they are inefficiently wrapped around a missing meeting. The theoretical results of the
following sections will show that these findings of simplicial complex analysis can also be read
off from the concept lattice:
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The (isomorphism class of the) concept lattice alone allows to determine the ho-
motopy type of the simplicial complex.

To establish the connections between FCA and Q-analysis, we take the following course
(cf. to the figure 1). In section 4 we will define a map ∆ which transforms a lattice into a
simplicial complex, the lattice complex. The vertices of the new simplicial complex correspond
to the atoms of the lattice: atoms are the immediate upper neighbours of the minimal elements
in the lattice. Co-atoms are the immediate lower neighbours of the maximal elements. Each
co-atom gives rise to a maximal simplex, the vertices of which are the atoms lying beneath
that co-atom. In the example depicted in figure 1, the lattice complex is a triangle made up
of three line segments, with a hole in the middle.

In the same section 4 we will define a map Γ which transforms a simplicial complex into
its incidence relationship. The incidence relationship is a lattice, called the incidence lattice:
The nodes of this lattice are the simplices of the simplicial complex, ordered by inclusion.
Thus in the lower right of figure 1 the atoms correspond to the vertices of the simplicial
complex, the three co-atoms correspond to the filled triangles and the nodes in between to
the eight line segments which form the boundaries of the triangles.

The next step is to compare the two lattices and the two simplicial complexes, respectively.
The map ζ to be defined in section 5 between the concept lattice and the incidence lattice
will turn out to be an order embedding which preserves co-atoms and meets (images of the
lattice elements are marked in black in the incidence lattice).

In section 6 we will deduce that the lattice complex is a retract of the initial simplicial
complex. In other words, the dashed line in figure 1 corresponds to a strong deformation
retraction, which means that the two simplicial complexes have the same homotopy type, i.e.
share many important topological properties.

All that machinery is developed to compute the homotopy type of the initial (upper)
simplicial complex from the initial lattice. This is now possible by applying ∆ to that lattice.
The image has precisely the homotopy type we were looking for. Note that ∆ depends only
on the isomorphism class of the concept lattice, not on the labelling.

Before implementing this agenda, we briefly explain why we have excluded the situation of
an attribute holding for all objects. Adding such an attribute to a given context K would add
a simplex containing all vertices in SK, which will in general completely change the topology
of SK. On the other hand adding such an attribute does not change the structure of the
concept lattice BK. If we want to reconstruct the topology of SK from BK we have to keep
track of this piece of information, e.g. by labelling the lattice. Since this leads to lengthy case
distinctions and since our definition of context poses no serious restriction we have decided to
exclude this situation alltogether. We exclude the situation of an object having all attributes
for similar reasons.

4 Associating a lattice to a simplicial complex, and vice versa

In this section we establish the vertical maps depicted in figure 1, namely the map ∆ asso-
ciating a simplicial complex to a lattice and the map Γ associating a lattice to a simplicial
complex.

Let us start with Γ, which is easier to define. The image of Γ should be a lattice. We use
the usual definition from order theory, i.e. that a lattice is a partially ordered set in which any
pair of elements has a join and a meet. The nodes of the lattice can be arbitrary sets, which
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means that unlike when talking about concept lattices we don’t imagine them to be formal
concepts associated to a certain context. Now assume that we are given a simplicial complex
S. What could be the nodes of the associated lattice Γ(S)? A good candidate for the nodes
are the simplices of S: Since some simplices are included in others (e.g. an edge of a triangle
is a subsimplex of it) they already come with a natural ordering. It is straightforward to check
that this ordering becomes a lattice if we add a biggest element for the ordering, which we
denote by 1: The meet of two simplices is just their intersection (possibly the empty simplex)
— for two edges of a triangle we would e.g. obtain the corner of the triangle in which they
intersect. The join of two simplices is the union of their two vertex sets if this is a simplex and
1 otherwise — thus the join of two sides of a filled triangle is the simplex which has all three
corners as vertices, which is just the triangle itself. We cast this reasoning into the following
definition. A full example can be found in figure 1 (right part).

Definition 4.1. Let S be a simplicial complex. Its associated incidence lattice is defined to
be the set S ∪ {1} ordered by inclusion, where we have added 1 as greatest element. This
lattice is denoted by Γ(S).

The map ∆ from a lattice to a simplicial complex is less intuitive. The ultimate jus-
tification of its definition is that it makes the dashed line in figure 1 a strong deformation
retraction. Nevertheless we can give it some intuitive appeal: Under the map Γ just defined
the vertices of a simplicial complex S became the atoms of the lattice Γ(S). Thus going
the other way, i.e. starting from a lattice L, it makes sense to define the vertices of the
simplicial complex ∆(L) as the atoms of L. The only other choice left is to decide when a
set of vertices forms a simplex of ∆(L). Clearly this is the case if and only if they belong to
some common maximal simplex. Now we saw that under Γ the maximal simplices became
the co-atoms. Thus it makes sense to define that a set of vertices forms a simplex in ∆(L) if
the corresponding atoms in L lie under a common co-atom, or equivalently if they have an
upper bound different from 1.

We define ∆ not only for lattices but for a larger class of orders. This does not introduce
additional difficulties but facilitates the proofs to come.

Definition 4.2. A partially ordered set (poset) is said to be bounded if it has a greatest and
a least element. These are denoted by 1 and 0 respectively. Upper neighbours of 0 are called
atoms and lower neighbours of 1 are called co-atoms. In this paper we assume that all posets
are finite.

