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Using Latent Binary Variables for Online

Reconstruction of Large Scale Systems

Victorin Martin∗ Jean-Marc Lasgouttes† Cyril Furtlehner‡

Abstract

We propose a probabilistic graphical model realizing a minimal en-
coding of real variables dependencies based on possibly incomplete
observation and an empirical cumulative distribution function per vari-
able. The target application is a large scale partially observed system,
like e.g. a traffic network, where a small proportion of real valued vari-
ables are observed, and the other variables have to be predicted. Our
design objective is therefore to have good scalability in a real-time set-
ting. Instead of attempting to encode the dependencies of the system
directly in the description space, we propose a way to encode them in
a latent space of binary variables, reflecting a rough perception of the
observable (congested/non-congested for a traffic road). The method
relies in part on message passing algorithms, i.e. belief propagation,
but the core of the work concerns the definition of meaningful latent
variables associated to the variables of interest and their pairwise de-
pendencies. Numerical experiments demonstrate the applicability of
the method in practice.

Keywords: latent variables; Markov random field; belief propagation;
inference; soft constraints.

1 Introduction

Predicting behavior of large scale complex stochastic systems is a relevant
question in many different situations where a (communication, energy, trans-
portation, social, economic. . . ) network evolves for instance with respect to
some random demand and limited supply. This remains to a large extent
an open and considerable problem, especially for partially observed systems
with strong correlations (see e.g. Boyen [5]), though efficient methods, like
Kalman and, by extension, particle filtering, see e.g. Doucet et al. [11], exist,
but with limited scalability.
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In the example which motivates this work, road traffic reconstruction
from floating car data, the system is partially observed and the goal is to
predict the complete state of the traffic network, which is represented as a
high-dimensional real valued vector of travel times or alternatively speeds or
densities. State of the art methods in this field exploit both temporal and
spatial correlations with multivariate regression (Min and Wynter [24]) with
rather restrictive linear hypothesis on the interactions. Here, we explore a
different route for the encoding of spatial and potentially temporal depen-
dencies, which we believe can simplify both the model calibration and the
data reconstruction tasks for large scale systems.

The classical way to obtain data on a road traffic network is to install
fixed sensors, such as magnetic loops. However, this is adapted to highways
and arterial roads, but not to a whole urban network which typically scales
up to 105 segments. As part of the Field Operational Test PUMAS [28]
in Rouen (Normandy), we explored the possibility to acquire data with
equipped vehicles that send geolocalized information, and to process it di-
rectly with a fast prediction scheme (Furtlehner et al. [12, 13]). While offline
processing of historical data can be allowed to be time consuming, travel
times predictions must instead be available in “real-time”, which means in
practice a few minutes. This “real-time” constraint implies some design
choices: firstly, the predictions need to be computed online, even on large
networks, which can be achieved using the message-passing algorithm Belief
Propagation of Pearl [27]; secondly, our model shall be suitable for the use
of this inference algorithm.

Stated in a more generic form, the problem at hand is to predict, from
sparse data originating from non stationary locations, the value of the vari-
ables on the rest of the network. The set of nodes to predict is potentially
varying from time to time because sensors are moving, like probe vehicles
in the traffic context. Since only very sparse joint observations are avail-
able, purely data driven methods such as k nearest neighbors cannot be
used and one has to resort to building some model. We study in this article
the possibility of a probabilistic graphical model that avoids modeling the
underlying complexity of the physical phenomena. Building a model of de-
pendency between real-valued variables can be very costly both in terms of
statistics, calibration and prediction if one tries to account for the empirical
joint probability distribution for each pair of variables. A possible way to
proceed, compatible with the use of BP, is to build a multivariate Gaussian
Copula, since then Gaussian belief propagation can be run efficiently on such
models. However, in the traffic example, the variables are endowed with a
binary perception (congested/non-congested), which make it likely that the
joint distribution will be multi modal in general and therefore not very well
suited for a Gaussian model, which admits only one reference state associ-
ated to one single belief propagation fixed point. What we propose instead
is to abstract the binary perception as a latent state descriptor and to ex-
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ploit it by encoding the dependencies between the real state variables at the
level of the latent variables. This way we end up with a minimal parametric
method, where both the prediction and the calibration are easy to perform
and which is well adapted to multimodal distributions; each mode can be
under certain conditions associated to a belief propagation fixed point [14].
Another route could be to build a general continuous copula model, compat-
ible with the use of the expectation propagation (EP) algorithm of Minka
[25]. The EP algorithm is indeed also very simple and efficient to use, but
the model selection stage might be too complex for large scale applications.
It requires to choose manually the exact exponential family for modeling
the marginal and pairwise distributions, since no automatic procedures has
emerged up to now. Also, compared to traditional methods like particle
filtering, we expect a better scalability.

We formalize the model as follows: the state of the system is represented
by a vector X = (Xi)i∈V of N real valued variables, attached to nodes i ∈ V

and taking their respective values in the sets Xi ⊂ R. We assume that
we never observe the full vector X, but that only pairwise observations are
available. For a given set E ⊂ V

2 of pair of variables, each pair (Xi,Xj)
such as (i, j) ∈ E is observed Nij times, all observations being independent.
These pair samples are stored in the vector x, which contains all the vectors
xk:

(Xi,Xj) = (xk
i , x

k
j ) for k ∈ {1, . . . , Nij}. (1)

The model goes as follows: to each variable Xi is attached a binary latent
variable σi and the variablesXi are assumed to be independent, conditionally
to the latent state σ. This is a strong assumption, generally false, but we
shall see in this paper that it can provide an efficient model for the prediction
task. We wish to stress that it will be necessary to construct these latent
variables and multiple choices could be meaningful. Somehow this is a choice
of feature functions from Xi to {0, 1}. The problem at stake is not to infer the
states of a hidden Markov model from noisy observations: the only variables
of interest are the Xi’s. To be able to infer the behavior of these variables,
given a partial observation of the system, we use a pairwise Markov Random
Field (MRF) for the binary variables σi, i.e. an Ising model in statistical
physics parlance (Baxter [1]). The joint measure for the variables X and σ

factorizes as (Figure 1):

P(X ≤ x,σ = s) = P(σ = s)
∏

i∈V

P(Xi ≤ xi|σi = si),

P(σ = s) =
1

Z

∏

(i,j)∈E

ψij(si, sj)
∏

i∈V

φi(si),

with Z a constant ensuring that P sums up to 1. Of course it will not be
possible to model in a precise way the joint distribution of any random vector
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σi σj

σk σℓ

Ψij(σi, σj)

Ψik(σi, σk) Ψjℓ(σj , σℓ)

Ψkℓ(σk, σℓ)

Xi Xj

Xk Xℓ

Φi(σi)P(Xi|σi) Φj(σj)P(Xj |σj)

Φℓ(σℓ)P(Xℓ|σℓ)Φk(σk)P(Xk|σk)

Figure 1: Markov random field (X,σ) for V = {i, j, k, ℓ}. The true model
of the vector X (dashed lines) is approximated through the latent binary
variables σ (plain lines).

