Skip to main content
Log in

Rewriting input expressions in complex algebraic geometry provers

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We present an algorithm to help converting expressions having non-negative quantities (like distances) in Euclidean geometry theorems to be usable in a complex algebraic geometry prover. The algorithm helps in refining the output of an existing prover, therefore it supports immediate deployment in high level prover systems. We prove that the algorithm may take doubly exponential time to produce the output in polynomial form, but in many cases it is still computable and useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogomolny, A.: Viviani’s 3D analogue from interactive mathematics miscellany and puzzles. Downloaded from. http://www.cut-the-knot.org/triangle/VivianiTetrahedron.shtml, accessed in April 2016

  2. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., Weitzhofer, S.: Automated theorem proving in geogebra current achievements. J. Autom. Reason. 55(1), 39–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou, S.-C.: Mechanical Geometry Theorem Proving. Springer Science + Business Media, Berlin (1987)

    Book  MATH  Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Ideals varieties and algorithms. Springer, New York (2007)

    Book  MATH  Google Scholar 

  5. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de(2015)

  6. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Autom. Reason. 21(3), 357–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, X.-S.: Automated geometry diagram construction and engineering geometry. In: Automated deduction in geometry. ADG 1998. Lecture Notes in Computer Science, 1669. Springer, Berlin (1999)

  8. Hoyles, C., Jones, K.: Proof in dynamic geometry contexts. In: Mammana, C., Villani, V. (eds.) Perspectives on the teaching of geometry for the 21st century, pp 121–128. Kluwer, Dordrecht (1998)

  9. Kapur, D.: Using Grȯbner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399–408 (1986)

    Article  MATH  Google Scholar 

  10. Kovács, Z., Sólyom-Gecse, C.: GeoGebra tools with proof capabilities. arXiv:1603.01228 (2016)

  11. Parisse, B.: About Giac’s Gröbner basis and ideal elimination computation. Presentation at the conference on Applications of Computer Algebra, Kassel. http://test.geogebra.org/kovzol/guests/BernardParisse/aca16-parisse.pdf (2016)

  12. Petrović, I., Janičić, P.: Integration of OpenGeoProver with GeoGebra. http://argo.matf.bg.ac.rs/events/2012/fatpa2012/slides/IvanPetrovic.pdf (2012)

  13. Recio Muñiz, T. J.: Cálculo simbólico y geométrico. Editorial Síntesis, Madrid (1998)

    Google Scholar 

  14. Recio, T.T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary geometry). In: Laganà, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) Computational science and its applications ICCSA 2004. Lecture Notes in Computer Science 3044. Springer, Berlin (2004)

  15. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Autom. Reason. 23, 63–82 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, W.-T.: On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci. Sinica 21, 159–172 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Ye, Z., Chou, S.-C., Gao, X.-S.: An introduction to java geometry expert. In: Automated deduction in geometry, pp. 189–195. Springer Science + Business Media (2011)

Download references

Acknowledgments

The MEP formula was suggested by Bernard Parisse, inventor of Giac.

We are thankful to Predrag Janičić, Julien Narboux, Francisco Botana and the anonymous reviewers for their suggestions to improve the text of this paper.

First and second authors are partially supported by the grant MTM2017-88796-P from the Spanish MINECO (Ministerio de Economía y Competitividad) and the ERDF (European Regional Development Fund). Second author was partially supported by the grant MTM2014-54141-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Kovács.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, Z., Recio, T. & Sólyom-Gecse, C. Rewriting input expressions in complex algebraic geometry provers. Ann Math Artif Intell 85, 73–87 (2019). https://doi.org/10.1007/s10472-018-9590-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9590-1

Keywords

Mathematics Subject Classification (2010)

Navigation