We can now give the definition motivated above. An example can be seen in figure 1 (left
part).

Definition 4.3. Suppose that L is a bounded poset. Its associated simplicial complex is
defined to be the set of those sets of atoms that have an upper bound different from 1. The
resulting simplicial complex is denoted by ∆(L).

In less technical terms the definition states that the atoms of the poset which are different
from 1 become the vertices and that a simplex is a set of atoms which lie below a common
co-atom. In particular the co-atoms themselves correspond to the maximal simplices.

If we take the concept lattice from figure 1 for L we can observe that (Γ◦∆)(L) is different
from L: The simplicial complex ∆(L) is the triangle in the lower left of the figure. The nodes
of the lattice (Γ ◦∆)(L) are the vertices and the edges of this triangle, plus a minimal and a
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maximal element. Thus the lattice (Γ ◦∆)(L) has eight nodes, while the lattice L had nine.
Contrary to this observation the converse composition is the identity, modulo the renaming
of vertices. This fact will be needed in future proofs.

Proposition 4.4. Let S be a simplicial complex. Then (∆ ◦ Γ)(S) is equal to S, modulo the
renaming of vertices.

Proof. Vertices of (∆ ◦ Γ)(S) correspond to atoms of Γ(S) that are different from 1. These
in turn correspond to minimal non-empty simplices of S, that is to vertices of S. A set of
vertices constitutes a simplex in (∆ ◦Γ)(S) if and only if the join of the corresponding atoms
in Γ(S) is different from 1. This is the case if and only if the corresponding vertices constitute
a simplex in S.

As an example one can take S to be the simplicial complex in the upper right of figure 1.
Then Γ(S) is the lattice in the lower right of the figure. The three co-atoms of this lattice,
each of which lies over three different atoms, give three triangles as the maximal simplices of
(∆ ◦ Γ)(S). One sees that the two right co-atoms of the lattice Γ(S) lie over two common
atoms, while the other two pairs of co-atoms only share one atom which is below both of
them. Thus the three triangles of (∆ ◦ Γ)(S) are arranged in the same way as they were
arranged in S.

5 Reconstructing the concept lattice from the simplicial com-
plex

In this section we define and investigate the map ζ beetwen the initial lattice and the incidence
lattice depicted in figure 1. To define ζ : BK → Γ(SK) we have to specify the image of a lattice
element. Consider for example the left co-atom labeled c5 in the left upper lattice of figure 1.
Its extent is the set {g3, g4, g5} of objects. Now this set is also a simplex, namely the lower
triangle of the simplicial complex to the upper right of the figure. As we have seen at the
end of the previous section, that triangle corresponds to the left co-atom of the lattice at the
lower right of the figure. Thus this co-atom must be the image under ζ of the co-atom we
started with. For the general definition recall that both the extent of a formal concept and
a simplex in the simplicial complex correspond to a certain set of objects in the context K.
We can thus give the following definition of ζ. Since not every set of vertices constitutes a
simplex we have to show well-definedness, which is done just after the definition.

Definition 5.1. Let K be a context. We define a map ζ : BK → Γ(SK) by putting

ζ((A,B)) =

{
A if B 6= ∅
1 otherwise

for a formal concept (A,B).

To see that ζ is well-defined, suppose that B is not empty. Let m be some attribute in B.
Since (A,B) is a concept we have B′ = A. In particular (g,m) ∈ I holds for all elements g of
A. This means that A is a simplex of SK, by the very definition of this simplicial complex.
Then A is an element of Γ(SK). Note that it is different from 1.

In the example of figure 1 the image of ζ consists of the black filled nodes. Amongst these
nodes we find the top and the bottom node of the lattice, all co-atoms and any meet of two
nodes which are marked black. The following proposition shows that this is always the case.

9



Proposition 5.2. Let K be a context. The map ζ : BK → Γ(SK) is an order embedding and
it preserves meets. One has ζ(0) = 0 and ζ(1) = 1, and the restriction of ζ to co-atoms of
BK is a bijection between the co-atoms of the two lattices.

Proof. To see that ζ is an order embedding recall that concepts are ordered corresponding to
set-theoretic inclusion of their extents, i.e. their first components. The concept (G, ∅) is the
greatest element of BK. In parallel, elements of Γ(SK) are ordered by inclusion and 1 is the
greatest element.

Taking the meet of two concepts corresponds to taking the intersection of their extents, as
is shown in [GW99, p. 20]. In parallel, meets in Γ(SK) correspond to intersections of simplices.
If B and D are not empty we thus have

ζ((A,B) ∧ (C,D)) = ζ((A ∩ C, (A ∩ C)′)) = A ∩ C =

= A ∧ C = ζ((A,B)) ∧ ζ((C,D)).

Note that we have A′ ⊂ (A∩C)′ because the prime operator is anti-monotone. So (A∩C)′ is
not empty if A′ = B is not. The case where B or D is empty is easy to treat. We have thus
shown that ζ preserves meets.

With our definition of context (∅,M) and (G, ∅) are concepts. This implies ζ(0) = 0 and
ζ(1) = 1.

We show next that each element of Γ(SK) different from 1 has a majorant of the form
ζ((A,B)) with B 6= ∅. Let σ be such an element. By the definition of SK there is an attribute
m such that (g,m) ∈ I holds for all g ∈ σ. In particular we have σ ⊂ {m}′ and m ∈ {m}′′,
so that ζ(({m}′, {m}′′)) is the desired majorant. Since ζ is an order embedding it follows
that co-atoms of BK can only be mapped to co-atoms of Γ(SK), and also that each co-atom
of Γ(SK) is the image of some co-atom of BK.