X through our latent Ising model. The task assign to the model is actually
less ambitious: we wish to make predictions about this random vector X.
The problem we are trying to solve is simply a regression on the variables
Xi, which is very different in nature from modeling the distribution P. Note
that with observations (1) Jaynes’ maximum entropy criterion leads us to a
pairwise interaction model which is compatible with our choice.

Based on these assumptions, we try to answer three main questions:

(i) How to define the latent variable σi and how to relate it to its real
valued variable Xi?

(ii) How to construct the dependencies between latent variables σi in an
efficient way in terms of prediction performance?

(iii) How can partial observations be inserted into the model to perform
the predictions of the unobserved variables?

These three questions are of course highly interdependent. Once the model
has been built, exact procedures to infer the behavior of the Xi’s generally
face an exponential complexity, and one has to resort to an approximate
procedure. We rely here on Pearl’s belief propagation (BP) algorithm [27] –
widely used in the Artificial Intelligence and Machine Learning communities
[20, 37] – as a basic decoding tool, which in turn will influence the MRF
structure. While this algorithm is well defined for real-valued variables in
the case of a Gaussian vector X (see Bickson [3]), the more general case
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requires other procedures, like the nonparametric BP algorithm proposed
by Sudderth et al. [31], which involves much more computation than the
classical BP algorithm does. We propose here a new BP-based method to
tackle this same problem while keeping computations lightweight. The BP
algorithm will be precisely defined in Section 4.

The paper is organized as follows: Section 2 is devoted to answering
question (i), by finding a relevant mapping of an observation X = x to the
parameter of a Bernoulli variable σ. As we shall, see this is equivalent to the
definition of a feature function. Section 3 focuses on question (ii) concerning
the optimal encoding in the latent space of the dependency between the Xi’s.
In Section 4, we construct a variant of BP named “mirror BP” that imposes
belief values of σi when Xi is observed; this addresses question (iii). Some
experimental results of these methods are presented in Section 5.

2 Latent variables definition

Let X be a real-valued random variable with cumulative distribution func-
tion (cdf) F (x)

def
= P(X ≤ x). We focus in this section on a way to relate

an observation X = x to a latent binary variable σ. In the following we will
call “σ-parameter” the value P(σ = 1).

2.1 A stochastically ordered mixture

A simple way to relate an observation X = x to the latent variable σ is
through a mapping Λ such that Λ(x) is the σ-parameter. The mapping Λ
will be referred to as the encoding function and can depend on the cdf F . σ
being a latent variable, it will not be directly observed, but conditionally to
an observation X = x, we define its distribution as:

P(σ = 1|X = x)
def
= Λ(x). (2)

For simplicity, we assume that Λ is continuous on right, limited on left
(corlol) and increasing. Note that the condition “Λ is increasing” is equiva-
lent to have a monotonic mapping Λ since choosing the mapping 1−Λ simply
inverts the states 0 and 1 of the variable σ. Moreover Λ shall increases from
0 to 1, without requiring that Λ(X ) = [0, 1], since Λ can be discontinuous.
This constraint is expressed as the following:

∫

X
dΛ(X) = 1 and inf

x∈X
Λ(x) = 0. (3)

Let us emphasize again that σ is not just an unobserved latent random
variable which estimation is required. It is a feature that we define in order
to tackle the inference on X. This encoding is part of the following global
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scheme

Xi = xi ∈ Xi
Λi−→ P(σi = 1|Xi = xi) ∈ Λi(Xi)





y mBP

Xj = xj ∈ Xj

Γj
←− b(σj = 1) ∈ [0, 1]

(4)

which is as follows:

• observations of variables Xi are encoded through the distribution of a
latent binary random variable σi using the encoding function Λi,

• a marginalisation procedure is then performed on these latent variables
σ, in a way that will be described later,

• and finally the distributions of variables σj allows in turn to make
predictions about the other real variables Xj .

This scheme requires that we associate to Λ an “inverse” mapping Γ :
[0, 1] 7→ X . Since Λ can be non invertible, the decoding function Γ cannot
always be the inverse mapping Λ−1. We will return to the choice of the
function Γ in Section 2.3.

To understand the interaction between σ and X, let us define the condi-
tional cdf’s:

F 0(x)
def
= P(X ≤ x|σ = 0),

F 1(x)
def
= P(X ≤ x|σ = 1).

Bayes’ theorem allows us to write

P(σ = 1|X = x) = P(σ = 1)
dF 1

dF
(x),

and thus

dF 1(x) =
Λ(x)

P(σ = 1)
dF (x). (5)

Summing over the values of σ imposes

F (x) = P(σ = 1)F 1(x) + P(σ = 0)F 0(x), (6)

and the other conditional cdf follows

dF 0(x) =
1− Λ(x)

P(σ = 0)
dF (x). (7)

The choice of this class of corlol increasing functions has a simple stochastic
interpretation given in the following proposition.
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Proposition 1. The choice of an increasing encoding function Λ yields a
separation of the random variable X into a mixture of two stochastically
ordered variables X0 and X1 with distributions dF 0 and dF 1. Indeed, we
then have

X ∼ 1{σ=0}X
0 + 1{σ=1}X

1,

where ∼ is the equality in term of probability distribution. The stochastic
ordering is the following

X0 � X � X1.

Proof. It is sufficient (and necessary) to prove that

∀x ∈ X , F 1(x) ≤ F (x) ≤ F 0(x).

Consider first the left inequality (F 1 ≤ F ); If x ∈ X is such that Λ(x) ≤
P(σ = 1), then we have:

F 1(x) =

∫ x

−∞
dF 1(y) =

∫ x

−∞

Λ(y)

P(σ = 1)
dF (y),

≤
∫ x

−∞
dF (y) = F (x),

because, Λ being increasing, Λ(y) ≤ P(σ = 1) for all y ∈]−∞, x]. Conversely,
when Λ(x) ≥ P(σ = 1),

F 1(x) = 1−
∫ +∞

x
dF 1(y) = 1−

∫ +∞

x

Λ(y)

P(σ = 1)
dF (x),

≤ 1−
∫ +∞

x
dF (y) = F (x),

using again the fact that Λ is increasing. The other inequality (F ≤ F 0) is
obtained using (6).

Remark 1. Since the encoding function Λ is increasing from 0 to 1, it can
be considered as the cdf of some random variable Y ,

P(Y ≤ x)
def
= Λ(x),

which allows to reinterpret the previous quantities in terms of Y :

P(σ = 1) =

∫

X
P(σ = 1|X = x)dF (x)

=

∫

X
Λ(x)dF (x) =

∫

X
P(Y ≤ x)dF (x)

= P(Y ≤ X),
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supposing that Y and X are independent. The variable σ can therefore be
defined as

σ
def
= 1{Y ≤X},

which means that the variable Y acts as a random threshold separating X-
values that correspond to latent states 0 and 1. The stochastic ordering
between (X|σ = 0) and (X|σ = 1) then appears quite naturally. Note that
this interpretation leads to a natural extension to a larger discrete feature
space for σ simply using multiple thresholds. When Λ = F , the conditional
cdf’s of X are:

F 1(x) = (F (x))2 = P(max(X1,X2) ≤ x),

F 0(x) = F (x)(2 − F (x)) = P(min(X1,X2) ≤ x),

with X1 and X2 two independent copies of X.

