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Abstract: Scarf’s algorithm [20] provides fractional core elements for NTU-games. Biré and
Fleiner [3] showed that Scarf’s algorithm can be extended for capacitated NTU-games. In
this setting agents can be involved in more than one coalition at a time, cooperations may be
performed with different intensities up to some limits, and the contribution of the agents can
also differ in a coalition. The fractional stable solutions for the above model, produced by the
extended Scarf algorithm, are called stable allocations. In this paper we apply this solution
concept for the Hospitals / Residents problem with Couples (HRC). This is one of the most
important general stable matching problems due to its relevant applications, also well-known
to be NP-hard. We show that if a stable allocation yielded by the Scarf algorithm turns out
to be integral then it provides a stable matching for an instance of HRC, so this method
can be used as a heuristic. In an experimental study, we compare this method with other
heuristics constructed for HRC that are applied in practice in the American and Scottish
resident allocation programs, respectively. Our main finding is that the Scarf algorithm
outperforms all the other known heuristics when the proportion of couples is high.
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1 Introduction

Mechanism design in matching markets dates back to the seminal paper of Gale and Shapley [7] on
college admissions. ! They introduced the concept of stable matching, that is a fair solution where an
application of a student can be rejected by a college only if its quota is filled with better candidates. Gale
and Shapley gave an efficient algorithm to find a stable matching in this setting. It turned out [17] that
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the same method had already been used in the US resident matching program since 1952 (now called
NRMP, see [17, 19, 24]). This program was redesigned later [18], partly because the organisers wanted
to accommodate the wishes of couples. Since then couples can submit joint preference lists in order to
avoid being matched to hospitals far from each other. However, for the Hospitals / Residents problem
with couples (HRC) the existence of a stable matching is no longer guaranteed [17]. Moreover, the related
decision problem is NP-hard [16], therefore we need to use heuristics for large markets. There are many
recent papers on this problem by economists [18], [10], [11], [12], and by computer scientists [1], [21], [13],
[14] as well, see also an interdisciplinary survey [5]. In particular, Biré et al. [4] compared some old and
new heuristics for a setting that formerly featured in the Scottish resident allocation program [23, 25].

Another seminal paper in cooperative game theory is by Scarf [20]. He gave an algorithm to find a core
element for any balanced NTU-game. Aharoni and Fleiner [2] used this algorithm to find stable fractional
matchings for problems where the underlying graph is not necessarily bipartite. Biré and Fleiner [3]
generalised this result by showing that Scarf’s algorithm can be extended to find stable allocations for
NTU-games where both the agents and their cooperations can have capacities, and even when agents
have different contributions in a co-operation performed.

In this paper first we show that a restricted version of the HRC problem where couples may not
apply for a pair of positions in the same hospital, can be reduced to an integral stable allocation problem
(ISA) with no edge capacities, where we have a one-to-one correspondence between the stable solutions
of the two models. Furthermore, we show that the general HRC problem (where couples may apply for
a pair of positions in the same hospital) can be transformed into an integral stable allocation problem
with contributions (ISAC) and with no edge capacities, where the stable solutions for the latter problem
are stable solutions for the former. Biré and Fleiner [3] demonstrated that the original Scarf algorithm
always returns a stable allocation for both the ISA and ISAC problems with no edge capacities, and
whenever it outputs an integer solution it solves the problem. Therefore, the Scarf algorithm can be used
as a heuristic to solve all of these problems, ISA, ISAC and HRC as well.

After this, we present an experimental study, that follows up the work by Bird, Irving and Schlotter
[4], where we compare the performance of the Scarf algorithm and other heuristics described in [18] and
[4]. Our main finding is that the Scarf algorithm works very well if the proportion of couples is high.
Although it is unrealistic to suppose that all the applicants form couples in a resident allocation program,
there can be other applications with a similar feature. For instance, in the Hungarian higher education
matching scheme [22] students can apply to pairs of teacher programmes, and they usually do so in a very
concentrated way. This results in a very similar problem, as a student applying to pairs of programmes
can be seen as a couple applying to pairs of positions. A similar situation occurred in the Scottish resident
allocation scheme (SPA) from 2000 to 2005, where the medical doctors had to apply for two posts, a
medical and a surgical one [8], although the elicitation of their preferences was more restricted than in
the Hungarian application.