One of the goals described in the introduction was to find out as much as possible about the
concept lattice BK if we suppose that we are only given the simplicial complex SK belonging
to the same context K. We now have a way to do that: Starting from SK we compute Γ(SK).
Now suppose that we would like to know the number of co-atoms of BK. By the proposition
we can simply count the co-atoms of Γ(SK), and the result is what we asked for. To see that
we can do even more, let us again turn to figure 1. Without knowing the left upper lattice the
proposition tells us that all co-atoms of the lower right lattice must be marked black. Then,
again by the proposition, also the second atom from the left, which is the meet of the two
leftmost co-atoms, must be black. In this way we can reconstruct all black nodes, with the
exception of the second atom from the right, which does not arise as a meet of black nodes.

Our main interest in ζ however is that it allows us to establish the dashed arrow of figure 1,
as will be worked out in the next section.

6 Reconstructing the simplicial complex from the concept lat-
tice

This section is devoted to the relationships between the initial simplicial complex built by the
Q-analysis and the lattice complex derived from the concept lattice built by the FCA, that
is, the dashed arrow of figure 1. Our goal is to show that this arrow corresponds to a strong
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deformation retraction. Formally this means that there is a continuous map

r : SK → ∆(BK) ⊂ SK

which is the identity on ∆(BK) and such that we can pass from the identity on SK to r by a
continuous family of maps that are all the identity when restricted to ∆(BK).

The intuition behind this definition is that the simplicial complex at the source of the
arrow can be shrinked to the simplicial complex at the arrow head without “destroying” any
holes. For example, the lower triangle of the simplicial complex at the upper right of figure 1
can be flattened more and more, moving its lower edge towards the base, which finally leaves
only the base itself. We can flatten the two upper triangles of the same simplicial complex
in the same way, which leaves us with a triangle with a hole in the middle — the simplicial
complex to the lower left of figure 1. Note that this latter simplicial complex cannot in turn
be shrinked to a single line, since it has a hole in the middle which obstructs the deformation.

So far simplicial complexes were officially only combinatorial and not geometrical or topo-
logical objects. Retraction can be defined in purely combinatorial terms on abstract simplicial
complex. “Combinatorial retraction” and “geometric retraction” of simplicial complex coin-
cides and the latter is definitively more intuitive. So, from now on, we associate to an abstract
simplicial complex a “geometric realization” in some Euclidian space RN . We sketch the pro-
cedure rather briefly and refer to [Mun84, p. 2–16] for the details. A first step is to define the
new notion of “geometric simplicial complex”: A geometric simplex in RN is a n-dimensional
convex hull of a set of n+ 1 linearly independent points, its vertices. Examples are a triangle,
which is a two-dimensional object with three vertices, or a tetrahedron, a three-dimensional
body with four vertices (i.e. a pyramid with triangular base). A geometric simplicial complex
is a union of geometric simplices living in the same RN , where two simplices are only allowed
to intersect in a common face. For an example we again refer to the upper right part of
figure 1, which shows three triangles glued at some of their common faces (a vertex does also
count as a face). For finite simplicial complexes the topology is just the subspace topology
inherited from RN .

Now that we have defined geometric simplicial complexes we have to connect them to the
abstract simplicial complexes we have considered so far. To do so we say that a geometric
simplicial complex is the geometric realization of an abstract simplicial complex if we can
bijectively map their vertex sets to each other such that membership to a common simplex
is preserved. Thus any filled triangle is a geometric realization of the abstract simplicial
complex given by saying that we have three vertices all belonging to one common simplex.
As shown in [Mun84, p. 15] any abstract simplicial complex admits a geometric realization.
The latter is unique up to linear isomorphism, thus in particular up to homeomorphism, which
means that for our purpose it does not matter which geometric realization of a given abstract
simplicial complex we use. Topological properties of and relations between abstract simplicial
complexes will be interpreted as holding between some (and thus any) geometric realizations.
Note that from this point of view it is the same to say that an abstract simplicial complex is a
deformation retract of another simplicial complex and to say that the first one is isomorphic
to a deformation retract of the second. In the proofs in which we have to consider a specific
geometric realization of a simplicial complex, this will always be the following: Assume that
the given abstract simplicial complex has N + 1 vertices. Then identify one vertex with the
origin and the other vertices with the heads of the unit vectors of RN . Add those geometric
simplices that correspond to simplices of the combinatorial simplicial complex.
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Let us recall the goal of the whole undertaking: We have a formal context K, its concept
lattice BK and its simplicial complex SK. From BK we can compute a second simplicial complex
∆(BK). Our goal is to show that this latter simplicial complex is a strong deformation retract
of SK, in more informal terms that SK can be continuously deformed into ∆(BK).

The idea of the proof is to perform the deformation through a number of intermediary
easier reduction steps. To keep track of the changes performed in each step we will at the same
time transform the lattice Γ(SK) (belonging to SK) into the lattice BK (belonging to ∆(BK)).
Thus the deformation of the simplicial complex SK into the simplicial complex ∆(BK) will be
performed simultaneously with a simplification of lattices to be defined in the sequel, starting
with the lattice Γ(SK) and ending in the lattice BK. For a first glimpse of this process we
refer to figure 2. The reduction relation on lattices (or rather bounded posets, since the
intermediary objects do not need to be lattices) will have the following properties:

(i) We can reduce the lattice Γ(SK) to the lattice BK via a finite number of intermediary
bounded posets.