2.2 Choosing a good encoding function Λ

Now that the nature of the mapping between X and σ has been described, it
remains to find an “optimal” encoding function. It turns out to be difficult to
find a single good criterion for this task. In this section, we therefore propose
two different approaches, based respectively on the mutual information and
on the entropy.

Mutual information. The idea here is to choose Λ (or equivalently σ),
such that the mutual information I(X,σ) between variables X and σ is
maximized. In other words, a given information about one variable should
lead to as much knowledge as possible on the other one.

Proposition 2. Let q0.5
X be the median of X. The encoding function ΛMI

which maximizes the mutual information I(X,σ) between variables X and
σ is the step function

ΛMI(x)
def
= 1{x ≥ q0.5

X
}.

Before turning to the proof of this proposition, let us remark that this
definition of the binary variable σ is a natural one, σ being deterministic as a
function of X. However, as we shall see in Section 5, it is usually suboptimal
for the reconstruction task.

Proof. The function to maximize is

I(X,σ) =
∑

s

∫

X
P(σ = s) log

(

dF s(x)

dF (x)

)

dF s(x)

= H(P(σ = 1))−
∫

X
H(Λ(x))dF (x),
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where H(p)
def
= −p log p − (1 − p) log(1 − p) is the binary entropy function.

Among all random variables σ with entropy H(P(σ = 1)), the ones which
maximize I(X,σ) are deterministic functions of X, or equivalently the ones
for which Λ is an indicator function. Since we limit ourselves to the corlol
class, we get Λ = 1[a,+∞[ for some a ∈ X . It remains to maximize the
entropy of the variable σ, which leads to P (σ = 1) = 1/2 and a = q0.5

X .

Max-entropy principle. Another possibility is, in order to maximize the
information contained in the latent variable σ, to maximize the entropy of
U = Λ(X). This variable U is indeed the data that will be used to build the
Ising model over the latent variables (see Section 3). We assume here that
the variable X admits a probability density function (pdf). We add to the
few constraints detailed in the previous section that Λ is a bijection between
X and [0, 1]. When dealing with continuous random variables, the entropy
only makes sense relatively to some measure (see Jaynes [19, pp. 374-375]).
Following Jaynes’ [18] arguments, since U is the parameter of a Bernoulli
variable with both outcomes possible, having no other prior knowledge leads
us to the uniform measure as reference.

Proposition 3. Let X be a random variable which admits a pdf. The (in-
creasing) invertible function which maximizes the entropy of U = Λ(X),
taken relatively to the uniform measure, is the cumulative distribution func-
tion F of the variable X.

Proof. The variable U with maximal entropy has a uniform pdf hΛ(u) =
1[0,1](u). The encoding function Λ such as Λ(X) is a uniform variable on
[0, 1] is the cdf of X, which concludes the proof.

Let us quickly sum up the choices we proposed for the encoding function:

• ΛMI which is a deterministic encoding: σ indicates the position of X
w.r.t. its median;

• F the cdf of X, which corresponds to the less discriminating choice
about the encoded data distribution.

We will see that these two encoding functions have very distinct properties:
ΛMI is much more conservative than F but is rather adapted to model pre-
cisely the joint distributions. Let us remark that in the first case Λ is the
feature function while in the second case the feature function is a random
variable.

2.3 Decoding function Γ

Before turning to the definition of the decoding function Γ, let us focus first
on the following simple question:
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What is the best predictor of a real-valued random variable X,
knowing only its distribution?

The answer will obviously depend on the loss function considered and this
will in turn influence the choice of the decoding function Γ, which purpose
is to predict the random variable X. Assuming a Lr norm as loss function,
the optimal predictor θ̂r(X) is then defined as

θ̂r(X)
def
= argmin

c∈R

EX [|X − c|r].

In the case r = 1, the optimal predictor θ̂1(X) is simply the median of X;
r = 2 corresponds to θ̂2(X) = E[X], the mean value of X. In the following
we call “contextless prediction” the X-prediction performed without other
information than the distribution of X.

When focusing on the definition of the “inverse” mapping Γ, two natural
definitions arise. When Λ is a bijection, the simplest predictor of X, given
b = P(σ = 1), is Λ−1(b). Actually, it is the unique X-value such that
(σ|X = x) is distributed as P(σ = 1|X = x) = b by definition (2) of Λ. We
will denote this first choice for the decoding function

ΓL def
= Λ−1.

ΓL corresponds, in some sense, to a predictor based on maximum likelihood
(ML). Indeed, suppose that the knowledge of b = P(σ = 1) is replaced with
a sample of M independent copies sk of a binary variable distributed as
P(σ|X = x). The ML estimate of x is then Λ−1(

∑

k
sk/M). So the choice

Λ−1 as decoding function corresponds to the ML estimate from a sample
with an empirical rate of success equal to b.

In the more general case of an increasing corlol encoding function, with
a Bayesian point of view, the knowledge of the σ-parameter allows to up-
date the distribution of X. Applying Jeffrey’s update rule (see Chan and
Darwiche [6]) yields the updated cdf FB

FB(x) = bF 1(x) + (1− b)F 0(x). (8)

Let XB be a random variable which distribution is FB. The predictor θ̂(XB)
previously defined can be used irrespective of whether Λ is invertible or not.
To refer to this second choice we will use the notation

ΓB def
= θ̂(XB).

Note that, while it may be costly in general to compute the wanted statistic
of XB, some choices of Λ lead to explicit formulas.
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Mutual information. We consider here the case of the step function ΛMI

as encoding function. This function is of course not invertible and only the
Bayesian decoding function ΓB can be used. Using (5)–(8), the cdf of XB is

FB(x) =







2(1− b)F (x), if x ≤ q0.5
X ,

FB(q0.5
X ) + 2b

(

F (x)− F (q0.5
X )

)

, if x > q0.5
X .

(9)

In order to compute θ̂1(XB), we need to solve the equation FB(x) = 1/2,
leading to the decoding function

ΓB(b) =











F−1
(

1
4(1−b)

)

, if b ≤ 1
2 ,

F−1
(

4b−1
4b

)

, if b > 1
2 .

When F is not invertible, F−1 should be understood as the pseudo-inverse
of F , commonly used to define quantiles:

F−1(b)
def
= inf

x
{x | F (x) ≥ b}.

If we choose the predictor θ̂2 based on a L2 loss function, using the linearity
of the expectation we get

ΓB(b) = E

[

XB
]

= bE [X | σ = 1] + (1− b)E [X | σ = 0] .

Max entropy principle. When one uses ΓL = F−1 as decoding function,
the contextless prediction, i.e. without any observation, is simply F−1

(

P(σ =
1)
)

. Moreover, we know that P(σ = 1) = E[F (X)] = 1/2 – provided that
X admits a pdf – so the ground prediction is the median of X. The choice
Λ = F and Γ = F−1 is therefore optimal w.r.t. a L1 loss function for the
prediction error.

