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Abstract

We propose a directed acyclic hypergraph framework for a probabilistic graphical model that
we call Bayesian hypergraphs. The space of directed acyclic hypergraphs is much larger than the
space of chain graphs. Hence Bayesian hypergraphs can model much finer factorizations than
Bayesian networks or LWF chain graphs and provide simpler and more computationally efficient
procedures for factorizations and interventions. Bayesian hypergraphs also allow a modeler to
represent causal patterns of interaction such as Noisy-OR graphically (without additional anno-
tations). We introduce global, local and pairwise Markov properties of Bayesian hypergraphs
and prove under which conditions they are equivalent. We define a projection operator, called
shadow, that maps Bayesian hypergraphs to chain graphs, and show that the Markov properties
of a Bayesian hypergraph are equivalent to those of its corresponding chain graph. We extend the
causal interpretation of LWF chain graphs to Bayesian hypergraphs and provide corresponding
formulas and a graphical criterion for intervention.

1 Introduction

Probabilistic graphical models are graphs in which nodes represent random variables and edges rep-
resent conditional independence assumptions. They provide a compact way to represent the joint
probability distributions of a set of random variables. In undirected graphical models, e.g., Markov
networks (see [4, 23]), there is a simple rule for determining independence: two set of nodes A and B
are conditionally independent given C if removing C separates A and B. On the other hand, directed
graphical models, e.g. Bayesian networks (see [13, 39, 23]), which consist of a directed acyclic graph
(DAG) and a corresponding set of conditional probability tables, have a more complicated rule (d-
separation) for determining independence. More complex graphical models include various types of
graphs with edges of several types (e.g., [2, 38, 30, 27]), including chain graphs [20, 17], for which
different interpretations have emerged [1, 6].

Probabilistic Graphical Models (PGMs) enjoy a well-deserved popularity because they allow ex-
plicit representation of structural constraints in the language of graphs and similar structures. From
the perspective of efficient belief update, factorization of the joint probability distribution of random
variables corresponding to variables in the graph is paramount, because it allows decomposition of the
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calculation of the evidence or of the posterior probability [18]. The proliferation of different PGMs
that allow factorizations of different kinds leads us to consider a more general graphical structure in
this paper, namely directed acyclic hypergraphs. Since there are many more hypergraphs than DAGs,
undirected graphs, chain graphs, and, indeed, other graph-based networks, as discussed in Remark 8,
Bayesian hypergraphs can model much finer factorizations and thus are more computationally effi-
cient. When tied to probability distributions, directed acyclic hypergraphs specify independence (and
possibly other) constraints through their Markov properties; we call the new PGM resulting from
the directed acyclic hypergraphs and their Markov properties Bayesian hypergraphs. We provide
such properties and show that they are consistent with the ones used in Bayesian networks, Markov
networks, and LWF chain graphs, when the directed acyclic hypergraphs are suitably restricted. We
show in Section 5.2 that there are situations that may be of interest to a probabilistic or causal modeler
that can be modeled more explicitly using Bayesian hypergraphs; in particular, some causal patterns,
such as independence of causal influence (e.g., Noisy-OR), can be expressed graphically in Bayesian
hypergraphs, while they require a numerical specification in DAGs or chain graphs. We provide a
causal interpretation of Bayesian hypergraphs that extends the causal interpretation of LWF chain
graphs [19], by giving corresponding formulas and a graphical criterion for intervention.

The paper is organized as follows: In Section 2, we introduce some common notations, termi-
nology and concepts on graphs and hypergraphs. In Section 3 and Section 4, we review the Markov
properties and factorizations in the case of undirected graphs and chain graphs. In Section 5, we intro-
duce the Bayesian hypergraphs model, discuss the factorizations, Markov properties and its relations
to chain graphs. In Section 6, we discuss how interventions can be achieved in Bayesian hypergraphs.
Section 7 concludes the paper and includes some directions for further work.

2 Terminology and concepts

In this paper, we use [n] to denote the set {1, 2, . . . , n}. For a, b ∈ Z, We use [a, b] to denote {k ∈ Z :
a ≤ k ≤ b}. Given a set h, we use |h| to denote the number of elements in h.

2.1 Graphs

A graph G = (V, E) is an ordered pair (V, E) where V is a finite set of vertices (or nodes) and E ⊆ V×V
consists of a set of ordered pairs of vertices (v,w) ∈ V × V . Given a graph G, we will use V(G), E(G)
to denote the set of vertices and edges of G respectively. An edge (v,w) ∈ E is directed if (w, v) < E
and undirected if (w, v) ∈ E. We write v → w if (v,w) is directed and v − w if (v,w) is undirected. If
v − w then we call v a neighbor of w and vice versa. If v → w, then we call v a parent of w and w a
child of v. Let paG(v) and nbG(v) denote the set of parents and neighbors of v, respectively. We say v
and w are adjacent if either (v,w) ∈ E or (w, v) ∈ E, i.e., either v → w, w → v or v − w. We say an
edge e is incident to a vertex v if v is contained in e. We also define the boundary bd(v) of v by

bd(v) = nb(v) ∪ pa(v).

Moreover, given τ ⊆ V , define

paG(τ) =

⋃
v∈τ

paG(v)

 \τ.
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nbG(τ) =

⋃
v∈τ

nbG(v)

 \τ.
bdG(τ) =

⋃
v∈τ

bdG(v)

 \τ.
clG(τ) = bdG(τ) ∪ τ.

For every graph G = (V, E), we will denote the underlying undirected graph Gu = (V, Eu), i.e.,
Eu = {(v, u) : (v, u) ∈ E or (u, v) ∈ E}. A path in G is a sequence of distinct vertices v0, . . . , vk such
that (vi, vi+1) ∈ E for all 0 ≤ i ≤ k − 1. A path v0, . . . , vk is directed if for all 0 ≤ i < k, (vi, vi+1)
is a directed edge, i.e., (vi, vi+1) ∈ E but (vi+1, vi) < E. A cycle is a path with the modification that
vk = v0. A cycle is partially directed if at least one of the edges in the cycle is a directed edge. A
graph G is acyclic if G contains no partially directed cycle. A vertex v is said to be an anterior of
a vertex u if there is a path from v to u. We remark that every vertex is also an anterior of itself. If
there is a directed path from v to u, we call v an ancestor of u and u a descendent of v. Moreover, u
is a non-descendent of v if u is not a descendent of v. Let ant(u) and an(u) denote the set of anteriors
and ancestors of u in G respectively. Let de(v) and nd(v) denote the set of descendents and non-
descendents of v in G respectively. For a set of vertices τ, we also define ant(τ) = {ant(v) : v ∈ τ}.
Again, note that τ ⊆ ant(τ).

A subgraph of a graph G is a graph H such that V(H) ⊆ V(G) and each edge present in H is also
present in G and has the same type. An induced subgraph of G by a subset A ⊆ V(G), denoted by
GA or G[A], is a subgraph of G that contains all and only vertices in A and all edges of G that contain
only vertices in A. A clique or complete graph with n vertices, denoted by Kn, is a graph such that
every pair of vertices is connected by an undirected edge.