2 Description of the models

First we present a model for the Hospitals / Residents problem with couples, similar to the one described
by Bird, Irving and Schlotter [4]. Then we present the integral stable allocation problem with contri-
butions by Biré and Fleiner [3]. Finally we describe the connections between some variants of these
two problems, and a possible implementation of the Scarf algorithm for this setting. Finally we give an
illustrative example.

2.1 The Hospitals / Residents problem with Couples (HRC)

In the Hospitals / Residents problem with Couples (HRC) we are given a set of applicants A =
{a1,as,...,a;} and a set of hospitals H = {h1, ho, ..., hy, } with b(h,) denoting the capacity of hospital
hp. The set of applicants can be partitioned into single applicants S = {aq,az,...,a,,} and members
of couples, where the set of couples is denoted by C = {c1,¢ca,...,¢,,}. The agents in this model will



be the hospitals, the single applicants and the couples. We denote the set of agents by YV = HUSUC,
where |Y| = n = nj, + ns + ne, and sometimes we will use notation y; € Y for referring to an agent
of some kind (i.e. hospital, single applicant or couple). The preference list of a single applicant a; € S
contains hospitals in the order of her preferences, whilst the preference list of couple (a;,a;) € C con-
tains pairs of hospitals in the order of their joint preferences. An application of a single applicant to a
hospital is referred to as a single application, whilst a joint application is made by a couple to a pair of
hospitals. In our general model we allow a couple to apply for a pair of positions in the same hospital,
in which case we refer to this application as a combined application. Let us denote a general single
application by [a; — hp], a joint application by [(a;,a;) — (hp,hq)] and a combined application by
[(a;,a;) — hp), with the three corresponding sets of applications denoted by E®, E/ and E©, respec-
tively, where E° U EY UEY = E = {ej,e9,..., e, }. For simplicity we assume that the residents apply
to hospitals that are acceptable for them and every resident applying to a hospital is acceptable for that
hospital. A matching M consists of employments of form (a;, h,), where if a; € S then [a; — h,] € E®,
and if (a;,a;) € C then either [(a;,a;) — (hy, hy)] € E7 and also {(a;, hy) € M, or [(a;,a;) — h,] € E€
and also (aj, hp) € M. Let M(a;) denote the hospital where a; is allocated in M, if any, and let M (h,)
denote the set of applicants allocated to h,. A matching has to respect the capacity constraints, i.e. no
applicant may be allocated to more than one hospital and no hospital may employ more residents than its
capacity, so [M(a;)| <1 and |M(hy)| < b(hy). We say that hy, is full with respect to M if [M (h,)| = b(hp)
and undersubscribed otherwise. Finally we note that we can also accommodate the possibility that only
one member of a couple applies for a position (and the other member remains unmatched) in our model
by simply introducing a dummy hospital with no capacity constraint, which would correspond to the
outside option.

To define stability we need to specify the preferences of the hospitals over the set of applications. We
suppose that every hospital has a strict preference ordering over the acceptable applicants. From these
rankings we will derive the definition of stability, that is a slight extension of the stability definition by
Biré, Irving and Schlotter [4]2. A matching M is stable if it is not blocked by a pair (a;, h,) consisting of a
single applicant a; and a hospital h,, or by a coalition {(a;, a;), (hp, hq)) consisting of a couple (a;, a;) and
distinct hospitals h, and kg, or by a coalition ((a;,a;), h,) consisting of a couple (a;,a;) and a hospital
hyp.

Definition 1 A single applicant a; and a hospital hy, block M if

(a) a; is unmatched, or prefers h, to M(a;); and
(b) hy, is undersubscribed, or ranks a; higher than a member of M(h,).

A couple (a;,a;) and an acceptable pair of distinct hospitals hy, and hq block M if
(c) a; and a; are unmatched, or (a;,a;) prefers (hy, hq) to (M(a;), M(a;)); and
(d) hy is undersubscribed, or h, = M(a;), or hy, ranks a; higher than a member of M(h,); and
(e) hq is undersubscribed, or hq = M(a;), or hy ranks a; higher than a member of M(hy).