The other choice for the decoding function is to use ΓB and to compute,
for example, the predictor θ̂1(XB). Using (5) – (8), we get the cdf of XB

FB(x) =
(

(2b− 1)F (x) − 2(b − 1)
)

F (x),

and the sought function is solution of the following quadratic equation

((2b − 1)F (x) − 2(b− 1))F (x) =
1

2
,

with only one reachable root. Thus the Bayesian decoding function is

ΓB(b) = F−1

(

2(b− 1) +
√

(2b− 1)2 + 1

4b− 2

)

. (10)
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for (F ,ΓB).

Let us remark that the Bayesian decoding function ΓB is always more
conservative than ΓL. Using the inverse F−1 allows us to make predictions
spanning the whole set X of possible outcomes, which is not the case with
the Bayesian decoding function. Figure 2 illustrates this.

Assume that two random variables X1 and X2 are equal with probability
1. Even if we build a latent model such that P(σ1 = σ2) = 1, using ΓB as
decoding function will never predict X1 = X2. The decoding function ΓB

is in fact trying to approximate the joint distribution of (X1,X2) and this
approximation can only be very rough when variables are strongly dependent
(see Proposition 4). However, the choice (F,F−1) is equivalent to performing
a X-quantiles regression. We will see in Section 5 that this last choice is
better when variables are strongly dependent.

In one wishes to choose the decoding function based on the ML estimate
ΓB = Λ−1, it is of interest to generalize the max-entropy criterion in order
to get an encoding function Λ with an optimal contextless prediction w.r.t.
a specific loss function. It is in fact quite simple to solve this problem and to
obtain the sought encoding function which is based on the cdf (Martin [22,
chapter 5]). We will use here only the cdf function because we are interested
in L1 error measure. Compared to a loss function based on the L2 norm, it
gives less weight to extreme values.
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3 Building pairwise dependencies

It was shown in Section 2 how to relate the variable Xi to its latent state σi,
by means of an encoding function Λi. The next question to address is how to
encode the dependencies at the latent state level and, more generally, how to
estimate the parameters of the underlying Ising model on σ. Given two real-
valued variables Xi and Xj , with respective cdf Fi and Fj , and two binary
variables σi and σj , we want to construct a pairwise model as described in
Figure 1. The probability distribution of the vector (Xi,Xj , σi, σj) for this
model is

P(Xi ≤ xi,Xj ≤ xj, σi = si, σj = sj) = pij(si, sj)F si
i (xi)F

sj

j (xj). (11)

Since σi and σj are binary variables, pij(si, sj) can be expressed with 3
independent parameters,

pij(si, sj) = p11
ij sisj +

(

p1
j − p

11
ij

)

s̄isj +
(

p1
i − p

11
ij

)

sis̄j

+
(

1− p1
i − p

1
j + p11

ij

)

s̄is̄j,

using the notation s̄
def
= 1− s and with

p1
i

def
= P(σi = 1) = E(σi),

p11
ij

def
= P(σi = 1, σj = 1) = E(σiσj).

The probability distribution is valid as soon as (p1
i , p

1
j) ∈ [0, 1]2 and

p11
ij ∈ D(p1

i , p
1
j )

def
=
[

max(0, p1
i + p1

j − 1),min(p1
i , p

1
j )
]

.

Until now, we have been able to make optimal choices in some sense, but
obviously the number of parameters is not enough to encode exactly any
structure of dependency. This is shown in the following proposition

Proposition 4. When the mutual information IP(Xi,Xj) between the real
variables is strictly greater than log(2), our model is not able to perfectly en-
code the joint distribution of Xi and Xj for any choice of encoding function.

This result is compatible with intuition: whatever the definition of the
binary variables, it will not be possible to share more than one bit of infor-
mation between two of them. However, we shall see in Section 5 that it is
still possible to obtain quasi-optimal performances for the prediction task
even when the mutual information is strictly greater than log(2).

Proof. We will prove that the Kullback-Leibler divergence between the em-
pirical joint distribution P of (Xi,Xj) and the joint distribution P within
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our model is strictly positive as soon as IP(Xi,Xj) > log(2).

DKL(P||P) =

∫

P(xi, xj) log
P(xi, xj)

P(xi, xj)
dxidxj

= IP(Xi,Xj) +

∫

P(xi, xj) log
P(xi)P(xj)

P(xi, xj)
dxidxj ,

def
= IP(Xi,Xj)− I(Xi,Xj).

Using the fact that P(xi) = P(xi) and expanding w.r.t. σi and σj, one gets

I(Xi,Xj) =

∫

P(xi, xj) log





∑

σi,σj

P(σi, σj)

P(σi)P(σj)
Λσi

i (xi)Λ
σj

j (xj)



 dxidxj ,

≤ log





∫

P(xi, xj)
∑

σi,σj

P(σi, σj)

P(σi)P(σj)
Λσi

i (xi)Λ
σj

j (xj)dxidxj



 ,

with Λ1 def
= Λ and Λ0 def

= 1 − Λ. Defining Pσiσj

def
= EP [Λσi

i (Xi)Λ
σj

j (Xj)], we
get the final expression

I(Xi,Xj) ≤ log





∑

σi,σj

P(σi, σj)

P(σi)P(σj)
Pσiσj



 ≤ log(2),

because we have P(σi, σj) ≤ P(σj) and
∑

σj
Pσiσj = P(σi).

We will focus first on the estimation of the pairwise distribution pij of
(σi, σj), without discussing how to estimate the joint distribution of σ from
them. We will come back to this problem in the end of this section.

3.1 Pairwise distributions estimation

The choice of the encoding functions Λi imposes the marginal distributions
of the latent variables σi; indeed we have seen that

p1
i = P(σi = 1) = E[Λi(Xi)] =

∫

Xi

Λi(x)dFi(x).

These parameters can easily be estimated using empirical moments and it
will only remain to estimate the correlation parameter p11

ij . We propose here
to carry out a maximum likelihood estimation. The estimation of each pa-
rameter p11

ij is independent of the others and we carry out one unidimensional
likelihood maximization per edge. For the sake of simplicity, we assume that
the random variables admit probability distribution functions. The joint pdf
of (Xi,Xj) associated to the distribution pij will be referred to as

f ij
pij

(xi, xj)
def
=
∑

si,sj

pij(si, sj)f si
i (xi)f

sj

j (xj),
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where f si
i is the pdf associated to dF si

i . Let us first express the logarithm of
the likelihood of a distribution pij of (σi, σj) corresponding to the pairwise
observations x described in (1).

L(x, pij) =

Nij
∑

k=1

log f ij
pij

(xk
i , x

k
j )

=

Nij
∑

k=1

log





∑

si,sj

pij(si, sj)f si
i (xk

i )f
sj

j (xk
j )



 .

