Skip to main content
Log in

Probabilistic knowledge representation using the principle of maximum entropy and Gröbner basis theory

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

An often used methodology for reasoning with probabilistic conditional knowledge bases is provided by the principle of maximum entropy (so-called MaxEnt principle) that realises an idea of least amount of assumed information and thus of being as unbiased as possible. In this paper we exploit the fact that MaxEnt distributions can be computed by solving nonlinear equation systems that reflect the conditional logical structure of these distributions. We apply the theory of Gröbner bases that is well known from computational algebra to the polynomial system which is associated with a MaxEnt distribution, in order to obtain results for reasoning with maximum entropy. We develop a three-phase compilation scheme extracting from a knowledge base consisting of probabilistic conditionals the information which is crucial for MaxEnt reasoning and transforming it to a Gröbner basis. Based on this transformation, a necessary condition for knowledge bases to be consistent is derived. Furthermore, approaches to answering MaxEnt queries are presented by demonstrating how inferring the MaxEnt probability of a single conditional from a given knowledge base is possible. Finally, we discuss computational methods to establish general MaxEnt inference rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochmann, A.: A Logical Theory of Nonmonotonic Inference and Belief Change. Springer (2001)

  2. Buchberger, B.: An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006)

    Article  MATH  Google Scholar 

  3. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer (2007)

  4. Dukkipati, A.: Embedding maximum entropy models in algebraic varieties by Gröbner bases methods. In: Proceedings of the International Symposium on Information Theory, ISIT 2009. IEEE, pp. 1904–1908 (2009)

  5. Dukkipati, A.: On maximum entropy and minimum KL-divergence optimization by Gröbner basis methods. Appl. Math. Comput. 218(23), 11,674–11,687 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Eichhorn, C., Diekmann, K., Kern-Isberner, G.: Properties of (nonmonotonic) inference relations with reflection on System Z and c-representations. Manuscript (2014)

  7. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  8. Hawthorne, J., Makinson, D.: The quantitative/quantitative watershed for rules of uncertain inference. Stud. Logica. 86(2), 247–297 (2007)

    Article  MATH  Google Scholar 

  9. Jaynes, E.T.: Papers on Probability, Statistics and Statistical Physics. D. Reidel, Dordrecht (1983)

    MATH  Google Scholar 

  10. Kern-Isberner, G.: A note on conditional logics and entropy. Int. J. Approx. Reason. 19, 231–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision. Lecture Notes in Artificial Intelligence LNAI 2087. Springer (2001)

  12. Kern-Isberner, G., Thimm, M., Doherty, P.: A ranking semantics for first-order conditionals. In: De Raedt, L., Bessiere, C., Dubois, D., Frasconi, P., Heintz, F., Lucas, P. (eds.) Proceedings 20th European Conference on Artificial Intelligence no. 242 in Frontiers in Artificial Intelligence and Applications, ECAI-2012, pp. 456–461. IOS Press (2012)

  13. Kern-Isberner, G., Wilhelm, M., Beierle, C.: Probabilistic knowledge representation using Gröbner basis theory. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM 2014). January 6-8, 2014, Fort Lauderdale (2014)

  14. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1-2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lukasiewicz, T.: Weak nonmonotonic probabilistic logics. Artif. Intell. 168(1-2), 119–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Makinson, D.: Handbook of logic in artificial intelligence and logic programming General Patterns In Nonmonotonic Reasoning, vol. 3, pp. 35–110. Oxford University Press (1994)

  17. Mayr, E.W.: Some complexity results for polynomial ideals. J. Complex. (1997)

  18. Paris, J.B.: The Uncertain Reasoner’S Companion – A Mathematical Perspective. Cambridge University Press (1994)

  19. Paris, J.B.: Common sense and maximum entropy. Synthese 117, 75–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paris, J.B., Vencovská, A.: A note on the inevitability of maximum entropy. Int. J. Approx. Reason. 14, 183–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  22. Rödder, W., Meyer, C.H.: Coherent knowledge processing at maximum entropy by SPIRIT. In: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, UAI 1996, pp. 470–476 (1996)

  23. Rödder, W., Reucher, E., Kulmann, F.: Features of the expert-system-shell SPIRIT. Log. J. IGPL 14(3), 483–500 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern-Isberner, G., Wilhelm, M. & Beierle, C. Probabilistic knowledge representation using the principle of maximum entropy and Gröbner basis theory. Ann Math Artif Intell 79, 163–179 (2017). https://doi.org/10.1007/s10472-015-9457-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-015-9457-7

Keywords

Mathematics Subject Classifications (2010)

Navigation