Now we can define several basic graph representations used in probabilistic graphical models.
An undirected graph is a graph such that every edge is undirected. A directed acyclic graph (DAG)
is a graph such that every edge is directed and contains no directed cycles. A chain graph is a
graph without partially directed cycles. Define two vertices v and u to be equivalent if there is an
undirected path from v to u. Then the equivalence classes under this equivalence relation are the
chain components of G. For a vertex set S , define E∗(S ) as the edge set of the complete undirected
graph on S . Given a graph G = (V, E) with chain components {τ : τ ∈ D}, the moral graph of
G, denoted by Gm = (V, Em), is a graph such that V(Gm) = V(G) and Em = Eu ∪

⋃
τ∈D E∗(bd(τ)),

i.e., the underlying undirected graph, where the boundary w.r.t. G of every chain component is made
complete. The moral graphs are natural generalizations to chain graphs of the similar concept for
DAGs given in [15] and [16].

2.2 Hypergraphs

Hypergraphs are generalizations of graphs such that each edge is allowed to contain more than two
vertices. Formally, an (undirected) hypergraph is a pair H = (V,E), where V = {v1, v2, · · · , vn} is
the set of vertices (or nodes) and E = {h1, h2, · · · , hm} is the set of hyperedges where hi ⊆ V for all
i ∈ [m]. If |hi| = k for every i ∈ [m], then we say H is a k-uniform (undirected) hypergraph. A
directed hyperedge or hyperarc h is an ordered pair, h = (X,Y), of (possibly empty) subsets of V
where X ∩ Y = ∅; X is the called the tail of h while Y is the head of h. We write X = T (h) and
Y = H(h). We say a directed hyperedge h is fully directed if none of H(h) and T (h) are empty. A
directed hypergraph is a hypergraph such that all of the hyperedges are directed. A (s, t)-uniform
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directed hypergraph is a directed hypergraph such that the tail and head of every directed edge have
size s and t respectively. For example, any DAG is a (1, 1)-uniform hypergraph (but not vice versa).
An undirected graph is a (0, 2)-uniform hypergraph. Given a hypergraphH , we use V(H) and E(H)
to denote the the vertex set and edge set ofH respectively.

We say two vertices u and v are co-head (or co-tail) if there is a directed hyperedge h such that
{u, v} ⊂ H(h) ( or {u, v} ⊂ T (h) respectively). Given another vertex u , v, we say u is a parent of v,
denoted by u→ v, if there is a directed hyperedge h such that u ∈ T (h) and v ∈ H(h). If u and v are co-
head, then u is a neighbor of v. If u, v are neighbors, we denote them by u− v. Given v ∈ V , we define
parent (pa(v)), neighbor (nb(v)), boundary (bd(v)), ancestor (an(v)), anterior (ant(v)), descendant
(de(v)), and non-descendant (nd(v)) for hypergraphs exactly the same as for graphs (and therefore use
the same names). The same holds for the equivalent concepts for τ ⊆ V . Note that it is possible that
some vertex u is both the parent and neighbor of v.

A partially directed cycle in H is a sequence {v1, v2, . . . vk} satisfying that vi is either a neighbor
or a parent of vi+1 for all 1 ≤ i ≤ k and vi → vi+1 for some 1 ≤ i ≤ k. Here vk+1 ≡ v1. We say a
directed hypergraphH is acyclic ifH contains no partially directed cycle. For ease of reference, we
call a directed acyclic hypergraph a DAH or a Bayesian hypergraph structure (as defined in Section
5). Note that for any two vertices u, v in a directed acyclic hypergraphH , u can not be both the parent
and neighbor of v otherwise we would have a partially directed cycle.

Remark 1. DAHs are generalizations of undirected graphs, DAGs and chain graphs. In particular
an undirected graph can be viewed as a DAH in which every hyperedge is of the form (∅, {u, v}). A
DAG is a DAH in which every hyperedge is of the form ({u}, {v}). A chain graph is a DAH in which
every hyperedge is of the form (∅, {u, v}) or ({u}, {v}).

We define the chain components of H as the equivalence classes under the equivalence relation
where two vertices v1, vt are equivalent if there exists a sequence of distinct vertices v1, v2, . . . , vt such
that vi and vi+1 are co-head for all i ∈ [t − 1]. The chain components {τ : τ ∈ D} yields an unique
natural partition of the vertex set V(H) =

⋃
τ∈D τ with the following properties:

Proposition 1. LetH be a DAH and {τ : τ ∈ D} be its chain components. Let G be a graph obtained
from H by contracting each element of {τ : τ ∈ D} into a single vertex and creating a directed
edge from τi ∈ V(G) to τ j ∈ V(G) in G if and only if there exists a hyperedge h ∈ E(H) such that
T (h) ∩ τi , ∅ and H(h) ∩ τ j , ∅. Then G is a DAG.

Proof. First of all, clearly G is a directed graph. Now since H is a DAH, there is no directed hyper-
edge such that both its head and tail intersect a common chain component. Hence G has no self-loop.
It remains to show that there is no directed cycle in G. Supporse for contradiction that there is a
directed cycle τ1, τ2, . . . , τk in G. Then by the construction of G, there is a sequence of hyperedges
{h1, h2, . . . , hk} such that T (hi) ∩ τi , ∅ and H(hi) ∩ τi+1 , ∅ (with τk+1 ≡ τ1). Since there is a path
between any two vertices in the same component, it follows that there is a partially directed cycle in
H , which contradicts thatH is acyclic. Hence we can conclude that G is indeed a DAG.

�

Note that the DAG obtained in Proposition 1 is unique and given a DAH H we call such G the
canonical DAG of H . A chain component τ of H is terminal if the out degree of τ in G is 0, i.e.,
there is no τ′ , τ such that τ → τ′ in G. A chain component τ is initial if the in degree of τ in G
is 0, i.e., there is no τ′ , τ such that τ′ → τ in G. We call a vertex set A ⊆ V(H) an anterior set if
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it can be generated by stepwise removal of terminal chain components. We call A an ancestral set if
bd(A) = ∅ inH . We remark that given a set A, ant(A) is also the smallest ancestral set containing A.

A sub-hypergraph of H = (V,E) is a directed hypergraph H ′ = (V ′,E′) such that V ′ ⊆ V and
E′ ⊆ E. Given S ⊆ V(H), we say a directed hypergraphH ′ is a sub-hypergraph ofH induced by S ,
denoted byHS orH[S ], if V(H ′) = S and h ∈ E(H ′) if and only if h ∈ E(H) and H(h) ∪ T (h) ⊆ S .

To illustrate the relationship between a directed acyclic hypergraph and a chain graph, we will
introduce the concept of a shadow of a directed acyclic hypergraph. Given a directed acyclic hyper-
graph H , let the (directed) shadow of H , denoted by ∂(H), be a graph G such that V(G) = V(H),
and for every hyperedge h = (X,Y) ∈ E(H), G[Y] is a clique (i.e. every two vertices in G[Y] are
neighbors) and there is a directed edge from each vertex of X to each vertex of Y in G.

Proposition 2. SupposeH is a directed acyclic hypergraph and G is the shadow ofH . Then

(i) G is a chain graph.