Because of the hidden variables σi and σj , a sum appears within the loga-
rithms. Therefore, it will not be possible to find explicitly the distributions
pij maximizing L(x, pij). The usual approach is to use the Expectation Max-
imization algorithm (EM) first introduce by Dempster et al. [10]. It consists
in building a sequence of (σi, σj)-distribution p(n)

ij with increasing likelihood.
Using the following notation

p(n)

ij (si, sj|xi, xj)
def
= P

(n)(σi = si, σj = sj|Xi = xi,Xj = xj),

the EM algorithm can be expressed as

p
(n+1)
ij ← argmax

pij

ℓ(pij ||p
(n)

ij )
def
=
∑

k

∑

si,sj

p(n)

ij (si, sj |x
k
i , x

k
j ) log pij(si, sj),

The derivative of ℓ(pij||p
(n)

ij ) with respect to p11
ij is

∂ℓ(pij||p
(n)

ij )

∂p11
ij

=

Nij
∑

k=1

∑

si,sj

(

21{si=sj} − 1
) p(n)

ij (si, sj |x
k
i , x

k
j )

pij(si, sj)
,

Stationary points yields an obvious solution, which is

pij(si, sj) =
1

Nij

Nij
∑

k=1

p(n)

ij (si, sj |x
k
i , x

k
j ).

The function that we maximize being concave, this solution is the unique
stationary point of ℓ(pij||p

(n)

ij ). We obtain the following update rule for the
EM algorithm

p
(n+1)
ij (1, 1)←

1

Nij

Nij
∑

k=1

ψ(n)

ij (1, 1)Λi(x
k
i )Λj(xk

j )

Zij(xk
i , x

k
j )

, (12)

with

ψ(n)

ij (si, sj)
def
=

p(n)

ij (si, sj)

p(n)

i (si)p
(n)

j (sj)
,
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Zij(xi, xj)
def
=
∑

si,sj

ψ(n)

ij (si, sj)Λ
si
i (xi)Λ

sj

j (xj),

and Λ1 def
= Λ, Λ0 def

= 1 − Λ. The update rule (12) is quite simple, although
one has to check that the estimated parameter is valid, i.e. p11

ij ∈ D(p1
i , p

1
j ).

If it is not the case, it means that the parameter saturates at one bound.

Now that we have proposed a way to estimate the pairwise marginal of
the model, we will focus in next section on how to estimate the Ising model
of σ from them.

3.2 Latent Ising model estimation compatible with BP

We now return to the problem of estimating the joint distribution pσ of the
random vector σ from its pairwise marginals {pij}(i,j)∈E. First, let us remark
that (as discussed by Mackay et al. [21]) having compatible marginals does
not guaranty the existence of a joint distribution pσ such as

∀(i, j) ∈ E,∀si,
∑

sV\{i,j}

pσ(σ = s) = pij(si, sj),

However, in the case where the graph G = (V,E) contains no cycles, the
joint distribution is entirely determined by its pairwise marginals. This
joint distribution is expressed as

pσ(σ = s) =
∏

(i,j)∈E

pij(si, sj)

pi(si)pj(sj)

∏

i∈V

pi(si), (13)

with pi the marginal of pij – independent of j.

In the more general case of a graph containing cycles, the situation is
more complex. This inverse Ising model is much studied in statistical physics
(see Cocco and Monasson [7] and references within). Potentially it is NP-
hard and can have no solution. Only approximate methods can be used
for graph of large size. Wainwright [34] proposed an approach of particular
interest, which takes into account the fact that once the distribution pσ is
fixed in an approximate way, the marginalisation will also be performed in
an approximate way. The idea is to use compatible approximations for these
two tasks. In our case, we wish to use the BP algorithm, described in forth-
coming Section 4, to compute the approximate marginals of pσ. It seems
reasonable to impose that, without any observation, the answer given by
BP is the historical marginals {pij} and {pi}. For doing so, the distribution
pσ should be chosen under the Bethe approximation (13) which is closely
related to the BP algorithm, as we shall see in Section 4. If this choice is
a good candidate as starting point, the Bethe approximation is usually too
rough and overestimates correlations, and it is thus necessary to improve on
it. This can be achieved using various results from linear response theory
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(see Welling and Teh [35], Yasuda and Tanaka [36], Mézard and Mora [23]),
when the level of correlation is not too high.

We use instead a simple but more robust approach, which is to modify
the model using a single parameter α such as

pσ(σ = s) =
∏

(i,j)∈E

(

pij(si, sj)

pi(si)pj(sj)

)α
∏

i∈V

pi(si). (14)

α can roughly be interpreted as an inverse temperature, which role is to avoid
overcounting interactions when the graph contains cycles. This parameter
can easily be calibrated by finding a phase transition w.r.t. α. Indeed, for
α = 0, the BP output is exactly {pi} and, when α increases, it remains close
to it until some discontinuity appears (see Furtlehner et al. [14]). In some
sense, the best α corresponds to the maximal interaction strength such that
the BP output remains close to {pi}.

4 A message passing inference algorithm

According to the results of Section 2, observations about the real-valued ran-
dom variable Xi are converted into knowledge of the marginal distribution
of σi. In order to estimate the distributions of the others binary latent vari-
ables, we need an inference algorithm allowing us to impose this marginal
constraint to node i when Xi is observed. For this task, we propose a mod-
ified version of the BP algorithm.

4.1 The BP algorithm

We present here the BP algorithm, first described by Pearl [27], in a way
very similar to the one of Yedidia et al. [37]. We use in this section a slightly
more general notation than in Section 1, since instead of considering only
pairwise interactions, variables in the set V interact through factors, which
are subsets a ⊂ V of variables. If F is this set of factors, we consider the
following probability measure

P(σ = s) =
∏

a∈F

ψa(sa)
∏

i∈V

φi(si), (15)

where sa = {si, i ∈ a}. It is also possible to see variables and factors as
nodes of a same bipartite graph, in which case the shorthand notation i ∈ a
should be interpreted as “there is an edge between i and a”. F together with
V define a factor graph, such as defined by Kschischang et al. [20]. The set
E of edges contains all the couples (a, i) ∈ F×V such that i ∈ a. We denote
by di the degree of the variable node i. The BP algorithm is a message
passing procedure, which output is a set of estimated marginal probabilities,
the beliefs ba(sa) (including single nodes beliefs bi(si)). The idea is to factor
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the marginal probability at a given site as a product of contributions coming
from neighboring factor nodes, which are the messages. With definition (15)
of the joint probability measure, the updates rules read:

ma→i(si)←
∑

sa\i

ψa(sa)
∏

j∈a\i

nj→a(sj), (16)

ni→a(si)
def
= φi(si)

∏

a′∋i,a′ 6=a

ma′→i(si), (17)

where the notation
∑

sa
should be understood as summing all the variables

σi, i ∈ a ⊂ V, over the realizations si ∈ {0, 1}. In practice, the messages are
often normalized so that

∑

si
ma→i(si) = 1.

At any point of the algorithm, one can compute the current beliefs as

bi(si)
def
=

1

Zi

φi(si)
∏

a∋i

ma→i(si), (18)

ba(sa)
def
=

1

Za

ψa(sa)
∏

i∈a

ni→a(si), (19)

where Zi and Za are normalization constants that ensure that

∑

σi

bi(σi) = 1,
∑

σa

ba(σa) = 1. (20)

When the algorithm has converged, the obtained beliefs ba and bi are com-
patible:

∑

sa\i

ba(sa) = bi(si). (21)

Yedidia et al. [37] proved that the belief propagation algorithm is an
iterative way of solving a variational problem: namely it minimizes the
Kullback-Leibler divergence DKL(b‖p) to the true probability measure (15)
over all Bethe approximations on the factor graph, of the form

b(s) =
∏

a∈F

ba(sa)
∏

i∈a bi(si)

∏

i∈V

bi(si),

subject to constraints (20)–(21). The approximation is actually exact when
the underlying graph is a tree. The stationary points of the above variational
problem are beliefs at a fixed point of the BP algorithm (see Yedidia et al.
[37]). This alternative description of BP will be used in the next section to
derive a new variant of the algorithm.
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4.2 Imposing beliefs: mirror BP

In the following, V
∗ will be the set of nodes i such that Xi is observed.