We say that a couple (a;,a;) and a hospital h,, acceptable to both a; and a;, block M if
(f) a; and a; are unmatched, or (a;,a;) prefers h, to (M(a;), M(a;)); and
(g) either

— (i) hyp has at least two free places in M; or

2In the model described in [4] the applicants are ranked in the same way by all hospital according to a master list, and
the joint applications of the couples are derived from the individual preferences by the members of the couple in a specific
way. Our definition presented here is an extension of that model as we allow hospitals to rank their applicants differently
and we have no restriction on how the joint preference lists of the couples are formed.



— (i1) hy, has one free place in M, and hy, € {M(a;), M(a;)} or both a; and a; are higher ranked
by hy than a member of M(hy); or

— (iii) hy is full in M and
1. hy € {M(a;),M(a;)} and both a; and a; are higher ranked by h,, than a member of M (hy);
or

2. both a; and a; are higher ranked by h, than a member a, of M(hy), and ai is a linked
applicant whose partner is also in M(hy,); or

3. both a; and a; are higher ranked by h, than at least two members of M (hy).

The rationale behind this stability definition is described in [4] in detail®>. We do not say that this is
the only reasonable stability definition. However, as described in [4] and as we will also show in Subsection
2.4, this stability definition implies a natural preference ordering over the applications by the hospitals,
and the choice functions expressed by the hospitals over the set of applications can be derived from these
preferences in a responsive way. This is the key fact that ensures that this problem can be transformed
to the ISAC model.

2.2 Couples problems under quota-responsive choice functions

In this subsection we show that the above defined HRC model can be described with a general matching
with couples model, where the choice functions of the hospitals satisfy the so-called quota-responsive
property. This property turns out to be crucial in proving the solvability of the HRC problem with the
Scarf algorithm.

In a general model of matching with couples (see e.g. in [15]), the hospitals have choice functions over
the set of applications. Formally, let Chy, denote the choice function of hospital h,, which means that
from a set of applications X C E, Chy,, will be the set of chosen applications by A,. The choice function
of a single applicant or a couple will simply select the best application from a set of applications. For a
set of applications X, let X,, denote the applications in which agent 7 is involved, where agent 7 can be a
single applicant, a couple or a hospital. A stable matching in this general setting can be defined as a set
of applications X if Ch,,(X) = X,, and there exists no application e € E'\ X such that e € Chy, (X Ue)
for all agent i who is involved in e. The first condition means that the matching is individually rational
and the second condition ensures the lack of a blocking coalition.

A choice function of a hospital is said to be quota-responsive* if it selects the chosen set in a greedy
fashion. More precisely, for each choice function Chy, we require that h, has a strict preference order
over the applications it is involved in, denoted by <j,, and from a set of applications h;, greedily selects
the best applications according to <j, until the number of selected applicants would violate its quota.
Note that if no combined applications are present then the hospital simply chooses the best quota-many
applications from the set offered. However, when combined applications are allowed then some combined
applications might be rejected, when the hospital has only one position remained, before the last slot of
the hospital is filled by a single or joined application.®

Proposition 2 The HRC problem is a matching with couples problem under quota-responsive choice
functions.

3Here we only note that this particular stability definition reflects the aim of the matching scheme coordinators to have
cutoff scores announced for every hospital. A single application is rejected if the resident does not achieve the cutoff score.
Similarly, a joint application is rejected if either of the residents in the couple does not achieve the cutoff score at a hospital.
Therefore the fairness of the allocation can be verified relatively easily, at least for single and joint applications. We note
that cutoff scores are used in many higher education matching schemes as well, such as the Hungarian, Irish and Spanish
systems; see [6].

4This property was called generalized responsive in [15] in a more general setting.

5We also note that in this definition one could forbid the hospitals to select two applications, where the same applicant
is involved, as the hospital cannot hire someone twice. However, there would be no difference in the definition of stable
matchings, since a solution where multiple applications of an applicant are chosen is not individually rational for that
applicant.