(ii) For every vertex v ∈ V(H) = V(G), nbG(v) = nbH (v) and paG(v) = paH (v).

Proof. For (i), note that since H is acyclic, there is no partially directed cycle in H . It follows
by definition that there is no partially directed cycle in G. Hence, the shadow of a directed acyclic
hypergraph is a chain graph. (ii) is also clear from the definition of the shadow. �

a

b

c

d

e

f

a

b

c, d e, f

a

b

c

d

e

f

Figure 1: (1) a DAHH . (2) the canonical DAG ofH . (3) the shadow ofH .

2.3 Hypergraph drawing

In this subsection, we present how directed edges are drawn in this paper and illustrate the concepts
with an example. For a fully directed hyperedge with two vertices (both head and tail contain exactly
one vertex), we use the standard arrow notation. For a fully directed hyperedge with at least three
vertices, we use a shaded polygon to represent that edge, with the darker side as the head and the
lighter side as the tail. For hyperedges of the type (∅, A), we use an undirected line segment (i.e. −)
to denote the hyperedge if |A| = 2 and a shaded polygon with uniform gray color if |A| ≥ 3. For
example, in Figure 1, the directed hyperedges are ({a, b}, {c}), ({a}, {c, d}), ({d}, {e, f }), ({c}, {e}). Here
a and b are co-tail, c and d, e and f are co-head. Figure 1 (2) shows the canonical DAG associated to
H with four chain components:{a}, {b}, {c, d}, {e, f }. Figure 1 (3) shows the shadow ofH .

2.4 Construction of a directed acyclic hypergraph from chain graph

In this subsection, we show how to construct a directed acyclic hypergraph from a chain graph ac-
cording to the LWF interpretation. Due to the expressiveness and generality of a directed hypergraph,
other constructions may exist too. Let G be a chain graph with n vertices. We will explicitly construct
a directed acyclic hypergraphH on n vertices that correspond to G. We remark that the construction
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essentially creates a hyperedge for each maximal clique in the moral graph of Gcl(τ) for every chain
component τ ofH .

Construction:
V(H) = V(G).

The edge set ofH is constructed in two phases:

Phase I:

• For each v ∈ V(G), let S v be the set of children of v in G. Consider the subgraph G′ of
G[S v] induced by the undirected edges in G[S v]. For each maximal clique (with vertex
set K) in G′, add the directed hyperedge ({v},K) intoH .

• Let H ′ be the resulting hypergraph after performing the above procedure for every v ∈
V(G). Now for every maximal clique K (every edge in K is undirected) in G, if K * H(h)
for every h ∈ E(H ′), add the directed hyperedge (∅,K) intoH .

Phase II: LetH ′ be the resulting hypergraph constructed from Phase I and {τ : τ ∈ D} be the chain
components of G. Given τ, letH∗τ be the set of edges h inH ′cl(τ) such that H(h) ∩ τ , ∅.

Define

E(H) =
⋃
τ∈D

{( ⋃
h∈E(H∗τ )
B⊆H(h)

T (h), B
)

: B =
⋂
h∈F

H(h),F ⊆ E(H∗τ )
}
.

Note that the resulting hypergraph H is a directed acyclic hypergraph since a partially directed
cycle C in H corresponds to a directed cycle in G. Moreover, the above construction gives us an
injection from the family of chain graphs with n vertices to the family of directed acyclic hypergraphs
with n vertices.

a
b

c

d e f

a
b

c

d e f

Figure 2: (1) a simple chain graph G; (2) the corresponding DAH of G in the LWF interpretation.

Figure 2 contains an example of a simple chain graph and its corresponding version in the hyper-
graph representation. Recall that every fully directed hyperedge is represented (in the drawing) by a
colored convex region. The darker side is the head and the lighter side is the tail. We will detail the
hyperedges existing in every phase of the construction:

• Phase I: the hyperedges inH are {a, d, e} and {b, e, f } and {c, f }.

• Phase II: For each chain component τ, we obtain all subsets B of τ which are the intersections
of the heads of the hyperedges intersecting τ. For each such B obtained, create a hyperedge
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whose head is B and whose tail is the union of the tails of the hyperedges containing B in its
head. In Figure 2, the set of such B’s are {d, e}, {e}, {e, f }, { f }. Hence

E(H) =

{
{a, d, e}, {e, a, b}, {b, e, f }, {b, c, f }

}
.

Hence the resulting hypergraphH is the one in Figure 2(2).
For ease of reference, given a chain graph, we will call the hypergraph H constructed above the

canonical LWF DAH of G. We sayH is hypermoralized from G ifH is the canonical LWF DAH of
G. Moreover, we call the family of all such hypergraphs (i.e. the canonical LWF DAH of some chain
graph) LWF DAHs.

Figure 3: Relationship between chain graphs and directed acyclic hypergraphs

Remark 2. In this section, we gave an injective mapping from the space of chain graphs to the space
of directed acyclic hypergraphs such that the LWF DAHs have the same Markov properties as LWF
chain graphs. We believe some other types of chain graphs can be modeled by DAHs too (e.g. MVR
DAHs) but we do not explore them in this paper.

We will summarize the relations between a chain graph and its canonical LWF DAH in the fol-
lowing lemma:

Lemma 1. Let G be a chain graph andH be its canonical LWF DAH. Then we have

(i) For each vertex v ∈ V(G) = V(H), nbG(v) = nbH (v) and paG(v) = paH (v).

(ii) G is the shadow ofH .

(iii) H is a directed acyclic hypergraph.

Proof. We will first show (i). Note that by our construction in Phase I, if two vertices are neighbors in
G, then they are co-head inH . Moreover, if u is the parent of v in G, then u is still the parent of v inH .
These relations remain true in Phase II. Hence we obtain that nbG(v) ⊆ nbH (v) and paG(v) ⊆ paH (v)
for all v ∈ V(H). It remains to show that for each v ∈ V(H), no additional neighbor or parent of v
(compared to the case in G) is added in the construction. In Phase I , every hyperedge added is either
of the form (∅,K) or ({w},K) where K ⊆ V induces a complete undirected graph in G and w is the
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parent of every element in K. Hence for every v ∈ V(H), no additional neighbor or parent of v is
added in Phase I. Now let us examine Phase II. Given an edge h = (A, B) ∈ E(H), there exists some
τ ∈ D(G) such that B =

⋂
h∈F H(h) for some F ⊆ E(H∗τ ). Moreover, A =

⋃
h∈E(H∗τ ))
B⊆H(h)

T (h). Note for

every pair of elements u, v ∈ B, u, v are already neighbors in G since u, v ∈ H(h) for some h ∈ F from
Phase I. Moreover, for every v ∈ A, u ∈ B, v is already a parent of u in G since there exists some h
constructed in Phase I such that u ∈ H(h) and v ∈ T (h). Therefore, it follows that any edge defined in
Phase II does not create any new neighbor or parent for any v ∈ V(G). Thus, we can conclude that for
all v ∈ V(G) = V(H), nbG(v) = nbH (v) and paG(v) = paH (v).