Assuming that the model (ψa and φi) is given, we wish to include in the
algorithm some constraints on the beliefs of the form

∀i ∈ V
∗,∀si ∈ {0, 1}, bi(si) = b∗

i (si). (22)

We suppose in the following that each b∗
i is normalized. The issue of how to

convert real-valued observation to this distribution b∗
i has been studied in

Section 2. We seek to obtain a new update rule from the Kullback-Leibler
divergence minimization, with the additional constraints (22). Constraints
of this form as sometimes referred to as “soft constraints” in the Bayesian
community (Bilmes [4]).

We start from the Lagrangian of the minimization problem:

L(b, λ) =DKL(b‖p) +
∑

i∈V\V∗

a∋i,si

λai(si)
(

bi(si)−
∑

sa\i

ba(sa)
)

+
∑

i∈V∗

a∋i,si

λai(si)
(

b∗
i (si)−

∑

sa\i

ba(sa)
)

+
∑

i∈V

γi

(

∑

si

bi(si)− 1

)

,

with DKL(b‖p) defined as

DKL(b‖p)
def
=
∑

a,sa

ba(sa) log
ba(sa)

ψa(sa)
+
∑

i,si

bi(si) log
bi(si)

1−di

φi(si)
.

The stationary points satisfy






















ba(sa) = ψa(sa) exp
(

∑

i∈a λai(si)− 1
)

, ∀a ∈ F,

bi(si) = φi(si) exp
(

∑

a∋i
λai(si)

di−1 +1−γi

)

,∀i /∈ V
∗,

bi(si) = b∗
i (si), ∀i ∈ V

∗.

Following Yedidia et al. [37], we introduce the parametrization

λai(si) = log ni→a(si),

for all edges (ai) ∈ E. Note that we do not consider any node in V \ V∗

of degree di equal to 1 since they play no role in the minimization problem.
For all nodes i /∈ V

∗ we also have

λai(si) = log
[

φi(si)
∏

b∋i,b6=a

mb→i(si)
]

.

Then it follows that, whenever i /∈ V
∗,

ni→a(si) = φi(si)
∏

b∋i,b6=a

mb→i(si).
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Enforcing the compatibility constraints on nodes i 6∈ V
∗ shows that update

rules (16)–(17) are still valid for these nodes. For i ∈ V
∗, the compatibility

constraints yield

b∗
i (si) =

∑

sa\i

ba(sa) =
∑

sa\i

ψa(sa)
∏

j∈a

nj→a(sj)

= ni→a(si)
∑

sa\i

ψa(sa)
∏

j∈a

nj→a(sj).

Until now the message from a factor a to a variable i ∈ V
∗ has not been

defined. For convenience we define it as in (16) and the preceding equation
becomes

ni→a(si)ma→i(si) = b∗
i (si),

as in the usual BP algorithm. This leads to a definition that replaces (17)
when i ∈ V

∗

ni→a(si) =
b∗

i (si)

ma→i(si)
=
b∗

i (si)

bi(xi)
φi(si)

∏

b∋i,b6=a

mb→i(si). (23)

Therefore the message (23) is the BP message (17) multiplied by the ratio
of the belief we are imposing over the “current belief” computed using (18).
This is very similar to iterative proportional fitting (IPF, see Darroch and
Ratcliff [9]). To sum up, the characteristics of this new variant of Belief
Propagation are

• all factors and all variables which value has not been fixed send the
same messages (16)–(17) as in classic BP;

• variables which value has been fixed use the new messages (23);

• beliefs for factors or for variables which value has not been fixed are
still computed using (18)–(19);

In the classical BP algorithm, the information sent by one node can only
go back to itself through a cycle of the graph. When (23) is used, however,
the variable with fixed value acts like a mirror and sends back the message
to the factor instead of propagating it through the graph. It is to emphasize
this property that we call our new method the mirror BP (mBP) algorithm.
Note that it could be defined for variables valued in any discrete alphabet.

A very similar algorithm to our mBP has been proposed by Teh and
Welling [33]. Their algorithm is described as iterations of successive BP
runs on unobserved nodes and IPF on nodes in V

∗. The update (23) is
just obtained as direct IPF. The main drawback of their version is that it
assumes a particular update ordering because they consider that the updates
(17)–(23) are of different nature, which is in fact not really necessary and
complicates its use.

20



Figure 3: Illustration of Proposition 5. If only black nodes are in V
∗, Proposi-

tion 5 tells us that mBP converges since the resulting graph T (G,V∗) (right
graph) contains two disconnected trees with exactly two nodes in V

∗. If
we add the gray node in V

∗ then Proposition 5 does not apply, the right
tree contains three nodes in V

∗, and we cannot conclude about convergence.
However, on the other part of the graph Proposition 5 still holds.

It is known that BP can exhibit non convergent behavior in loopy net-
works, although sufficient conditions for convergence are known (see e.g.
Mooij and Kappen [26], Tatikonda and Jordan [32], Ihler et al. [16]). Since
the mirroring behavior of our algorithm seems to be quite different, we
present some sufficient conditions for convergence.

Definition 1. Let T (G,V∗) be the factor graph where each node i ∈ V
∗

has been cloned di times, each clone being attached to one (and only one)
neighbor of i. We call “graph cutting at V

∗” the transformation T (·,V∗)
applied to a factor graph G for a given set of variable nodes V

∗.

Example of a such “graph cutting” T (G,V∗) is shown in Figure 3. The
following proposition describes cases where the mBP algorithm is guaranteed
to converge.

Proposition 5. If the graph T (G,V∗) is formed by disconnected trees con-
taining not more than two leaves cloned from V

∗, the mBP algorithm is
stable and converges to a unique fixed point.

Proof. See Appendix.

5 Numerical experiments

In order to understand its behavior, we apply here the method described
in this paper to synthetic data. We will consider three cases of increasing
complexity:

• a pair (X1,X2) of real-valued random variables,

• a tree with interior connectivity fixed,

• a rough road traffic network.
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For each case, we repeat the following decimation experiment: for an
outcome of the random vector X, we observe its components Xi in a ran-
dom order and we make prediction about unobserved components using our
method. This will allow us to compare the performance of the different
choices of encoding and decoding functions when the proportion of observed
variables varies.

We will consider the following choices for the encoding and decoding
functions:

• the step function ΛMI with the Bayesian decoding function (9),

• the cumulative distribution function F with its inverse ΓL = F−1,

• the cumulative distribution function F with the decoding function ΓB

of (10).