PrOOF: The strict preference <, over the set of applications of hospital h;, is created as follows.
Suppose first that hospital h, has to decide between two combined applications, say [(a;, a;) — hp] and
[(ag,a;) — hp|, where a; is higher ranked than a; and a; is higher ranked than ay. In this case h,
will decide according to the worst candidates of these couples, so it would prefer the first application if
and only if a; is higher ranked than a;. Now, let us consider how the hospital would choose between a
resident a; applying in a single or joint application and a pair of residents (a;, a;) applying in a combined
application, where aj, is higher ranked by h, than a;. Again we suppose that h, will decide according
to its ranking on the weakest candidates, so it will prefer the application involving a; if and only if a;
is higher ranked than a; by h,. It is possible that indifferences occur in this preference order between
two joint or combined applications from the same couple, but we suppose that the hospital breaks these
ties according to the couple’s preferences. What remains is to verify that an application e is blocking for
a matching M in the HRC context if and only if e is blocking for the corresponding set of applications
X with regard to the above defined quota-responsive choice functions. This is obvious for single and
joined applications. Regarding a combined application [(a;,a;) — hp), condition (g) of the HRC stability
definition is satisfied if and only if h,, would select this application when offered together with the set of
applications X. [

2.3 Integral stable allocation problem with contributions

The stable allocation problem with contributions can be defined for hypergraphs as follows. Suppose
that we are given a hypergraph H(V, E) and for each vertex v € V(H) a strict preference order over the
edges incident with v, that corresponds to the preferences of the players over the contracts in which they
can be involved, where e <, f denotes that player v prefers contract f to e. Furthermore, we introduce a
contribution vector 1. : V(H) — Ry for each edge e of the hypergraph that represents the contributions
of the agents in contract e. We assume that v € e if and only if r.(v) > 0, that is when agent v can
contribute to contract e. Suppose that we are given nonnegative bounds on the vertices b: V(H) — Ry
and nonnegative capacities on the edges ¢ : E(H) — R;. A nonnegative function x on the edges is an
allocation if z(e) < c(e) for every edge e and ) . .. x(e)re(v) < b(v) for every vertex v. An allocation
is stable if every unsaturated edge e (i.e., every edge e with x(e) < c¢(e)) contains a vertex v such that
Y pwefe<,f E(F)re(v) = b(v). If every bound, capacity and contribution is integral and the problem
is to find an integral stable allocation x then we refer to this problem as the integral stable allocation
problem with contributions (ISAC). Finally, if we allow unit contributions only then we get the integral
stable allocation problem (ISA).

Bir6é and Fleiner [3] showed that every stable allocation problem with contributions has a solution
that can be obtained by the extended Scarf algorithm. Furthermore, if we have no capacities on the
edges then the existence of a stable allocation is guaranteed by the original Scarf lemma, and one stable
allocation can be obtained by the original Scarf algorithm.

The exact description of the Scarf algorithm can be found in [20] and its extension for ISAC is described
in [3]. Here we only want to highlight some important facts of the Scarf algorithm (and its extension).
The algorithm starts by perturbing the capacities (and also the preference matrix if there are ties in
the preferences, which is not the case in our particular setting). Based on the perturbation, the Scarf
algorithm is deterministic. It takes a well-defined pivot step in each round, which can be implemented
efficiently, i.e. in polynomial time in the number of edges of the underlying hypergraph (the number of
possible contracts). However, the number of pivot steps in the Scarf algorithm can be exponentially large,
as the problem of finding a stable allocation is PPAD-hard even for unit capacities [9]. Some related
open questions are listed in [3] and also in the last section of this paper.

2.4 Solving HRC with the Scarf algorithm

In this subsection we show how the HRC problem can be reduced to an ISA or ISAC problem, depending
whether combined applications are allowed. These results are based on the fact that the HRC problem is a
special matching with couples problem under quota-responsive choice functions, as shown in Proposition



2. Therefore our results can be extended to these more general class of problems. First we consider the
case when no combined applications are allowed.

Theorem 3 An instance of HRC with no combined applications can be reduced to an instance of ISA,
where the set of stable matchings in the former problem is in one to one correspondence with the set of
integral stable allocations in the latter.