(ii) is implied by (i) by the definition of a shadow. (iii) is implied by (ii) since G is acyclic and G
is the shadow ofH . �

3 Markov properties for undirected graphs

In this section, we will summarize some basic results on the Markov properties of undirected graphs.
Let us first introduce some notations. In the rest of this week, let (Xα)α∈V be a collection of random
variables taking values in some product space X = ×α∈VXα. Let P denote a probability measure on
X. For a subset A of V , we use XA to denote ×α∈AXα and PA is the marginal measure on XA. A
typical element of XA is denoted by xA = (xα)α∈A. We will use the short notation A y B | C for
XA y XB | XC .

Recall that an independence model y is a ternary relation over subsets of a finite set V . The
following properties have been defined for the conditional independences of probability distributions.
Let A, B,C,D be disjoint subsets of V where C may be the empty set.

S1 (Symmetry) A y B | C =⇒ B y A | C;

S2 (Decomposition) A y BD | C =⇒ (A y B | C and A y D | C);

S3 (Weak Union) A y BD | C =⇒ (A y B | DC and A y D | BC);

S4 (Contraction) (A ⊥ B | DC and A y D | C) ⇐⇒ A y BD | C;

S5 (Intersection) (A ⊥ B | DC and A y D | BC) =⇒ A y BD | C;

S6 (Composition) (A ⊥ B | C and A y D | C) ⇐⇒ A y BD | C;

An independence model is a semi-graphoid if it satisfies the first four independence properties
listed above. A discussion of conditional independence can be found in Dawid [5] where it is shown
that any probability measure is a semi-graphoid. Also see Studeny [35] and Pearl [23] for a discus-
sion of soundness and (lack of) completeness of these axioms. If a semi-graphoid further satisfies the
intersection property, we say it is a graphoid. A compositional graphoid further satisfies the com-
position property. We follow the same naming convention as Frydenberg [7]. Given an undirected
graph G, we say C separates A and B in G if there is no path from any vertex in A to any vertex in B
in G[V(G)\C]. If G is an undirected graph, then a probability measure P is said to be:

(UP) pairwise G-Markovian if α y β | V\{α, β} whenever α and β are non-adjacent in G.

(UL) local G-Markovian if α y V\cl(α) | bd(α) for all α ∈ V(G).
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(UG) global G-Markovian if A y B | C whenever C separates A and B in G.

The following theorem by Pearl and Paz [22] gives a sufficient condition for the equivalence of
(UG), (UL) and (UP).

Theorem 1. ([22]) If G is an undirected graph and P satisfies (S5), then (UG), (UL) and (UP) are
equivalent and P is said to be G-Markovian if they hold.

Conditional independences and thus Markov properties are closely related to factorizations. A
probability measure P on X is said to factorize according to G if for each clique h in G, there exist a
non-negative function ψh depending on xh only and there exists a product measure µ = ×α∈V µα on X
such that P has density f with respect to µ where f has the form

f (x) =
∏
h∈C

ψh(x) (1)

where C is the set of maximal cliques in G. If P factorizes according to G, we say P has property
(UF). It is known (see [17]) that

(UF) =⇒ (UG) =⇒ (UL) =⇒ (UP).

Moreover, in the case that P has a positive and continuous density, it can be proven using Möbius
inversion lemma that (UP) =⇒ (UF). This result seems to have been discovered in various forms
by a number of authors [32] and is usually attributed to Hammersley and Clifford [9] who proved the
result in the discrete case.

4 Markov properties of chain graphs

We use the same notations as Section 3. Let G be a chain graph and P be a probability measure
defined on some product space X = ×α∈V(G)Xα. Then P is said to be

(CP) pairwise G-Markovian, if for every pair (v, u) of non-adjacent vertices with u ∈ nd(v),

v y u | nd(v)\{v, u}. (2)

(CL) local G-Markovian, relative to G, if for any vertex v ∈ V(G),

v y nd(v)\cl(v) | bd(v). (3)

(CG) global H-Markovian, relative to G, if for all A, B,C ⊆ V such that C separates A and B in
(Gant(A∪B∪C))m, the moral graph of the smallest ancestral set containing A ∪ B ∪C, we have

A y B | C.

The factorization in the case of a chain graph involves two parts. Suppose {τ : τ ∈ D} is the set
of chain components of G. Then P is said to factorize according to G if it has density f that satisfies:

(i) f factorizes as in the directed acyclic case:

f (x) =
∏
τ∈D

f (xτ | xpa(τ)).

9



(ii) For each τ ∈ D, f factorizes in the moral graph of Gτ∪pa(τ):

f (xτ | xpa(τ)) = Z−1(xpa(τ))
∏
h∈C

ψh(x)

where C is the set of maximal cliques in Gm
τ∪pa(τ), ψh(x) depends only on xh and

Z−1(xpa(τ)) =

∫
Xτ

∏
h∈C

ψh(x) µτ(dxτ).

If a probability measure P factorizes according to G, then we say P satisfies (CF). From arguments
analogous to the directed and undirected cases, we have that in general

(CF) =⇒ (CG) =⇒ (CL) =⇒ (CP).

If we assume (S5), then all Markov properties are equivalent.

Theorem 2. ([7]) Assume that a probability measure P defined on a chain graph G is such that (S5)
holds for disjoint subsets of V(G), then

(CF) ⇐⇒ (CG) ⇐⇒ (CL) ⇐⇒ (CP).

5 Bayesian Hypergraphs

A Bayesian hypergraph (BH) is a probabilistic graphical model that represents a set of variables
and their conditional dependencies through an acyclic directed hypegraph H . Hypergraphs contain
many more edges than chain graphs. Thus a Bayesian hypergraph is a more general and powerful
framework for studying conditional independence relations that arise in various statistical contexts.

5.1 Markov Properties of Bayesian hypergraphs

Analogous to chain graph’s case, we can define the Markov properties of a Bayesian hypergraph in a
variety of ways. LetH be a directed acyclic hypergraph with chain components {τ : τ ∈ D}. We say
that a probability measure P defined on X = ×α∈V(H)Xα is:

(HP) pairwiseH-Markovian, relative toH , if for every pair (v, u) of non-adjacent vertices inH with
u ∈ nd(v),

v y u | nd(v)\{v, u}. (4)

(HL) localH-Markovian, relative toH , if for any vertex v ∈ V(H),

v y nd(v)\cl(v) | bd(v). (5)

(HG) global H-Markovian, relative to H , if for all A, B,C ⊆ V such that C separates A and B
in

(
∂(Hant(A∪B∪C))

)m, the moral graph of the (directed) shadow of the smallest ancestral set
containing A ∪ B ∪C, we have

A y B | C.

10



Definition 1. A Bayesian hypergraph is a triple (V,H , P) such that V is a set of random variables,H
is a DAH on the vertex set V and P is a multivariate probability distribution on V such that the local
Markov property, i.e., (HL), holds with respect to the DAHH .

Given a Bayesian hypergraph (V,H , P), we call H the Bayesian hypergraph structure or the
underlying DAH of the Bayesian hypergraph. For ease of reference, we simply use H to denote the
Bayesian hypergraph. Moreover, for a Bayesian hypergraph H whose underlying DAH is a LWF
DAH, we callH a LWF Bayesian hypergraph.