(ii) If L reduces to L′ in one reduction step then the simplicial complex ∆(L′) is a strong
deformation retract of the simplicial complex ∆(L).

By consecutively applying a finite number of strong deformation retractions one obtains again
a strong deformation retraction. Thus from (i) and (ii) we get a strong deformation retraction
from ∆(Γ(SK)) to ∆(BK). The desired theorem follows since we have ∆(Γ(SK)) = SK by
proposition 4.4.

We start to elaborate the proof just sketched by defining the described reduction relation
between posets. The term “reflexive and transitive closure” to be found in the definition
means that we also allow multiple (including zero) reduction steps performed in a row.

Definition 6.1. Let L be a poset and K a subset of L. Define one-step reduction →K of L
with respect to K by the clause

L→K L\{x} if x is a maximal element of L\K.

Let →∗K be the reflexive and transitive closure of →K . If L→∗K L′ holds we say that L′ is a
K-reduct of L.

To see an example consider the second lattice from the top in the left column of figure 2.
For K take the set of black filled nodes. Then the atom labelled g5 is a maximal node which
is not in K, so removing this node is a one-step reduction of the lattice. The result of the
reduction step is the lattice below, i.e. the third lattice from the top in the same figure. As
for motivation, we will apply the definition always with a set K which is closed under meets.
Then maximality of x implies that x can have at most one upper neighbour, which will turn
out to be important in the proofs to come. Since we are only dealing with finite posets the
following lemma is easy to show: As long as there is a node of the lattice which is not in K
there is a maximal node with this property, so we can remove it until eventually all remaining
nodes are in K.

Lemma 6.2. We have L→∗K K for any poset L and any subset K of L.

Recall the function ζ : BK → Γ(SK) from the precedent section. The image ζ(BK) of BK
under that function is a subset of the lattice Γ(SK). If we take L = Γ(SK) and K = ζ(BK)
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in the precedent lemma, then we obtain Γ(SK) →∗ζ(BK) ζ(BK). Recall also that ζ is an order
embedding, thus an order isomorphism onto its image. This gives the following corollary that
corresponds to point (i) above.

Corollary 6.3. The lattice BK is a ζ(BK)-reduct of Γ(SK), up to the renaming of nodes.

It remains to elaborate point (ii) above: We have to show that if L reduces to L′ in
one reduction step then the simplicial complex ∆(L′) is a strong deformation retract of the
simplicial complex ∆(L). Let us first look at an example: For L and L′ take the third and
fourth lattice from the top in the left column of figure 2. The subset K ⊂ L consists of
the nodes marked black. The reduction step from L to L′ consists in removing the atom g2,
which is a maximal node not in K. How does this reduction affect the simplicial complexes
belonging to the two lattices (right column of the figure)? Removing the atom g2 from the
lattice L means removing the vertex g2 from the simplicial complex ∆(L). We have to show
that this results in a strong deformation retraction. Now the atom g2 has a special role in the
lattice L: There is a second atom, namely g1, which lies below any co-atom above g2 (these
co-atoms are m1 and m2). In terms of simplicial complexes this means that any maximal
simplex in ∆(L) which contains g2 does also contain g1, and thus contains the whole edge
between g2 and g1. Consequently removing g2 can be achieved by a projection parallel to
that edge, i.e. by collapsing the edge between g2 and g1 to the single point g1. The fact that
every maximal simplex containing g2 contains the whole edge means that in doing so we do
not “destroy” any holes of the simplicial complex. We now give the general proof.

Lemma 6.4. Let L be a bounded poset and K a subset of L that contains 0,1 and all co-
atoms. Suppose also that any two elements of K have a meet that is itself an element of K.
Then L→K L′ implies that ∆(L′) is a strong deformation retract of ∆(L).

Proof. Let x be the maximal element of L\K such that we have L′ = L\{x}. Suppose first
that x is not an atom of L. Then ∆(L′) is equal to ∆(L): Any set of atoms that is bounded in
L by an element different from 1 is bounded by a co-atom, and since x cannot be a co-atom
this bound is still present in L′. Now suppose that x is an atom. Then x has exactly one
upper neighbour in L: For suppose that it has two. By maximality of x they would both have
to be in K. Since K is closed under meets this implies that x is itself in K, contrary to what
we have assumed. Write y for the only upper neighbour of x. If x is the only atom below y
then y will replace x as an atom in L′ and ∆(L′) will be equal to ∆(L), modulo renaming
the vertex x into y. Now consider the case where z is an atom below y that is different from
x. Consider a geometric realization of ∆(L) in RN as described above: We choose z to be
the origin, x the first unit vector and all other vertices points in the plane spanned by the
remaining unit vectors. We will refer to the latter plane as the base plane. The passage from
∆(L) to ∆(L′) consists in deleting the vertex x and all simplices containing it. Thus in the
geometric realization ∆(L′) is the part of ∆(L) which lies in the base plane.

Now x is not a co-atom and thus y is not equal to 1. Recall that y is the only upper
neighbour of x and that z is below y. Thus any maximal simplex containing x must also
contain z. Then the projection down to the base plane parallel to the first unit vector is a
strong deformation retraction of ∆(L) onto ∆(L′).

Now to obtain the desired theorem it suffices to put the pieces together:

Theorem 6.5. Let K be a context, BK its concept lattice and SK its simplicial complex. Then
∆(BK) is a strong deformation retract of SK.