PROOF: Suppose that we have an instance of HRC, as described in subsection 2.1. We create an
instance of ISA with no edge capacities as follows. Vertex set V of hypergraph H(V, E) represents the
agents, namely the single applicants, couples and hospitals. The edges E of H(V, E) correspond to the
applications (i.e. possible contracts). For a single application let the contribution of both the resident
and the hospital in this contract be one, and similarly, in a joint application let the contributions of the
couple and the two hospitals be one each. The capacities of the hospitals are the same as the capacities
of the corresponding vertices, the other vertices have unit capacities and no capacity restriction is needed
for the edges.

The preferences of the vertices over the contracts in the ISA instance should be the same as the pref-
erences of the agents (i.e. single applicants, couples and hospitals) over the applications they are involved
in, as defined in the proof of Proposition 2. It is now immediate to see the one-to-one correspondence
between the set of stable matchings of the HRC instance and the set of integral stable allocations of the
ISA instance: an application is accepted if and only if the corresponding edge has unit value in the stable
allocation. A single or joint application is blocking in the HRC context if and only if it is blocking for
the quota-responsive choice functions defined in the more general matching with couples setting if and
only if the corresponding edge is blocking in the ISA instance. [J

Theorem 4 An instance of HRC can be transformed to an instance of ISAC, where the integral stable
allocations for the latter problem correspond to the stable matchings for the former one.

PROOF: Suppose that we have an instance of HRC, as described in Subsection 2.1; we create an instance
of ISAC as follows. In addition to the proof of Theorem 3, here we need to adjust our construction by
accommodating the combined applications. A combined application is also represented by an edge in the
hypergraph, where the contribution of the couple is one and the contribution of the hospital is two, since
the couple applies for two positions at the hospital.

Here again the vertices in the ISA instance that correspond to the hospitals should have the same
strict preferences over the contracts which defined the quota-responsive choice functions over the set
of applications, as described in the proof of Proposition 2. One can now verify that an integral stable
allocation of the ISAC instance corresponds to a stable matching of the HRC instance, where the edges
with unit values represent the accepted applications, since a blocking application for the HRC instance
(which is also blocking for the more general matching with couples problem under quota-responsive choice
functions) is a blocking edge in the ISAC instance as well. [

Note that the converse of the above theorem is not true. A stable matching for a HRC instance might
not be an integral stable allocation for the corresponding ISAC instance. This is because in the HRC
stability definition it is possible that a combined application is rejected as there is only one place left at
a hospital, but a less preferred single or joint application is accepted for that last place. In particular,
suppose that there is only one position at hospital h; and there is a combined application [(a1, az) — hq]
and a single one [a3 — hy], where the applicants are ranked according to their indices. Here the unique
stable allocation is when the combined application is taken with half weight. However, the only stable
matching is when ag is matched to h;. This stable matching cannot be translated to a stable allocation
as the rejected combined application would emerge as a blocking edge.

When combined applications are allowed then there may be different reasonable stability concepts.
Our transformation described in Theorem 4 works as long as the hospitals can rank the applications, and
from these strict preferences we may derive the hospitals’ choice functions over the set of of applications



in a quota-responsive way. The latter means that from a set of applications a hospital accepts the best
applications one by one, as long as the acceptance of an application does not violate its quota.

Finally we note that if every hospital has one position only then we get a stable matching problem
for a hypergraph [2], that is also known as an NTU-game, which is almost a hedonic coalition formation
game, except that a couple can apply to a pair of hospitals in two possible ways. It is worth mentioning
that the NP-hardness results [16], [4] hold for this simple case as well.

2.5 An implementation of the Scarf algorithm for HRC

In this subsection we give a possible implementation of the Scarf algorithm for HRC to make the paper
more self-contained, further details on this can be found in [3]. The following description of the Scarf
Lemma [20] is due to Aharoni and Fleiner [2] (here [n] denotes the set of integers 1,2,...,n, and §; ; = 1
if i = j and 0 otherwise).

Theorem 5 (Scarf Lemma [20]) Let n,m be positive integers, and b be a vector in R’;. Also let A =
(Ai;),C = (Ci ;) be matrices of dimension n x (n+m), satisfying the following three properties: the first
n columns of A form ann xn identity matriz (i.e. A; j =6 fori,j € [n]), the set {x € R™™ : Az = b}
is bounded, and C;; < C; ), < C,j for any i € [n],i # j € [n] and k € [n+m]\ [n].

