Skip to main content
Log in

Fundamental conditions on the sampling pattern for union of low-rank subspaces retrieval

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper is concerned with investigating the fundamental conditions on the locations of the sampled entries, i.e., sampling pattern, for finite completability of a matrix that represents the union of several subspaces with given ranks. In contrast with the existing analysis on Grassmannian manifold for the conventional matrix completion, we propose a geometric analysis on the manifold structure for the union of several subspaces to incorporate all given rank constraints simultaneously. In order to obtain the deterministic conditions on the sampling pattern, we characterizes the algebraic independence of a set of polynomials defined based on the sampling pattern, which is closely related to finite completion. We also give a probabilistic condition in terms of the number of samples per column, i.e., the sampling probability, which leads to finite completability with high probability. Furthermore, using the proposed geometric analysis for finite completability, we characterize sufficient conditions on the sampling pattern that ensure there exists only one completion for the sampled data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashraphijuo, M., Aggarwal, V., Wang, X.: Deterministic and probabilistic conditions for finite completability of low-Tucker-rank tensor. Accepted to IEEE Transactions on Information Theory, arXiv:1612.01597 (2016)

  2. Ashraphijuo, M., Aggarwal, V., Wang, X.: On deterministic sampling patterns for robust low-rank matrix completion. IEEE Signal Process. Lett. 25(3), 343–347 (2018)

    Article  Google Scholar 

  3. Ashraphijuo, M., Madani, R., Lavaei, J.: Characterization of rank-constrained feasibility problems via a finite number of convex programs. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6544–6550 (2016)

  4. Ashraphijuo, M., Wang, X.: Fundamental conditions for low-CP-rank tensor completion. J. Mach. Learn. Res. 18(63), 1–29 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Ashraphijuo, M., Wang, X.: A characterization of sampling patterns for union of low-rank subspaces retrieval problem. In: International Symposium on Artificial Intelligence and Mathematics, pp. 1–8 (2018)

  6. Ashraphijuo, M., Wang, X.: Clustering a union of low-rank subspaces of different dimensions with missing data. Pattern Recogn. Lett. 120, 31–35 (2019)

    Article  Google Scholar 

  7. Ashraphijuo, M., Wang, X., Aggarwal, V.: Deterministic and probabilistic conditions for finite completability of low-rank multi-view data. arXiv:1701.00737 (2017)

  8. Ashraphijuo, M., Wang, X., Aggarwal, V.: Rank determination for low-rank data completion. J. Mach. Learn. Res. 18(1), 3422–3450 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Ashraphijuo, M., Wang, X., Zhang, J.: Low-rank data completion with very low sampling rate using newton’s method. IEEE Trans. Signal Process. 67(7), 1849–1859 (2019)

    Article  MathSciNet  Google Scholar 

  10. Balzano, L., Eriksson, B., Nowak, R.: High rank matrix completion and subspace clustering with missing data. In: The Conference on Artificial Intelligence and Statistics (AIStats) (2012)

  11. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  12. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imag. Sci. 6(1), 199–225 (2013)

    Article  MathSciNet  Google Scholar 

  13. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  Google Scholar 

  14. Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  15. Eldén, L.: Matrix Methods in Data Mining and Pattern Recognition, vol. 4. Society for Industrial and Applied Mathematics (2007)

  16. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797. IEEE (2009)

  17. Eriksson, B., Balzano, L., Nowak, R.: High-rank matrix completion. In: Artificial Intelligence and Statistics, pp. 373–381 (2012)

  18. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 1–19 (2011)

    Article  MathSciNet  Google Scholar 

  19. Gao, P., Wang, M., Chow, J.H., Berger, M., Seversky, L.M.: Missing data recovery for high-dimensional signals with nonlinear low-dimensional structures. IEEE Trans. Signal Process. 65(20), 5421–5436 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gao, P., Wang, M., Ghiocel, S.G., Chow, J.H., Fardanesh, B., Stefopoulos, G.: Missing data recovery by exploiting low-dimensionality in power system synchrophasor measurements. IEEE Trans. Power Syst. 31(2), 1006–1013 (2016)