13



m3 m1 m2

g5 g3 g4 g1 g2

g2

g1

g3 g4

g5

m2m1

m3

m3 m1 m2

g5 g3 g4 g1 g2

g2

g1

g3 g4

g5

m2m1

m3

m3 m1 m2

g3 g4 g1 g2

g2

g1

g3 g4
m3

m2m1

m3 m1 m2

g3 g4 g1

g1

g3 g4

m2m1

m3

Figure 2: The proof of theorem 6.5 illustrated by the example from figure 1. Left from top
to bottom: Reduction of the lattice Γ(SK) to the concept lattice BK. The latter lattice can
be embedded into the first via the map ζ depicted in figure 1. The nodes in the image of this
map are filled black. One passes from the uppermost to the lowermost lattice by removing
maximal non-filled nodes, one at a time. — Thus in fact there should be seven steps between
the first and the second lattice. Right: Each simplicial complex is the image of the lattice left
to it under the map ∆. The labels serve to retrace this association: Atoms and co-atoms of the
lattices become vertices and maximal simplices of the simplicial complexes respectively. The
uppermost simplicial complex is (∆ ◦ Γ)(SK) = SK, and the lowermost is ∆(BK). As proved
in the text for the general case, each simplicial complex is a strong deformation retract of the
simplicial complex above it. An arrow indicates a retraction that will occur in the next step.
The retraction should be imagined as a projection parallel to the arrow.
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Proof. First note the following: If K satisfies the conditions of the precedent lemma with
respect to L and if we have L →K L′ then K satisfies the same conditions with respect to
L′. As a consequence the lemma holds with →∗K as well as with →K . Proposition 5.2 tells us
that ζ(BK) ⊂ Γ(SK) satisfies the conditions of the precedent lemma. Together with corollary
6.3 this implies that ∆(BK) is a strong deformation retract of ∆(Γ(SK)). The theorem follows
because ∆(Γ(SK)) is equal to SK by proposition 4.4.

That ∆(BK) is a strong deformation retract of SK means in particular that the two simpli-
cial complexes are homotopy equivalent, i.e. agree on many important topological properties.
This gives a decidedly positive answer to the question posed in section 2: Is it possible to read
off interesting information about the simplicial complex SK from (the isomorphism class of)
the concept lattice BK alone? We can now say that yes, in a very precise sense this is the case:
All homotopy invariant properties of SK can be determined from BK alone. To do so, simply
compute the lattice complex ∆(BK) and determine which properties this simplicial complex
has. As we have just seen, the homotopy invariant properties for this simplicial complex are
equal to those one would obtain from SK itself. Thus for example the concept lattice includes
enough information to determine whether the simplicial complex is connected and whether
all loops can be retracted to a single point. It also allows to compute the homology groups
and in particular the Betti numbers, which constitute a strong invariant of topological spaces
and are algorithmically computable in the case of finite simplicial complexes.

7 Formal concept analysis and simplicial complexes in music

In this section and the next, we will give an application of theorem 6.5 in the context of
mathematical music theory.

We look at sequences of pitches that have some internal symmetries, called Messiaen’s
Modes of Limited Transpositions (MLT). Such sequences have been characterized using group-
theoretic notions. The idea to analyze musical objects using the tools of group theory is now
largely developed in mathematical music theory but some natural musical objects cannot be
easily modeled in this way. This shortcoming leads to generalizations relying on alternative
representations: topology and lattice related structures make possible the formalization of
musical objects with less symmetries. In the following, we give a topological characterization
of the maximal MLT. This topological characterization follows the work started in [Cat11,
BGS11] and contributes to the task of “lifting” the results known in the group-theoretic
setting to the more general topological framework. In establishing the characterization of
maximal MLT, the theorem 6.5 is instrumental because it simplifies some computations.

The rest of this section introduces the context of mathematical music theory, the group
theoretic approach and the emerging topological approach. Then, paragraph 7.2 presents
the notion of MLT through some elementary examples. Section 8 is devoted to the study
of the topological representation of MLT with simplicial complexes, and their topological
characterization.

7.1 Mathematical music theory and the study of sequences of pitches

The relationships between mathematics and music are an age old story and go back at least to
the Pythagoreans who have investigated the expression of musical scales in terms of numerical
ratios. Current research in this field still focuses on the uses of mathematical structures to
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analyze, characterize and reconstruct musical objects. Musical objects have often a highly
combinatorial structure and their mathematical formalization allows for their enumeration
and classification. In this context, the study of a sequence of pitches3 is of special interest
because numerous musical objects lead naturally to a sequence of pitches: chord, scale, mode,
melody, etc. In a first approach, two main paths have been followed for the classification of
sequence of pitches, relying on group-theoretic or topological tools used in their modeling.

Inspired by the work of Hugo Riemann [Reh03], music theorists began in the 1980s to
use techniques from group theory to analyze sequences of pitches. David Lewin [Lew87]
introduced generalized interval systems to study the properties of a set of pitches under
several musical transformations seen as (simply) transitive group actions. This idea abstracts
many formalizations of musical objects and leads naturally to classifications relying on group
equivalences and group classifications. And indeed, the problem of the enumeration and
classification of chords having different kinds of inner symmetries and with respect to different
group actions has been a major research area in mathematical music theory, from Halsey and
Hewitt’s inaugural paper [HH78] until the more recent contributions by music theorists from
the computational musicological community, such as Nick Collins [Col12]. Contributions
in this area include David Reiner’s enumerations of set and row classes [Rei85] and Harald
Fripertinger’s investigations of chords and motifs [FV92], mosaics [Fri99b] and canons [Fri99a].