Each of these choices yields an estimator θ for which we will compute the
performance w.r.t. the L1 norm

EX

[

|θ(X)−X|
]

. (24)

Model generation. These synthetic models are based on Gaussian copu-
las with support corresponding to one of the three cases previously described.
More precisely, it corresponds to the support of the precision matrix, i.e. the
inverse covariance matrix, of the Gaussian vector Y. For doing so, we ran-
domly generate the partial correlations, the entries of the precision matrix
of Y, with uniform random variables on [−1,−0.2] ∪ [0.2, 1]. Since this will
not always lead to a positive definite precision matrix, we use this matrix as
a starting point and reduce the highest correlation until it becomes definite
positive.

We can then generate outcomes of this Gaussian vector Y and transform
them, using the function which maps a Gaussian variable N (0, 1) into a
variable of chosen cdf FX . More precisely, each component of the vector X

is defined as
Xi = F−1

X

(

FN (0,1)(Yi)
)

,

where FN (0,1) is the cdf of a N (0, 1) variable. This procedure will allow us to
perform exact inference using the Gaussian vector Y while the dependency
of the vector X is based on a Gaussian copula.

We will sometimes consider the case of β(a, b) variables, so let us recall

their pdfs fβ
a,b for a, b ∈]0,+∞[

fβ
a,b(x) =

1

B(a, b)
xa−1(1− x)b−1

1[0,1](x),

where the normalization constant B(a, b) is the bêta function. These dis-
tributions are of particular interest because different cases arise depending
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✈

σ1

✈

σ2

✈
X1

✈
X2

Figure 4: Model of the random vector (X1,X2, σ1, σ2). The true distribution
of (X1,X2) is approximated through the latent variables σ1 and σ2.

on the parameters a and b. Indeed, it is possible to obtain almost binary
(a, b→ 0), unimodal (a, b > 1) or uniform (a, b = 1) distributions on [0, 1].

A pair (X1,X2) of real-valued random variables. Let us start with
the simple case where the vector X is just two random real-valued variables
(Figure 4). We repeat 100,000 times the decimation experiment. In this
case, this experiment is just to observe either X1 or X2 for a given outcome
of the vector (X1,X2) and to predict the other variable. In addition to the
L1 performance, we compute the biases of the different estimators θ

EX

[

θ(X)− θ̂1(X)
]

. (25)

We recall that θ̂1(X) is the optimal predictor w.r.t. the L1 distance i.e. the
conditional median.

The results, for various values of a, b and ρ
def
= cov(Yi, Yj), are given in

Table 1. The first line is the L1 performance (24) and the second one the
bias (25). Generally, with weak correlations all estimators have a satisfactory
behavior. However the best choice is the cdf function Λ = F with the inverse
mapping ΓL = F−1. As expected, the conservative property of the decoding
ΓB is a real drawback in the case of strong correlation because it prevents
from predicting extreme values (see Figure 2). When considering symmetric
variables Xi, all estimators biases are close to 0. Even with β(2, 3) variables,
this bias is negligible. In the case of asymmetrical variables, these biases are
clearly non zero, but do not prevent from obtaining good performance.

Regular trees. We consider here the case of a tree with a given connec-
tivity n for interior nodes: each non leaf node has exactly n neighbors. For
n = 3, we get a binary tree. We perform the decimation experiments and
results are presented in Figure 5. For the sake of comparison, we show three
other predictors: the median (in red), the k nearest neighbors (k-NN, Cover
and Hart [8]) predictor (in orange) and the perfect predictor (in black),
which is obtained by computing the conditional mean of the vector Y. The
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Density Correlation (F,ΓD) (F,ΓP ) ΛMI Exact

β(1/10, 1/10)
ρ = 0.5

0.2% 3.1% 3.3% 32.04
−0.34 −0.79 0.01 0

ρ = 0.9
0.1% 22% 9.5% 13.62
−0.15 −0.72 −0.06 0

β(2, 3)
ρ = 0.5

1.4% 4.4% 6.7% 14.22
−0.26 0.47 0.44 0

ρ = 0.9
1.3% 68.8% 61.7% 6.89

0.1 1.25 0.92 0

β(1, 1)
ρ = 0.5

0.1% 4.6% 7.3% 20.96
0.02 0.01 −0.03 0

ρ = 0.9
0.4% 66.2% 58.6% 9.83
0.02 −0.09 0 0

β(1/2, 2/10)
ρ = 0.5

2.7% 4.4% 7.5% 23
6.77 −5.14 −4.11 0

ρ = −0.7
4.1% 16.9% 20.8% 18.21
5.74 −8.8 −5.16 0

Table 1: Performances of various predictors in the case of Figure 4. The
first line is mean L1 error in % of deviation from the optimal performance.
The second one is its bias. Bold values are the best performing choices.
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Figure 5: Mean L1 prediction error of unobserved variables (×100) as a
function of the proportion of revealed variables; the small embedded figures
are the corresponding pdf of the bêta variables. The connectivity is n = 3 for
top figures and n = 5 for the bottom ones. Each tree contains 100 variables.

k-NN predictor is manually optimized to the k = 50 nearest neighbors in
the whole historical data used to build the model. This predictor is known
to be a good choice for road traffic data (Smith et al. [30]), but its complex-
ity is too high for large networks compared to BP. Moreover, it requires
complete observations of the network, which are not available when dealing
with probe vehicles data.

As a general rule, the choice (F,F−1) seems to be the best one. Let
us remark that, if we continue to increase the connectivity n, this situation
can change. In fact, at very high connectivity (n ∼ 10), the convergence of
mBP can be very slow. Non convergent cases can then impact the result and
one should rather use ΛMI. Indeed, for the choice ΛMI the mBP algorithm
is strictly equivalent to BP. In this case, the BP algorithm is more stable
since it is always converging on trees. At this point, we discard the choice
(F,ΓB) which is clearly inferior to the other ones.

A simple road network model. Let us finally consider a new synthetic
model, associated to the road network of Figure 6, which is a very rough
description of a city network. The dependency graph of the vector X is
basically the line graph of the road networks, i.e. there is a direct dependency
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Figure 6: A simple model of urban road network with two-way streets. The
inner grid represents the city itself and the 2× 4 exterior edges form a ring
road around it.
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Figure 7: Mean L1 prediction error on unobserved variables, as a function
of the proportion of revealed variables, for the urban network of Figure 6.
All values are relative to the error made by the “median” predictor.
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between edges i and j iff they are adjacent in the road network. To model the
impact of a ring road on its neighborhood, we set their partial correlations
with adjacent edges to 0.3. The marginal distributions of travel times are
real data coming from the Australian M4 motorway. We assume that the
ring road links are always observed, by means of specific equipment such as
magnetic loops.

Again, the decimation experiment is performed 1,000 times and the re-
sults are presented in Figure 7. Since the ring road links are always observed,
the decimation curve begin at ρ ∼ 0.03. Note that, in this case, the k-NN
predictor performance is very bad, due to the fact that correlations are small
compared to the vector dimension (Beyer et al. [2]). The parameter α of
(14) is estimated with a dichotomy search on [0, 1] up to a precision of 0.01.
Once again, the best choice of encoding function is the cdf, which performs
clearly better than ΛMI.