Remark 3. Observe that by Proposition 2 and the definitions of the hypergraph Markov properties,
a Bayesian hypergraph has the same pairwise, local and global Markov properties as its shadow,
which is a chain graph.

By Remark 3, we can derive the following corollaries from results on the Markov properties of
chain graphs:

Corollary 1.
(HG) =⇒ (HL) =⇒ (HP).

Furthermore, if we assume (S5), then the global, local and pairwise Markov properties are equiv-
alent.

Corollary 2. Assume that P is such that (S5) holds for disjoint subsets of V. Then

(HG) ⇐⇒ (HL) ⇐⇒ (HP).

Proof. This follows from Remark 3 and Theorem 2. �

Given a chain graph G, a triple (α, B, β) is a complex1 in G if B is a connected subset of a chain
component τ, and α, β are two non-adjacent vertices in bd(τ)∩bd(B). Moreover, (α, B, β) is a minimal
complex if B = B′ whenever B′ is a subset of B and (α, B′, β) is a complex. Frydenberg [7] showed
that two chain graphs have the same Markov properties if they have the same underlying undirected
graph and the same minimal complexes. In the case of a Bayesian hypergraph, by Remark 3 and the
result on the Markov equivalence of chain graphs, we obtain the following conclusion on the Markov
equivalence of Bayesian hypergraphs.

Corollary 3. Two Bayesian hypergraphs have the same Markov properties if their shadows are
Markov equivalent, i.e., their shadows have the same underlying undirected graph and the same
minimal complexes.

5.2 Factorization according to Bayesian hypergraphs

The factorization of a probability measure P according to a Bayesian hypergraph is similar to that
of a chain graph. Before we present the factorization property, let us introduce some additional
terminology.

Given a DAHH , we useHu to denote the undirected hypergraph obtained fromH by replacing
each directed hyperedge h = (A, B) ofH into an undirected hyperedge A ∪ B. Given a family of sets
F , define a partial order (F ,≤) on F such that for two sets A, B ∈ F , A ≤ B if and only if A ⊆ B. Let

1or U-structure [3]
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M(F ) denote the set of maximal elements in F , i.e., no element inM(F ) contains another element
as subset. When F is a set of directed hyperedges, we abuse the notation to denoteM(F ) =M(F u).

Let H be a directed acyclic hypergraph and {τ : τ ∈ D} be its chain components. Assume that
a probability distribution P has a density f , with respect to some product measure µ = ×α∈V µα on
X = ×α∈VXα. Now we say a probability measure P factorizes according toH if it has density f such
that

(i) f factorizes as in the directed acyclic case:

f (x) =
∏
τ∈D

f (xτ | xpa(τ)). (6)

(ii) For each τ ∈ D, define H∗τ to be the subhypergraph of Hτ∪pa(τ) containing all edges h in
Hτ∪pa(τ) such that H(h) ⊆ τ.

f (xτ | xpa(τ)) =
∏

h∈M(H∗τ )

ψh(x). (7)

where ψh are non-negative functions depending only on xh and
∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ) = 1.

Equivalently, we can also write f (xτ | xpa(τ)) as

f (xτ | xpa(τ)) = Z−1(xpa(τ))
∏

h∈M(H∗τ )

ψh(x), (8)

where Z−1(xpa(τ)) =

∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ).

Remark 4. Note that although (LWF) Bayesian hypergraphs are generalizations of of Bayesian net-
works and LWF chain graph models, the underlying graph structures that represent the same factor-
izations may differ. Hence the underlying graph structures of Bayesian networks and chain graph do
not directly migrate to Bayesian hypergraphs.

a b

c

Figure 4: A simple Bayesian hypergraphH .

We will illustrate with an example. Consider the graph in Figure 4, which can be interpreted as
a chain graph structure G or a Bayesian hypergraph structureH . Note that the factorizations, under
the two interpretations, are different. In particular, the factorization, according to G, is

fG(x) = f (xa) f (xb)ψabc(x)

for some non-negative functions ψabc. On the other hand, the factorization, according toH , is

fH (x) = f (xa) f (xb)ψac(x)ψbc(x)

for some non-negative functions ψac, ψbc.

12



a b

c d

a b

c d

Figure 5: (1) a chain graph G; (2) a Bayesian hypergraphH .

Remark 5. One of the key advantages of Bayesian hypergraphs is that they allow much finer factor-
izations of probability distributions compared to chain graph models. We will illustrate with a simple
example in Figure 5. Note that in Figure 5 (1), the factorization according to G is

f (x) = f (xa) f (xb) f (xcd | xab)

= f (xa) f (xb)ψabcd(x)

In Figure 5 (2), the factorization according toH is

f (x) = f (xa) f (xb) f (xcd | xab)

= f (xa) f (xb)ψabc(x)ψabd(x)ψcd(x)

Note that although G and H have the same global Markov properties, the factorization accord-
ing to H is one step further compared to the factorization according to G. Suppose each of the
variables of {a, b, c, d} can take k values. Then the factorization according to G will require a con-
ditional probability table of size k4 while the factorization according to H only needs a table of size
Θ(k3) asymptotically. Hence, a Bayesian hypergraph model allows much finer factorizations and thus
achieves higher memory efficiency.

Remark 6. We remark that the factorization formula defined in (7) is in fact the most general possible
in the sense that it allows all possible factorizations of a probability distribution admitted by a DAH.
In particular, given a Bayesian hypergraph H and one of its chain components τ, the factorization
scheme in (7) allows a distinct function for each maximal subset of τ ∪ paD(τ) that intersects τ (paD
is the parent of τ in the canonical DAG ofH). For each subset S of τ∪ paD(τ) that does not intersect
τ, recall that the factorization in (7) can be rewritten as follows:

f (xτ | xpa(τ)) =

 ∏
h∈M(H∗τ )

ψh(x)

 /
∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ)

 .
Observe that ψS (x) is a function that does not depend on values of variables in τ. Hence ψS (x)
can be factored out from the integral above and cancels out with itself in f (xτ | xpa(τ)). Thus, the
factorization formula in (7) or (8) in fact allows distinct functions for all possible maximal subsets of
τ ∪ paD(τ).

Table 1 lists some factorizations of three random variables and the corresponding BH represen-
tation. Entry 1 (top left) corresponds to a three-node Bayesian network: an uncoupled converging
connection (unshielded collider) at c. Entry 3 (below entry 1) corresponds to a three-node Bayesian
network like the one in entry 1, with the constraint that the conditional probability table factorizes

13



Factorization BH representation Factorization BH representation

f (x) = f (xa) f (xb)ψabc(x)
a b

c
f (x) = f (xab)ψabc(x)

a b

c

f (x) =

f (xa) f (xb)ψac(x)ψbc(x)

a b

c

f (x) =

f (xab)ψac(x)ψbc(x)

a b

c

f (x) = f (xa) f (xb)ψac(x)
a b

c
f (x) = f (xab)ψac(x)

a b

c

f (x) = f (xa) f (xb) f (xc)
a b

c
f (x) = f (xab) f (xc)

a b

c

f (x) = ψac(x)ψbc(x)
a b

c
f (x) = f (xc)ψac(x)ψab(x)

a b

c

f (x) = f (xc)ψac(x)ψbc(x)
a b

c

f (x) =

f (xc)ψab(x)ψac(x)ψbc(x)

a b

c

Table 1: Factorizations and corresponding BH representations

as, for example, in a Noisy-OR functional dependence and, more generally, in a situation for which
compositionality holds, such as MIN, MAX, or probabilistic sum [23, 11, 12]. Graphical modeling
languages should capture assumptions graphically in a transparent and explicit way, as opposed to
hiding them in tables or functions. By this criterion, the Bayesian hypergraph of entry 3 shows the
increased power of our new PGM with respect to Bayesian networks and chain graphs.