Then there is a nonnegative vector x in RT‘"L such that Az = b and the columns of C' that correspond
to supp(zx) form a dominating set, that is, for any column i € [n+ m] there is a row k € [n] of C' such
that Cy; < Cj for any j € supp(x).

For a given instance of HRC, we now show a possible setting for matrices A and C such that the
solution z of the above Scarf Lemma corresponds to a stable allocation of the corresponding instance of
ISAC (and an integral solution x corresponds to a stable matching for the HRC problem). For i € [n],
let row ¢ and column ¢ of matrices A and C correspond to agent y; € Y, and for j € [m], let column
n+ j correspond to application e; € E. When ordering the agents we will take the single applicants first,
followed by the couples and then by the hospitals. Let the n x m submatrix of A on the right side of A
contain the contribution vectors of the applications, namely

e for a single application e; = [a; — hy], let Ajnyj = An,dnetpnts = 1L,
e for a joint application e; = [cx — (hp, hy)], let An,+kn+j = Anytnetpnti = Anotnetqn+j = 1 and
e for a combined application e; = [cx — hy], let Ay 4k nt; =1 and Ap tn 4pnt; = 2.

All the other elements of A are set to be zero. Regarding C, let C;; = 0 for every ¢ = 1...n. For every
pairdand j (i =1...nand j=1...n+m)if A; ; = 0thenlet C; ; = n+2m+1—j. Otherwise, ife; € E
is the k-th best application of agent y; then let C ,,+; = m 4+ 1 — k, where the preferences of hospital h,
are as explained in the proof of Proposition 2, denoted by <j,. Finally, for the i-th coordinate of the
right hand side vector b, let b; = 1 if y; € SUC and let b; = b(y;) if y; € H (i.e. the capacity of the
hospital).

This setting satisfies the conditions of Scarf Lemma. Furthermore, for an agent y; if contract e; does
not involve y; then C; ,; > m, and if e; involves y; then Cj ,,4; < m with higher value when e; is more
preferred by y;. Therefore we can show that supp(x) is a dominating set for a solution x if and only if it
is also a stable allocation for the corresponding ISAC problem (see details in [3]). Now we describe the
execution of the Scarf algorithm, as described in [20].

Scarf algorithm

The Scarf algorithm is an iterative algorithm where each phase consist of a pivot step and an ordinal
step. Let z° denote the feasible solution (i.e. where Az = b) after the i-th pivot step, and for a feasible
solution z¢, let FB" = supp(z?) be the feasible basis. At the beginning of the process we set F'B? = [n],
which means that initially we have z°(j) = b; for each index j € {1...n} (i.e. for each agent y; € V).
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We also maintain an ordinal basis, denoted by OB’ after the i-th ordinal step. OB’ always forms a
dominating set, that is, for any column ¢ € [n + m| there is a row k € [n] of C such that Cy; < Cj,; for
any j € OB®. Moreover, each of the columns in OB has a row-minimal element in the submatrix of C
restricted to these columns. Let ¢(i) denote the index of the row where column ¢ has a row-minimum in
this submatrix. During the execution of the algorithm the two basis will always share n — 1 coordinates
and the algorithm will terminate whenever they coincide. Now we describe the initial ordinal step and
the subsequent pivot and ordinal steps.

Initial ordinal step: Let OB® = FBY\ {1} Utg, where tq € [n+m]\ [n] such that C} ;, is maximal.
Note that OB! forms a dominating set.

z'_-th pivot step for i > 1: We add ¢;_; to FB*~!, where t;_; is_ the new element that was added to
OB . Let s; denote the coordinate that is now removed from F'B* due to the basis transformation. If
s; = 1 then FB* = OB*~! and the algorithm terminates.

i-th ordinal step for i > 1: We remove s; from OB~!. Now there will be a column j in OB*~!\ {s;}
with two row-minimums. Suppose that j had a row-minimum in row k in OB*~!, so currently ¢(j) = k,
and let [ denote the new row where the element of column j is also minimal in submatrix OB*~!\ {s;}.
Let us reset ¢(j) = I. Now we will add a new column ¢; in such a way that ¢; will have a row-minimum
in row k£ and the row-minimal elements of the other columns remain the same, formally, let ¢; be the
column such that Cy ¢, is maximal under the restriction that Cy(;).; < Cy(j).e; for each j € OB\ {s;}.
Let then OB* = OB*~!\ {s;} U {t;} and q(t;) = k. If FB* = OB’ then the algorithm terminates.