    Article  Google Scholar 

  21. Gao, P., Wang, R., Wang, M., Chow, J.H.: Low-rank matrix recovery from quantized and erroneous measurements: Accuracy-preserved data privatization in power grids. In: 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 374–378. IEEE (2016)

  22. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: Models and algorithms. SIAM J. Matrix Anal Appl. 35(1), 225–253 (2014)

    Article  MathSciNet  Google Scholar 

  23. Harvey, N.J.A., Karger, D.R., Murota, K.: Deterministic network coding by matrix completion. In: ACM-SIAM Symposium on Discrete algorithms, pp. 489–498 (2005)

  24. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: IEEE Conference on Conference on Computer Vision and Pattern Recognition, pp. 1791–1798 (2010)

  25. Kreimer, N., Stanton, A., Sacchi, M.D.: Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction. Geophysics 78(6), V273–V284 (2013)

    Article  Google Scholar 

  26. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

    Article  MathSciNet  Google Scholar 

  27. Krishnamurthy, A., Singh, A.: Low-rank matrix and tensor completion via adaptive sampling. In: Advances in Neural Information Processing Systems, pp. 836–844 (2013)

  28. Liu, X.Y., Aeron, S., Aggarwal, V., Wang, X., Wu, M.Y.: Adaptive sampling of RF fingerprints for fine-grained indoor localization. IEEE Trans. Mob. Comput. 15 (10), 2411–2423 (2016)

    Article  Google Scholar 

  29. Liu, X-Y, Aeron, S., Aggarwal, V., Wang, X.: Low-tubal-rank tensor completion using alternating minimization. In: International Society for Optics and Photonics, pp. 984809–984809 (2016)

  30. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: A review. ACM SIGKDD Explor. Newslett. 6(1), 90–105 (2004)

    Article  Google Scholar 

  31. Pimentel, D., Nowak, R., Balzano, L.: On the sample complexity of subspace clustering with missing data. In: IEEE Workshop on Statistical Signal Processing (SSP), pp. 280–283. IEEE (2014)

  32. Pimentel-Alarcón, D, Boston, N., Nowak, R.D.: Deterministic conditions for subspace identifiability from incomplete sampling. In: IEEE International Symposium on Information Theory (ISIT), pp. 2191–2195 (2015)

  33. Pimentel-Alarcón, D, Balzano, L., Nowak, R.: Necessary and sufficient conditions for sketched subspace clustering. In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1335–1343. IEEE (2016)

  34. Pimentel-Alarcón, D, Boston, N., Nowak, R.: A characterization of deterministic sampling patterns for low-rank matrix completion. IEEE J. Selected Topics Signal Process. 10(4), 623–636 (2016)

    Article  Google Scholar 

  35. Pimentel-Alarcón, D, Nowak, R.: The information-theoretic requirements of subspace clustering with missing data (2016)

  36. Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: Advances in Neural Information Processing Systems, pp. 2967–2975 (2013)

  37. Signoretto, M., Dinh, Q.T., De Lathauwer, L., Suykens, J.A.K.: Learning with tensors: A framework based on convex optimization and spectral regularization. Mach. Learn. 94(3), 303–351 (2014)

    Article  MathSciNet  Google Scholar 

  38. Sturmfels, B.: Solving Systems of Polynomial Equations, Number 97, American Mathematical Society (2002)

  39. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex optimization. arXiv:1010.0789 (2010)

  40. Wang, W., Aggarwal, V., Aeron, S.: Tensor completion by alternating minimization under the tensor train (TT) model. arXiv:1609.05587(2016)

Download references

Acknowledgments

This work was supported in part by the U.S. National Science Foundation under Grant CCF-1814803 and in part by the U.S. Office of Naval Research under Grant N000141410667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraphijuo, M., Wang, X. Fundamental conditions on the sampling pattern for union of low-rank subspaces retrieval. Ann Math Artif Intell 87, 373–393 (2019). https://doi.org/10.1007/s10472-019-09662-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-019-09662-6

Keywords

Mathematics Subject Classification (2010)

Navigation