For a detailed example of Noisy-OR functional dependence, consider the (much simplified) heart
disease model of [8], shown in Figure 6, and the family of nodes Obesity (O, with values Yes, No),
Diet (D, with values Bad, Good), and Moderate Exercise (M, with values Yes, No). The Noisy-
OR model is used to compute the conditional probability of O given M and D. Good diet prevents
obesity, except when an inhibiting mechanism prevents that with probability qD→O; moderate exercise
prevents obesity except when an inhibiting mechanism prevents that with probability qM→O. The
inhibiting mechanisms are independent, and therefore the probability of being obese given both a
good diet and moderate exercise is 1 − qD→OqM→O. Equivalently, the probability of not being obese
given both a good diet and moderate exercise is qD→OqM→O. If we consider a situation with only
the variables just described, the joint probability of Diet, Moderate Exercise, and Obesity factorizes
exactly as in the Bayesian hypergraph of entry 3, with the caution that only half of the entries in the
joint probability table are computed directly; the others are computed by the complement to one.

Similarly, entry 2 corresponds to a three node chain graph, while entry 4 may be used to model
a situation in which variables a and b are related by being effects of a common latent cause, while
the mechanisms by which they, in turn, affect variable c are causally independent. While such a
situation may be unusual, it is notable that it can be represented graphically in Bayesian hypergraphs.
Therefore, the Bayesian hypergraph of entry 4 shows the increased power of our new PGM with
respect to Bayesian networks and chain graphs.

For a detailed example, consider again the model shown in Figure 6 and, this time, the structure
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Figure 6: A model of heart disease

Moderate Exercise Diet

Obesity

Figure 7: An example of Noisy-OR: obesity.

in which Moderate Exercise, Serum LDL (S-LDL), Serum Triglicerides (S-T), and Cholesterol HDL
(C-HDL) Ratio are parents (possible causes) of Atheriosclerosis, and Diet is a parent of S-LDL,
S-T, and C-HDL. As in the previous example, the Noisy-OR assumption is made, and therefore,
after marginalization of Diet, the computation of the joint probability of Moderate Exercise, S-LDL,
S-T, C-HDL, and Atheriosclerosis factorizes as in an entry 4, with a slight generalization due to
the presence of four parents instead of two. As in entry 4, the parents (causes) are not marginally
independent, due to their common dependence on Diet, but the conditional probability of the effect
decomposes multiplicatively.

Moreover, as illustrated in Remark 5 and Table 1, a Bayesian hypergraph enables much finer

Moderate Exercise S-LDL S-T C-HDL

Atheriosclerosis

Diet

Moderate Exercise

S-LDL

S-T

C-HDL

Atheriosclerosis

Figure 8: An example of Noisy-OR: Atheriosclerosis.
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factorization than a chain graph. In the factorization w.r.t. a chain graph G with chain components
{τ : τ ∈ D}, f (xτ | xpa(τ)) is only allowed to be further factorized based on the maximal cliques in
the moral graph of Gτ∪pa(τ), which is rather restrictive. In comparison, a Bayesian hypergraph H
allows factorization based on the maximal elements in all subsets of the power set of τ ∪ paD(x).
Finer factorizations have the advantage of memory saving in terms of the size of the probability table
required. Moreover, factorizations according to Bayesian hypergraphs can be obtained directly from
reading off the hyperedges instead of having to search for all maximal cliques in the moral graph (in
the chain graph’s case). Hence, Bayesian hypergraphs enjoy an advantage in heuristic adequacy as
well as representational adequacy.

Next, we investigate the relationship between the factorization property and the Markov properties
of Bayesian hypergraphs.

Proposition 3. Let P be a probability measure with density f that factorizes according to a DAHH .
Then

(HF) =⇒ (HG) =⇒ (HL) =⇒ (HP).

Proof. It suffices to show (HF) =⇒ (HG) since the other implications are proven in Corollary 1. Let
A, B,C ⊆ V(H) such that C separates A and B in G =

(
∂(Hant(A∪B∪C))

)m. Let Ã be the connectivity
components in G\C containing A and let B̃ = V\(Ã ∪ C). Note that in

(
∂(Hant(A∪B∪C))

)m, every
hyperedge h = (T,H) becomes a complete graph on the vertex set T ∪ H because of moralization.
Observe that since C separates A and B in G, for every hyperedge h = (T,H), T ∪H is either a subset
of Ã ∪ C or B̃ ∪ C. LetH ′ = Hant(A∪B∪C) and {τ : τ ∈ D′} be the chain components ofH ′. For each
τ ∈ D′, define H∗τ to be the subhypergraph of H ′τ∪pa(τ) containing all edges h in H ′τ∪pa(τ) such that
H(h) ⊆ τ. We then obtain from the (HF) property that

fH ′(x) =
∏
τ∈D′

∏
h∈M(H∗τ )

ψh(x).

= φ1(xÃ∪C)φ2(xB̃∪C).

for some non-negative functions φ1, φ2. By integrating over the chain components not in ant(A∪ B∪
C), it follows that

f (x) = ψ1(xÃ∪C)ψ2(xB̃∪C).

for some non-negative functions ψ1, ψ2. Hence, we have that

Ã y B̃ | C.

By (S2: Decomposition) property of conditional independences, it follows that A y B | C. �

Remark 7. Due to the generality of factorizations according to Bayesian hypergraphs, the reverse
direction of the implication (HF) =⇒ (HG) in Proposition 3 is generally not true. We will illustrate
with the following example.

Consider the two Bayesian hypergraphs H1 and H2 in Figure 9. Note that they have the same
global Markov properties since the shadows ofH1 andH2 are the same. However the factorizations
according toH1 andH2 are different. If we let f1, f2 denote the factorizations represented byH1 and
H2, then

f1(x) = f1(xa) f1(xb) f1(xcd | xab)

= f1(xa) f1(xb)ψabcd(x)
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a b

c d

a b

c d

Figure 9: Two Bayesian hypergraphs H1 (left), H2 (right) with the same global Markov properties
but different forms of factorizations.

while

f2(x) = f2(xa) f2(xb) f2(xcd | xab)

= f2(xa) f2(xb)ψabc(x)ψabd(x)ψcd(x)

This shows that (HG) does not generally imply (HF).