As Scarf [20] showed this process is well-defined and terminates in finite time if no degeneracy occurs.
To avoid degeneracy, besides having different values in every row of C', vector b representing the vertex-
bounds should be also perturbed (see more about this issue in [3]).

Finally, we illustrate the usage of the Scarf algorithm for a particular instance of HRC.

2.6 Example

This example was given by Bird, Irving and Schlotter [4] as a difficult instance of HRC, for which most
heuristics currently used in real applications would fail to find the unique stable solution. Suppose that
we have eight residents, comprising three couples (a1, as), (az,a4) and (ag, ag) together with two single
applicants ag and a7. There are eight hospitals, hq,...,hs, each with just one post. Suppose that the
residents are ordered in the same way by every hospital, according to their indices (a; best, ag worst),
and the individual and joint preference lists of the residents are as follows.

We can describe this problem as an instance of ISA, where the individual applicants, the couples and
the hospitals are represented by vertices, and each hyperedge corresponds to an application (either to an
individual application or to a joint application).

We tried to solve the above problem with the Scarf algorithm by using two different perturbations.
First we set b; = b; +&; = b; + 1/p101—s, where p; is the i-th prime number, and we obtained the following
half-integral solution:



.I‘([ag — h,g}) = O, I([a;g — h5D = 1, a:([a7 — hﬁ]) =
z([(a1,a5) — (hs, he)]) = 0, z([(az,as) — (ha, hs)])
(hs, h7)]) = 1, z([(as, as) — (he, hs)]) = 3.

3> #([ar = hg]) = 3, x([(a1,a5) = (h1, ho)]) = 1,
= 07 m([(a2,a4) — (hl,hg)]) = 0, 1‘([(0@,0,4) —

However, by setting b; = b; +&; = b; + 1/p101+i, where p; is the i-th prime number®, we obtained

.I([a3 — th = 0, l‘([ag — h5]) = 17 x([a7 — hﬁ]) = O, JI([CL7 — hg]) = 1, x([(al,a5) — (hl,hg)]) = O7
z([(a1,a5) — (hs,he)]) = 1, z([(az,a4) = (ha, hs)]) = 0, 2([(az,as) — (h1,h2)]) = 1, z([(a2,a4) —
(hs, h7)]) = 0, x([(as, as) — (he, hs)]) =0,

which corresponds to the unique stable matching for this instance, namely

M = {<a1, h3> N <a2, h1> s <(J,37 h5> 5 <CL47 h2> 5 (a5, h6> 5 <a7, h8>}

Therefore this example also illustrates that different perturbations may result in different stable
allocations with the possibility that some of them are integral and some are fractional solutions.

3 Experimental comparison of heuristics

In the redesign of the NRMP, Roth and Peranson [18] constructed a heuristic method that incorporates
the admission of couples. Motivated by the redesign of the Scottish resident allocation scheme, Bird et
al. [4] implemented some more complex heuristics and compared them with some variants of the Roth-
Peranson method. We also implemented the Scarf algorithm, and used it as a new heuristic to solve
HRC, as described in the previous section. We conducted simulations on the same instances that Biré6 et
al. [4] studied (see Table II. in their paper). But we shall note that the Scarf algorithm was implemented
in a different platform and so we did not compare its running time with the other heuristics studied
in [4]. For each run of the Scarf algorithm we used one perturbation only. (It is question for future
research whether different perturbations can result in significantly different stable allocations for random
or structured instances). The table below summarises our findings.

