Skip to main content
Log in

A subdivision algorithm to reason on high-degree polynomial constraints over finite domains

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes an algorithm to reason on constraints expressed in terms of polynomials with integer coefficients whose variables take values from finite subsets of the integers. The proposed algorithm assumes that an initial approximation of the domains of variables is available in terms of a bounding box, and it recursively subdivides the box into disjoint boxes until a termination condition is met. The algorithm includes three termination conditions that allow using it for three related reasoning tasks: constraint satisfaction, enumeration of solutions, and hyper-arc consistency enforcement. Considered termination conditions are based on suitable lower and upper bounds for polynomial functions over boxes that are determined using new results proved in the paper. The algorithm is particularly appropriate to reason on high-degree polynomial constraints because the proposed method to determine lower and upper bounds can outperform alternative methods when high-degree polynomials in a moderate number of variables are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Bergenti, F., Monica, S.: Hyper-arc consistency of polynomial constraints over finite domains using the modified Bernstein form. Ann. Math. Artif. Intell. 80(2), 131–151 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bergenti, F., Monica, S.: Satisfaction of polynomial constraints over finite domains using function values. In: Della Monica, D., Murano, A., Rubin, S., Sauro, L. (eds.) Joint Proceedings of the 18th Italian Conference on Theoretical Computer Science and the 32nd Italian Conference on Computational Logic (ICTCS 2017 and CILC 2017), CEUR Workshop Proceedings, vol. 1949, pp 262–275. RWTH Aachen (2017)

  4. Bergenti, F., Monica, S.: Simple and effective sign consistency using interval arithmetic. In: Casagrande, A., Omodeo, E.G. (eds.) Proceedings of the 34th Italian Conference on Computational Logic (CILC 2019), CEUR Workshop Proceedings, vol. 2396, pp 89–103. RWTH Aachen (2019)

  5. Bergenti, F., Monica, S., Rossi, G.: Polynomial constraint solving over finite domains with the modified Bernstein form. In: Fiorentini, C., Momigliano, A. (eds.) Proceedings of the 31st Italian Conference on Computational Logic (CILC 2016), CEUR Workshop Proceedings, vol. 1645, pp 118–131. RWTH Aachen (2016)

  6. Bergenti, F., Monica, S., Rossi, G.: A subdivision approach to the solution of polynomial constraints over finite domains using the modified Bernstein form. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016 Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 10037, pp 179–191. Springer International Publishing (2016)

  7. Bergenti, F., Monica, S., Rossi, G.: Constraint logic programming with polynomial constraints over finite domains. Fundamenta Informaticae 161(1–2), 9–27 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bhansali, S., Kramer, G.A., Hoar, T.J.: A principled approach towards symbolic geometric constraint satisfaction. J. Artif. Intell. Res. 4, 419–443 (1996)

    Article  Google Scholar 

  9. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Comput.-Aided Geom. Des. 29(6), 379–419 (2012)

    Article  MathSciNet  Google Scholar 

  10. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput.-Aided Geom. Des. 5(1), 1–26 (1988)

    Article  MathSciNet  Google Scholar 

  11. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) Interval Mathematics 1985, Lecture Notes in Computer Science, vol. 212, pp 37–56. Springer International Publishing (1986)

  12. Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp 87–97. Springer International Publishing (2001)

  13. Grimstad, B., Sandnes, A.: Global optimization with spline constraints: A new branch-and-bound method based on B-splines. J. Glob. Optim. 65(3), 401–439 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)

    MATH  Google Scholar 

  15. Malapert, A., Régin, J.C., Rezgui, M.: Embarrassingly parallel search in constraint programming. J. Artif. Intell. Res. 57, 421–464 (2016)

    Article  MathSciNet  Google Scholar 

  16. Mourrain, B., Pavone, J.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)

    Article  MathSciNet  Google Scholar 

  17. Nataraj, P., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)

    Article  Google Scholar 

  18. Peña, J. M., Sauer, T.: On the multivariate Horner scheme. SIAM J. Numer. Anal. 37(4), 1186–1197 (2000)

    Article  MathSciNet  Google Scholar 

  19. Ray, S., Nataraj, P.: An efficient algorithm for range computation of polynomials using the Bernstein form. J. Glob. Optim. 45, 403–426 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ray, S., Nataraj, P.: A matrix method for efficient computation of Bernstein coefficients. Reliab. Comput. 17, 40–71 (2012)

    MathSciNet  Google Scholar 

  21. Rivlin, T.J.: Bounds on a polynomial. J. Res. Natl. Bur. Stand. 74B(1), 47–54 (1970)

    Article  MathSciNet  Google Scholar 

  22. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)

    MATH  Google Scholar 

  23. Sánchez-Reyes, J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Comput. Aided Des. 35, 959–967 (2003)

    Article  Google Scholar 

  24. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Glob. Optim. 43(2), 445–458 (2009)

    Article  MathSciNet  Google Scholar 

  25. Steffens, K.G.: The History of Approximation Theory: From Euler to Bernstein. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  26. Titi, J., Garloff, J.: Matrix methods for the tensorial Bernstein form. Appl. Math. Comput. 346, 254–271 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers, T., Thiemann, P. (eds.) Functional and Logic Programming, Lecture Notes in Computer Science, vol. 7294, pp 307–316. Springer International Publishing (2012)

  28. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Practice Logic Program. 12(1–2), 67–96 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bergenti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergenti, F., Monica, S. A subdivision algorithm to reason on high-degree polynomial constraints over finite domains. Ann Math Artif Intell 87, 343–360 (2019). https://doi.org/10.1007/s10472-019-09680-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-019-09680-4

Keywords

Mathematics Subject Classification

Navigation