Remark 8. We give another combinatorial argument on why in general (HF) does not imply (HG).
We claim that the number of possible forms of factorizations admitted by Bayesian hypergraphs
is much more than the number of conditional independence statements over the same set of vari-
ables. First, observe that the number of conditional independence statements on n variables is upper
bounded by the number of ways to partition n elements into four disjoint sets A, B,C,D. Each such
partition induces a conditional statement A y B | C and D is the set of unused variables. There are
4n ways to partition n distinct elements into four ordered pairwise disjoint sets. Hence there are at
most 4n conditional independence statements on n variables.

On the other hand, we give a simple lower bound on the number of directed acyclic hypergraphs
by simply counting the number of directed acyclic hypergraphsH whose vertex sets can be partitioned
into two sets A, B such that |A| = |B| = n/2 and every fully directed edge has its tail only from A and its
head only from B. Observe that there are 2n/2 subsets of A and B respectively. By Sperner’s theorem
[33], the largest number of subsets of A none of which contain any other is upper bounded by

(
n/2
n/4

)
.

The same holds for B. Hence there are at least
(
n/2
n/4

)2
possible directed hyperedges such that when

viewed as undirected hyperedge, no edge contains any other as subset. Therefore, there are at least

2(n/2
n/4)

2

= Θ

(
2

2n+2
πn

)
distinct factorizations admitted by DAHs whose directed edges have their tails only from A and their
heads only from B. Note that this number is much less than the total number of distinct factorizations
admitted by DAHs, but is already much bigger than 4n, which is the upper bound on the number
of conditional independence statements on n variables. Hence, there are many more factorizations
allowed by Bayesian hypergraphs than the number of conditional independence statements on n vari-
ables, which suggest that (HG) does not imply (HF) in general.

5.3 Comparison between LWF chain graph and LWF Bayesian hypergraph

Theorem 3. Let G be a chain graph andH be its canonical (LWF) DAH. We show that a probability
measure P satisfies the following:
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(i) P is pairwise G-Markovian if and only if P is pairwiseH-Markovian.

(ii) P is local G-Markovian if and only if P is localH-Markovian.

(iii) P is global G-Markovian if and only if P is globalH-Markovian.

Proof. By Lemma 1, nbG(v) = nbH (v), paG(v) = paH (v). Hence the same equality holds for
ndG(v), bdG(v), clG(v), which gives us (i) and (ii) by definition of the Markov properties. (iii) results
from the fact that for all A, B,C ⊆ V(G) = V(H), Gant(A∪B∪C) = ∂(Hant(A∪B∪C)). �

Theorem 4. Let G be a chain graph andH be its canonical LWF DAH. Then a probability measure
P with density f factorizes according to G if and only if f factorizes according toH .

Proof. Note that by Lemma 1, G andH have the same set of chain components {τ : τ ∈ D}. It suffices
to show for every τ ∈ D, there exists a bijective map φ from the set of maximal edges in (H∗τ )u to the
set of maximal cliques in (Gτ∪pa(τ))m such that for each maximal edge h in (H∗τ )u, φ(h) = h. For ease
of reference, letH ′ = (H∗τ )u and let G′ = (Gτ∪pa(τ))m. Define φ(h) = h. We need to show two things:
(1) for every maximal edge h in H ′, h induces a maximal clique in G′; (2) for every maximal clique
h in G′, h is a maximal edge inH ′.

We first show (1). Suppose that h is a maximal edge in H ′. Clearly, h induces a clique in G′

because of the moralization. Suppose for the sake of contradiction that h is not maximal in G′, i.e.
there is a maximal clique h′ in G′ such that h ( h′. Let h′ = A∪ B where A ⊆ pa(τ) and B ⊆ τ. There
are two cases:

Case 1: A = ∅ or B = ∅.

Note that B cannot be an empty set since h is an edge in H ′ and every edge in H ′ = (H∗τ )u

intersects τ by definition. If A = ∅, then h′ is a maximal clique in τ. By Phase I of the
construction, h′ either is a hyperedge inH ′ or is contained in the head of a hyperedge. In either
case, since h ( h′, it contradicts that h is a maximal edge inH ′.

Case 2: A , ∅ and B , ∅.

Since A ∪ B induces a maximal clique in G′, it follows that for every a ∈ A, b ∈ B, a ∈ pa(b).
Hence B the common children of some elements in A. Recall that in Phase I of our construction,
for every v, ({v},Kv) is an hyperedge inH where Kv is a maximal clique in the children of v in G.
Hence there exists F ⊆ E(H∗τ ) such that B ⊆ ∩h∈FH(h). By maximality of h′, B = ∩h∈FH(h).
Now by our construction in Phase II, there exists a hyperedge

h′′ =

( ⋃
h∈E(H∗τ ))
B⊆H(h)

T (h), B
)
∈ E(H∗τ ).

Since every element in A is a parent of every element in B, it follows that

A ⊆
⋃

h∈E(H∗τ ))
B⊆H(h)

T (h).

By maximality of A, it follows that

h ( h′ = h′′ ∈ E(H∗τ ).

which contradicts the maximality of h again.
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Hence in both cases, we obtain by contradiction that h induces a maximal clique in G′.
It remains to show (2). Suppose h induces a maximal clique in G′. Observe that every hyperedge

inH ′ induces a clique in G′. Similar logic and case analysis above apply and it is not hard to see that
h is a maximal edge inH ′. We will leave the details to the reader. �

Example.

a
b

c

d e f

a
b

c

d e f

a
b

c

d e f

Figure 10: (1) a simple chain graph G; (2) The moral graph Gm of G; (3) M(H) where H is the
cononical LWF DAH of G.

In Figure 10, both G and its canonical LWF DAHH have chain components {{a}, {b}, {c}, {d, e, f }}.
Figure 10 (2) shows the moral graph Gm of G. The maximal cliques in Gm are {ade, abce, ce f }. Thus,
by the factorization property of LWF chain graphs, we have that a probability measure P with density
f that factorizes according to G satisfies

f (x) = f (xa) f (xb) f (xc) f (xd,e, f | xa,b,c)

= f (xa) f (xb) f (xc)ψade(x)ψabce(x)ψce f (x).

Figure 10 (3) gives the undirected hypergraph with edge set M(H). Observe that M(H) has the
same members as the set of maximal cliques in Gm. Hence by the factorization property of Bayesian
hypergraphs, they admit the same factorization.

6 Intervention in Bayesian hypergraphs

Formally, intervention in Bayesian hypergraphs can be defined analogously to intervention in LWF
chain graphs [19]. In this section, we give graphical procedures that are consistent with the inter-
vention formulas for chain graphs (Equation (9), (10)) and for Bayesian hypergraphs (Equation (11),
(12)). Before we present the details, we need some additional definitions and tools to determine when
factorizations according to two chain graphs or DAHs are equivalent in the sense that they could be
written as products of the same type of functions (functions that depend on same set of variables).
We say two chain graphs G1,G2 admit the same factorization decomposition if for every probability
density f that factorizes according to G1, f also factorizes according to G2, and vice versa. Similarly,
two DAHsH1,H2 admit the same factorization decomposition if for every probability density f that
factorizes according toH1, f also factorizes according toH2, and vice versa.