Although algebraic in nature, the group structures underlying these approaches may re-
ceive a geometric interpretation. More recently, Guerino Mazzola [MMH90, M+02], Dmitri
Tymoczko [Tym06] and others have developed the geometric approach for itself and identified
many geometric spaces that arise naturally in music and such that musical transformations
between the relevant objects cannot be easily modeled by a group action. Providing a compre-
hensive account of these developments is clearly out of the scope of this article. It is however
interesting to briefly discuss some relevant sources on the application of formal concept anal-
ysis and simplicial complexes in music theory.

One of the first uses of simplicial complexes in music theory was developed by G. Mazzola
with the notion of “global compositions”. A global composition is a particular atlas of local
charts, a chart referring to some relevant musical notions, which are glued together and to
which one can associate a topological structure, the nerve, as a simplicial complex. One of the
motivating examples is the Möbius strip which is associated to the covering of the diatonic
space by chords built on its seven degrees. In Mazzola’s original approach as introduced
in [Maz85] and later developed in [MMH90], the charts of a given atlas are represented as 0-
simplices and the n-dimensional simplices correspond to non-empty n-fold intersections of the
elementary charts. There are alternative ways of associating simplicial complexes to music, by
taking the notes as 0-simplices and chords with n notes as n-simplices, as suggested by Louis
Bigo et. al [BGS11, BAG+13] as well as Michael Catanzaro [Cat11]. The result presented
here takes place in this framework.

These approaches are rooted in algebraic topology and emphasize the use of combinatorial
notions. Metric properties can be included, e.g. to take into account timing information. This
path has been proposed by Andreas Nestke [Nes04] to study the space of musical melodies
taking into account the onset of each note. Melodies are studied as finite ordered sets of
rational points in the affine plane, each point describing the pitch but also the duration of

3It is customary to consider equivalent pitches that are a whole number of octaves apart. Such equivalence
classes are also called chromas or pitch classes. Considering 12 notes in an octave, pitch classes are typically
represented as numbers in Z12, but for the formalization we consider Zn for any n.
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each note. The author proposes then to make use of homology as a general tool to classify
the simplicial complex. This is in contrast with the characterization of MLT we develop in
the next section, where the classification is based on homotopy.

Considering the recurrent quest of classification tools in mathematical music theory, it is
surprising that FCA is not more significant in the field. However, the two domains have a
long shared history. Although there is no mention of music in Wille’s inaugural article on the
reconstruction of lattice theory [Wil82], one may reasonably argue that music was a major
inspirational field for applying formal concept analysis to concrete situations. In fact, the first
tables of musical objects and attributes appeared just few years after this article and they are
accompanied by their concept lattice representations which show the way in which harmonies
are organized within the traditional diatonic system corresponding to the white-keys of the
piano keyboard [Wil85]. This modeling is clearly providing the major theoretical framework
for the successive attempt at establishing a functorial morphology of musical chords by the
members of the Research Group KIT-MaMuTh in Berlin. Actually, the notion of morphology
of musical chords, as introduced in [NB04], is based on the notion of Harmonic Morphemes
which are conceived as formal concepts consisting of a collection of affine transformations
(also called the tone perspectives) and a set of chords. The set of tonal perspectives and
chords play respectively the role of intension and extension of harmonic morphemes whose
harmonic (intension and extension) topology is a special case, as the authors point out, of
the much more general situation of functorial local compositions and their endomorphisms,
as introduced by Guerino Mazzola in his topos-theoretical approach [M+02, chap. 24].

The issue of associating concept lattices with paradigmatic approaches in the classification
of musical structures has been recently addressed by [SA13]. In this article FCA is applied
to the algebraic enumeration, classification and representation of subsets of the Tone System
according to an equivalence relation obtained either via an action of a given finite group on
the collection of subsets of it or via an identification of their intervallic content (such as Allen
Forte’s interval vector [For73] or David Lewin’s interval function [Lew77]).

7.2 Messiaen’s modes of limited transpositions

In this paragraph we present Olivier Messiaen’s modes of limited transpositions (MLT).
The topological classification of MLT, which offers a nice example of interplay between concept
lattices and associated simplicial complex representations, is addressed in the next section.

Studied by the French composer Olivier Messiaen and published in his book La technique
de mon langage musical, an MLT is a subset of the 12 notes that has strictly less than 12
different transpositions. In other words, an MLT is a subset of notes such that there exists a
non trivial transposition that leaves the subset invariant.

MLT are a well-known historical example of musical structures whose underlying trans-
positional symmetry property can be easily described in terms of group actions and algebraic
combinatorics [Rea97, Bro01]. Musically speaking, MLT are equivalent to chords whose in-
tervallic structure, i.e. whose sequence of intervals between two successive elements of the
chord, is redundant. This means that the intervallic structure has an inner periodicity which
explains the fact that they can musically be transposed only a limited number of times. The
most elementary example of MLT is provided by chords or musical scales corresponding to
regular polygons inscribed in a circle, such as the diminished tetrachord represented in Fig. 3.
In this case, the intervallic structure only contains one interval, which is repeated a number
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Figure 3: An example of MLT corresponding to a regular polygon inscribed in a circle. The
associated musical object has an intervallic structure which is just the repetition of a given
interval a number of times equal to the number of notes, i.e. (3 3 3 3). Note that this
MLT admits three possible transpositions, meaning that the associated polygon can only
be rotated three times (including the identity transformation) before superposing to itself.
(Diagrams in Fig. 3, 4 and 5 are generated using the generalized interval toolbox available in
OpenMusic [BAA11].)
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of times equal to the number of notes. From a mathematical point of view, this first case cor-
responds to the subgroups of Z12. In the more general case, MLT can be described as subsets
of the cyclic group of order n which are not necessarily subgroups but are invariant up to an
element of this group which is different from the identity. This second case is represented in
Fig. 4 and corresponds to the so-called octatonic mode alternating semi-tones and whole-tone
steps.