Number of couples

Algorithm 12 [ 25 [ 50 | 75 [ 100 [ 125 [ 150 [ 175 | 200 | 225 [ 250
Roth-Peranson 952 [ 897 | 701 | 547 [ 395 | 277 [ 170 | 83 41 9 3
Best heuristics in B-I-S || 976 | 958 | 911 | 870 | 811 | 752 | 682 | 546 | 281 | 71 10
Scarf (int. solution) 895 | 813 | 649 | 532 | 426 | 356 | 316 | 261 | 202 | 174 | 158
Scarf half-int. solution || 999 | 997 | 978 | 958 | 918 | 859 | 816 | 777 | 692 | 695 | 588
Scarf frac. solution 105 | 187 | 351 | 468 | 574 | 644 | 684 739 798 826 842

Av. # of frac. weights 39 | 48 | 5.7 | 6.7 | 7.6 | 88 | 10.0 | 10.8 | 12.8 | 13.5 | 15.7
# of frac. weights =1 41 61 | 104 | 127 | 119 | 126 | 106 | 114 97 85 69
# of frac. weights = 2 2 9 21 30 36 41 43 43 44 48 41
# of frac. weights =3 14 14 29 38 38 33 35 44 29 36 22
# of frac. weights =4 7 18 19 25 40 37 39 38 30 32 41
# of frac. weights =5 11 19 18 25 33 42 34 30 40 28 30

Table 1: Randomly created instances with couples for 500 residents.

6This choice of using the reciprocal of large prime numbers to perturb the capacity vectors was a handy heuristic, as
the prime numbers are accessible in MATLAB, that we used for implementing the Scarf algorithm. The ratio behind using
this perturbation to avoid degeneracy is that it is highly unlikely that a linear combination of these small added numbers
would result in zero, especially if the original matrix contains only numbers 0, 1 and 2. Indeed we did not experience any
degeneracy during the execution of our algorithm.



In this experiment there were 500 residents and the proportion of couples varied from 5% to 100% 7.
For each proportion of couples there were 1000 random instances generated and we counted how many
instances each variant could solve. We remark that we do not know how many of these random instances
were actually solvable. Note also that for the set of heuristics by Bir6 et al. [4] the results given in the
table are not for a single heuristic, but they are always for the heuristic which performed best on the
corresponding set of parameter values.

The table shows that the heuristics by Biré et al. [4] obtained a much better success ratio than the
Roth-Peranson heuristics, especially for high proportions of couples. But surprisingly, the Scarf-algorithm
was much better than the others when (almost) all the applicants form couples. As we have already noted,
this situation occurs in some applications, such as the Hungarian higher education matching scheme
(where many applicants apply for a pair of studies).

For completeness, we also included some statistics for those instances that the extended Scarf algo-
rithm could not solve. In particular, we listed how many times the Scarf heuristic returned half-integer
solutions (these may be interpreted as half-time contracts), and for how many instances the solution
contained only one, two, three, four or five fractional weights. The latter properties of the fractional
solutions indicate how far they were from being integral. In particular, having one single fractional
weight in a stable allocation must imply that a combined application has half weight, meaning that these
two residents would get two half-time jobs in a hospital. In this case, if we would omit the couple and
reduce the capacity of that hospital by one then the remaining matching would be stable for the reduced
instance.

4 Further notes

In this paper we showed how the original Scarf algorithm may be used as a successful heuristic for
solving the Hospitals / Residents problem with Couples, which is a relevant problem in many practical
applications. There are still a number of interesting questions that would be worth investigating as
extensions to our work presented. How does the Scarf algorithm work for the particular case of HRC?
Is there some more efficient way to run this algorithm for HRC than the original matrix method? What
are the possible effects of the perturbations used in the Scarf algorithm? If the Scarf algorithm returns a
fractional solution, can we approximate an integral solution from that? Very recently Nguyen and Vohra
[15] showed how the existence of a stable matching can be guaranteed for adjusted quotas in a version of
the HRC problem and its extensions. Their proof is based on a rounding technique which starts with a
fractional stable solution and returns an integral stable solution for a new instance with adjusted quotas.

We also believe that the stable allocation problem with contributions may accommodate many further
relevant problems, and so the Scarf algorithm and its extensions are worth considering as heuristics for
solving other problems as well.
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