6 Conclusion

We proposed a simple way to model the interaction between real-valued
random variables defined over a graph from the following information:

• the empirical cumulative distribution function of each variable;

• an incomplete covariance matrix.

The choice of the cdf as encoding function and its inverse as decoding
function seems to be the best one, as long as the graph connectivity is
not too high. When this connectivity increases too much, the algorithm
mBP loose its efficiency and one should rather choose the encoding function
ΛMI. An important but potentially difficult task has been discarded here:
finding the dependency graph structure. This task can be performed using
greedy heuristics (see Jalali et al. [17], Furtlehner et al. [15]) or L1-based
regularization method (see Ravikumar et al. [29])

Once the encoding/decoding functions are chosen and the marginals pij

have been estimated, many available methods exists to define the latent
Ising model, i.e. the set of Ising couplings. The best one will depend on the
data and determining it will require tests on real data. However, the results
presented here make us quite optimistic about applying this method to road
traffic data, for which the underlying binary description seems natural.

Straightforward generalization of the approach presented here can be car-
ried out to construct latent variables with a feature space larger than {0, 1},
by considering additional random thresholds defined in Section 2.1 or deter-
ministic ones; the underlying principles remain unchanged. In particular, it
is still possible to build decoding functions based on ML or Bayesian updat-
ing, to use the EM algorithm for pairwise distributions estimations and the
mBP algorithm for inference.
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A Proof of Proposition 5

Let us focus first on the case of one factor with two binary variables σi and
σj , both observed (Figure 8 with n = 2). The messages ma→i are assumed
to be normalized such that

∑

si

ma→i(si) = 1.
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We introduce the following notation

un
def
= ma→i(0), vn

def
= ma→j(0),

so that 1 − un = ma→i(1) and 1 − vn = ma→j(1). Using the update rules
(16)–(17), one obtains:

un+1 =
ψ00αj v̄n + ψ01ᾱjvn

(ψ00 + ψ10)αj v̄n + (ψ01 + ψ11)ᾱjvn

, (26)

vn+1 =
ψ00αiūn + ψ10ᾱiun

(ψ00 + ψ01)αiūn + (ψ10 + ψ11)ᾱiun

, (27)

where αi
def
= b∗

i (0), ψyz
def
= ψ(σi = y, σj = z) and using the convention

z̄
def
= 1− z.

Lemma 6. The sequences (un)n∈N and (vn)n∈N, defined recursively by (26)
and (27), converge to a unique fixed point for any (u0, v0) ∈]0, 1[2.

Proof. Since the roles of un or vn are symmetric, we will only prove the
convergence of un. From (26) and (27), we obtain a recursive equation of
the form un+2 = f(un) such as

f(x) =
h0x+K0

(h0 + h1)x+ (K0 +K1)
,

with

h0
def
= ψ00αj(ᾱiψ11 − αiψ01) + ψ01ᾱj(ψ10ᾱi − ψ00αi),

h1
def
= ψ10αj(ᾱiψ11 − αiψ01) + ψ11ᾱj(ψ10ᾱi − ψ00αi),

K0
def
= ψ00ψ01αi, K1

def
= αi(ψ10ψ01αj + ψ11ψ00ᾱj).

The derivative of f is

f ′(x) =
h0K1 − h1K0

(

(h0 + h1)x+ (K0 +K1)
)2 ,

which is of constant sign. If f ′(x) ≥ 0, then u2n and u2n+1 are monotonic,
and, because un is bounded, we can conclude that both u2n and u2n+1

converge. If we could prove that there is a unique fixed point in the interval
[0, 1], we would have proved that un converges.

Let us begin by discarding some trivial cases. First the case f(1) = 1
implies that αi = 1 and

h0 = −ψ00ψ01 = −K0,

h1 = −ψ10ψ01αj − ψ11ψ00ᾱj = −K1,

which leads to f being a constant function equal to K0
K0+K1

. When f(0) = 0,
one has αi = K0 = K1 = 0, and f is again constant. The cases f(1) = 0
and f(0) = 1 are treated similarly and f is still a constant function, which
implies the trivial convergence of un.
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ψa1
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σN−1

ψaN−1
✉

σN

Figure 8: Chain of N pairwise factors, the extremal variables σ1 and σN are
observed.

Case 1: f is increasing At least one fixed point exists in [0, 1] since
f([0, 1]) ⊂ [0, 1]. Studying the roots of f(x) − x shows that the number
of fixed points is at most 2 since these fixed points are roots of a degree 2
polynomial.

Since f(0) > 0, f being increasing and f(1) < 1 the number of fixed
points has to be odd, indeed the graph of f must cross an odd number of
times the first bisector. One can conclude that there is only one fixed point
in [0, 1], so both u2n and u2n+1 converge to the same fixed point.

Case 2: f is decreasing We just have to consider the sequence (1 −
un)n∈N, which is similar, but will be defined by recurrence of the form 1 −
un+2 = g(1 − un) with a function g such as g′ is positive and the result of
Case 1 applies.

The case we just studied is in fact much more general than it looks.
Indeed, as soon as a tree gets stuck between exactly two nodes with fixed
beliefs, the situation is equivalent and leads to the result of Proposition 5.

Proof of Proposition 5. First it is trivial to see that fixing the beliefs of a
set of nodes V

∗ ⊂ V has the effect of the graph cutting T (·,V∗) in term
of messages propagation. To conclude the proof, it is enough to focus on
proving the convergence on a tree with two leaves in V

∗. Consider the tree of
Figure 8; one can show that it is equivalent to the case of Lemma 6 for a well
chosen function ψ. Propagating the updates rules yields ma1→1(s1) ← Θ,
with

Θ ∝
∑

sN

(

∑

s1...sN−2

N−2
∏

i=1

ψai(sai)φi(si)
)ψaN−1

(saN−1
)b∗

r(sN )

maN−1→N (sN )
.

We define ψ̃ such as

ψ̃(s1, sN ) =
(

∑

s1...sN−2

N−2
∏

i=1

ψai(sai)φi(si)
)

ψaN−1
(saN−1

),

then we use the results of Lemma 6 to obtain the convergence of messages
on this tree. In the general case of a tree with two leaves in V

∗, leaves fixed
on variables σi, i ∈ {1 . . . N} will simply affect the local fields φi. The leaves
fixed on factors ai will affect the functions ψai . In fact, since the graph is a
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tree, we know that the information sent by σ1 and σN to these leaves will
not come back to σ1 and σN . These leaves send constant messages, which
can be integrated into the functions ψ and φ, in order to recover the setting
of Lemma 6.

33


	1 Introduction
	2 Latent variables definition
	2.1 A stochastically ordered mixture
	2.2 Choosing a good encoding function Lambda
	2.3 Decoding function Gamma

	3 Building pairwise dependencies
	3.1 Pairwise distributions estimation
	3.2 Latent Ising model estimation compatible with BP

	4 A message passing inference algorithm
	4.1 The BP algorithm
	4.2 Imposing beliefs: mirror BP

	5 Numerical experiments
	6 Conclusion
	A Proof of Proposition 5