We call a harmonic form a maximal MLT with m transpositions if none of the harmonies
representing it is strictly contained in another mode with m transpositions. The diminished
tetrachord in Fig. 3 is not maximal since one of its three harmonies is strictly contained in
the octotonic mode. On the contrary, this latter is a maximal MLT, since there is no MLT
with three transpositions which strictly includes the octotonic mode. The interested reader
can easily check that among the MLT which are associated to subgroups of Z12, the only one
which is maximal is the whole-tone scale with intervallic structure equal to (2 2 2 2 2 2 2 2).
The inclusion lattice of the family of 16 MLT (including the whole space Z12) is shown in
Fig. 5.

8 Simplicial complexes of modes of limited transposition

In order to understand this group-theoretical property, let us introduce a small amount of
musical terminology we take from [SS10]. The basic entity we are working with is the group
Zn, which we call the n-tone equal tempered chroma system, or chroma system for short, in
this context. The most important example in music theory is n = 12, corresponding to the
twelve semi-tones of the chromatic scale. Elements of Zn are called chromas and subsets of
Zn are called harmonies. Now the group Zn appears in a second role, namely as acting on
the set P(Zn) of harmonies by element-wise addition modulo n, that is by the rule

(k,H) 7→ H + k = {m+ k mod n |m ∈ H}

for H ∈ P(Zn) and k ∈ Zn. The element k ∈ Zn is called an interval when it appears in
this role. For fixed k the mapping H 7→ H + k is called a transposition by k. The orbit of a
harmony under this group action is called a harmonic form. A harmony which is an element
of a harmonic form is said to represent the latter. Using this terminology it is easy to define
modes of limited transposition.

Definition 8.1. A harmonic form is said to have m transpositions if there are exactly m
different harmonies that represent it. A mode of limited transposition in Zn, or mode for
short, is a harmonic form that has more than one but less than n transpositions.

One can easily establish a correspondence between modes with m transpositions and
harmonic forms in Zm: If Zn allows for a mode with m transpositions then, by the orbit–
stabilizer theorem, m devides n. In this case the natural projection π : Z → Zm descends
to a group homomorphism π : Zn → Zm. Then π−1 : P(Zm) → P(Zn) is a mapping from
harmonies in Zm to harmonies in Zn. One can view π−1 as acting on harmonic forms by
element-wise application

H 7→ {π−1(H) |H ∈ H}.

The following lemma shows how this application connects modes of limited transposition with
m transpositions and harmonies in Zm.
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Figure 4: A MLT whose intervallic structure is equal to (1 2 1 2 1 2 1 2), i.e. it is four times
the repetition of the sub-pattern (1 2). Note that the sum of the elements of the sub-pattern
is equal to 3, meaning that the associated musical object has three possible transpositions,
as in the case of Fig. 3

Figure 5: There are 16 MLT in Z12, including the chromatic scale which corresponds to the
entire support space Z12. This inclusion lattice shows the five maximal MLT, each mode
being associated to a number m of transpositions, where m is a divisor of 12.

20



Lemma 8.2. If H is a harmonic form in Zm then π−1(H) is a harmonic form with |H|
transpositions in Zn. Any harmonic form in Zn such that its number of transpositions divides
m arises in this way.

Proof. For h ∈ Zn we have the equivalence π(h) ∈ H + π(k) ⇔ π(h − k) ∈ H, which gives
the equality

π−1(H + π(k)) = π−1(H) + k

for any harmony H in Zm and any k ∈ Zn. The elements of the harmonic form H are of the
form H + k for some common harmony H representing H and for k = 0, . . . ,m− 1. Then the
elements of π−1(H) are precisely the harmonies π−1(H) + k for k = 0, . . . , n− 1, which shows
that π−1(H) is a harmonic form. Since π : Zn → Zm is surjective, the mapping π−1 between
harmonies is injective, that is we have |π−1(H)| = |H|. Suppose on the other hand that H is
a harmonic form in Zn such that its number of transpositions divides m. Then H +m = H
holds for any harmony representing it. One easily deduces H = π−1(π(H)), where π(H) is
to be understood as element-wise application. This gives H = π−1(π(H)). Finally π(H) is a
harmonic form in Zm since we have π(H + k) = π(H) + π(k) for any harmony H in Zn and
any k ∈ Zn.

In particular π−1(H) is a mode of limited transposition if and only if |H| is bigger than 1
and smaller than n. If we have m < n then this is true if H is neither {∅} nor {Zm}.

We use the theoretic results obtained so far to investigate simplicial complexes that are
associated to modes of limited transposition in a similar way. But first of all let’s see how to
associate a concept lattice to the family of Messiaen’s limited transposition modes.

A harmonic form can be represented by a formal context in the following way.

Definition 8.3. Let H be a harmonic form in Zn. The associated formal context is given by
KH = (Zn,H, I), where (h,H) ∈ I is by definition equivalent to h ∈ H.

To such a context we can associate a concept lattice and a simplicial complex, as is done
in figure 6 for the case of a mode with three transpositions in the chroma system Z6. We want
to investigate these objects for harmonic forms that are modes of limited transposition. It
turns out that the concept lattice has a rather simple structure while the simplicial complex
is hard to visualise already in our small example. We can however determine its homotopy
type using the theoretic results of the previous sections.

To make this precise reconsider our above discussion of the projection π : Zn → Zm. The
following proposition expresses the fact that this mapping preserves the concept lattice, as
well as most topological properties of the simplicial complex associated to a harmonic form.

Proposition 8.4. Let H be a harmonic form in Zm. The concept lattices BKH and BKπ−1(H)

are equal. The simplicial complexes SKH and SKπ−1(H)
are homotopy equivalent.

Proof. Passing from Kπ−1(H) to KH consists in deleting all but the first m objects of the
context. Since H + m = H holds for any harmony H representing π−1(H) we only delete
objects that have a “double” which has the same attributes. In the language of formal concept
analysis this is a special case of deleting a reducible object (see [GW99]). Considering concepts
this object is accordingly deleted from all extents. However, as the double is still present, the
intents of the concepts do not change. Thus the structure of the concept lattice is preserved,
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Figure 6: The context associated to a mode with three transpositions in the chroma system Z6,
its concept lattice and its simplicial complex. The latter consists of three tetrahedra, which
should be embedded into some RN such that vertices with the same label are identified. If
we consider the first three lines of the context only, then the concept lattice stays the same.
As simplicial complex we get the boundary of a triangle, thus a space isomorphic to the circle
S1. As shown in the text the latter is homotopy equivalent to the full simplicial complex
depicted in the figure.

i.e. we have BKH = BKπ−1(H)
. The statement concerning the simplicial complexes follows by

applying theorem 6.5: SKH is homotopy equivalent to ∆(BKH). This is equal to ∆(Bπ−1(H))
which in turn is homotopy equivalent to Sπ−1(H).

Note that we could have shown a slightly stronger result by directly applying the methods
used in the proof of lemma 6.4: Omitting objects that have a double amounts to performing
a strong deformation retraction in the corresponding simplicial complexes. Thus in fact
SKπ−1(H)

is even a strong deformation retract of SKH .

With this result at hand it is particularly easy to compute the homotopy type of the
simplicial complex associated to a maximal mode of limited transposition. We call a harmonic
form a maximal mode with m transpositions if none of the harmonies representing it is strictly
contained in another mode with m transpositions.

Corollary 8.5. Let H be a maximal mode with m transpositions. Then its associated sim-
plicial complex SKH is homotopy equivalent to the sphere Sm−2.

Proof. By lemma 8.2 there is a harmonic form H′ in Zm which satisfies H = π−1(H′). Since
H is a maximal mode with m transpositions the harmonic form H′ is represented by maximal
non-trivial harmonies in Zm. In other words the harmonies representing it are precisely the
harmonies which contain all but one chroma. Thus the simplicial complex associated to the
context KH′ is the boundary of a (m − 1)–simplex, which is homeomorphic to the sphere
Sm−2. The result follows by the precedent proposition.

9 Conclusions and further work

On the theoretic side we wanted to establish a connection between two approaches to the
analysis of a binary relation: by formal concept analysis and via simplicial complexes. As
a foundation for such a comparison we have defined an association between lattices and
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simplicial complexes. On this basis we have shown that the concept lattice arising from
formal concept analysis contains enough information to reconstruct any homotopy invariant
property of the simplicial complex corresponding to the same context. Examples for such
properties are connectedness, homotopy groups, homology groups and Betti numbers. While
the concept lattice contains information about all these topological properties, they may not
be easy to perceive when looking at the lattice alone. The use of simplicial complexes can
thus be seen as a factual extension of the methods of formal concept analysis, without that
it would transcend them in principle. Some properties of the simplicial complex, such as
dimension, cannot be reconstructed from the form of the concept lattice. Depending on the
application in question they may constitute a relevant additional point of information.

The theoretic result can be used in a number of different ways, ranging from general
proofs to concrete applications: In the proof of proposition 8.4 we have used the fact that
certain modifications of a context leave the concept lattice unchanged to show that they do
not change the homotopy type of the simplicial complex either. In a concrete application
topological properties of the simplicial complex, such as the presence of several connected
components, may suggest to split the data in a certain way. The concept lattices associated
to the different components may well be more intelligible than the lattice built from the whole
context.

There is much work to be done on the theoretic side: Firstly one might want to explore
in more detail which properties of the concept lattice can be recovered from the simplicial
complex. In addition, alternative representations can be built by duality (e.g. by exchanging
the role of objects and attributes). The systematic study of the relationships between these
representations remains to be done. Secondly it will be important to see how decomposition
methods of the concept lattice on the one and of simplicial complexes on the other hand
behave with respect to our comparison. Decomposition methods are an important tool in
formal concept analysis to produce concept lattices that are small enough to be instructive.
In some applications concept lattices are very suitable to represent the global structure of the
data while local symmetries are well captured by simplicial complexes. In order to develop
decomposition techniques, which provide a link between the local and the global, it thus seems
promising to take both viewpoints into account. As a concrete starting point we would like to
study the connection between simplicial complexes and concept lattice orbifolds, a technique
to “fold” concept lattices using symmetries of the context, which has been introduced by
Daniel Borchmann and Bernhard Ganter [BG09].

As for applications to music theory we have seen how the combination of formal concept
analysis and simplicial complexes can be used for a topological investigation of some highly
symmetrical musical structures, such as Messiaen’s modes of limited transposition. In the
long term it remains to inquire on the demand and feasibility of a comprehensive indexing of
harmonies based on formal concept analysis and simplicial complexes.
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