6.1 Factorization equivalence and intervention in chain graphs

In this subsection, we will give graphical procedures to model intervention based on the formula
introduced by Lauritzen and Richardson in [19]. Let us first give some background. In many statistical
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context, we would like to modify the distribution of a variable Y by intervening externally and forcing
the value of another variable X to be x. This is commonly refered as conditioning by intervention
or conditioning by action and denoted by Pr(y‖x) or Pr(y | X ← x). Other expressions such as
Pr(Yx = y), Pman(x)(y), set(X = x), X = x̂ or do(X = x) have also been used to denote intervention
conditioning (Neyman [21]; Rubin [31]; Spirtes et al. [34]; Pearl [24, 25, 26]).

Let G be a chain graph with chain components {τ : τ ∈ D}. Moreover, assume further that a
subset A of variables in V(G) are set such that for every a ∈ A, xa = a0. Lauritzen and Richardson, in
[19], generalized the conditioning by intervention formula for DAGs and gave the following formula
for intervention in chain graphs (where it is understood that the probability of any configuration of
variables inconsistent with the intervention is zero). A probability density f factorizes according to
G (with A intervened) if

f (x‖xA) =
∏
τ∈D

f (xτ\A | xpa(τ), xτ∩A). (9)

Moreover, for each τ ∈ D,

f (xτ\A | xpa(τ), xτ∩A) = Z−1(xpa(τ), xτ∩A)
∏
h∈C

ψh(x) (10)

whereC is the set of maximal cliques in (Gτ∪pa(τ))m and Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈C

ψh(x)µτ\A(dxτ\A).

Definition 2. G1 and G2 be two chain graphs. Given a subset A1 ⊆ V(G1) and A2 ⊆ V(G2), we
say (G1, A1) and (G2, A2) are factorization-equivalent2 if they become the same chain graph after
removing from Gi all vertices in Ai together with the edges incident to vertices in Ai for i ∈ {1, 2}.
Typically, Ai is a set of constant variables in V(Gi) created by intervention.

Theorem 5. Let G1 and G2 be two chain graphs defined on the same set of variables V. Moreover a
common set of variables A in V are set by intervention such that for every a ∈ A, xa = a0. If (G1, A)
and (G2, A) are factorization-equivalent, then G1 and G2 admit the same factorization decomposition.

Proof. Let G0 be the chain graph obtained from G1 by removing all vertices in A and the edges
incident to A. It suffices to show that G1 and G2 both admit the same factorization decomposition as
G0. LetD1,D0 be the set of chain components of G1 and G0 respectively. Let τ ∈ D1 be an arbitrary
chain component of G1. By the factorization formula in (10), it follows that

f (xτ\A | xpa(τ), xτ∩A) = Z−1(xpa(τ), xτ∩A)
∏
h∈C

ψh(x)

whereC is the set of maximal cliques in (Gτ∪pa(τ))m and Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈C

ψh(x)µτ\A(dxτ\A).

Notice that for any maximal clique h1 ∈ C such that h1 ∩ A = ∅, h1 is also a clique in (G0[τ\A])m. For
h1 ∈ C with h1 ∩ A , ∅, there are two cases:

Case 1: (h1 ∩ τ)\A , ∅. In this case, observe that h1\A is also a clique in (G0[τ\A])m, thus is
contained in some maximal clique h′ in (G0[τ\A])m. Since all variables in A are pre-set as
constants, it follows that ψh1(x) also appears in a factor in the factorization of f according to
G0.

2This term was defined for a different purpose in [36].
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Case 2: h1 ∩ τ ⊆ A. In this case, note that h1 ∩ τ is disjoint with τ\A. Hence ψh1(x) appears as
a factor independently of xτ\A in both Z−1(xpa(τ), xτ∩A) and

∏
h∈C

ψh(x), which cancels out with

itself.

Thus it follows that every probability density f that factorizes according to G1 also factorizes ac-
cording to G0. On the other hand, it is easy to see that for every τ′ ∈ D0 and every maximal clique
h′ in (G0[τ′])m, h′ is contained in some maximal clique h in (G1[τ])m for some τ ∈ D1. Hence we
can conclude that G1 and G0 admit the same factorization decomposition. The above argument also
works for G2 and G0. Thus, G1 and G2 admit the same factorization decomposition. �

We now define a graphical procedure (call it redirection procedure) that is consistent with the
intervention formula in Equation (9) and (10). Let G be a chain graph. Given an intervened set of
variables A ⊆ V(G), let Ĝ be the chain graph obtained from G by performing the following operation:
for every u ∈ A and every undirected edge e = {u,w} containing u, replace e by a directed edge from u
to w; finally remove all the directed edges that point to some vertex in A. By replacing the undirected
edge with a directed edge, we replace any feedback mechanisms that include a variable in A with a
causal mechanism. The intuition behind the procedure is the following. Since a variable that is set by
intervention cannot be modified, the symmetric feedback relation is turned into an asymmetric causal
one. Similarly, we can justify this graphical procedure as equivalent to removing the variables in A
from some equations in the Gibbs process on top of p. 338 of [19], as Lauritzen and Richardson [29]
did for Equation (18) in [19].

Theorem 6. Let G be a chain graph with a subset of variables A ⊆ V(G) set by intervention such
that for every a ∈ A. xa = a0. Let Ĝ be obtained from G by the redirection procedure. Then G and Ĝ
admit the same factorization decomposition.

Proof. It is not hard to see that removing from Ĝ and G all vertices in A and all edges incident to
A results in the same chain graph. Hence by Theorem (5), G and Ĝ admit the same factorization
decomposition.

�
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Figure 11: (a) A chain graph G; (b) The graph Ĝ obtained from G through the redirection procedure;
(c) The graph G0 obtained from G by deleting variables in A.

Example 1. Consider the chain graph G shown in Figure 11. Let Ĝ be the graph obtained from G
through the redirection procedure described in this subsection. Let G0 be the chain graph obtained
from G by deleting the vertex c0 and the edges incident to c0. We will compare the factorization
decomposition according to the formula (9),(10) as well as the graph structure Ĝ and G0.
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By the formula (9) and (10) proposed in [19], when xc is set as c0 by intervention,

f (x‖xc) = f (xa) f (xb) f (xde | xabc0)

= f (xa) f (xb)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

.

Now consider the factorization according to Ĝ. The chain components of Ĝ are {{a}, {b}, {c}, {d, e}}
with xc set to be c0. The factorization according to Ĝ is as follows:

fĜ(x‖xc) = fĜ(xa) fĜ(xb) fĜ(xc) fĜ(xde | xabc0)

= fĜ(xa) fĜ(xb) fĜ(xc)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

,

where f (xc) = 1 when xc = c0 and otherwise 0. Hence G and Ĝ admit the same factorization.
Now consider the factorization according to G0. The chain components of G0 are {{a}, {b}, {d, e}}.

The factorization according to G0 is as follows:

f0(x) = f0(xa) f0(xb) f0(xde | xab)

= f0(xa) f0(xb)
ψad(x)ψabde(x)∑
d,e ψad(x)ψabde(x)

,

Observe that f0(x) has the same form of decomposition as f (x‖xc) since xc is set to be c0 in ψac0d(x)
(with the understanding that the probability of any configuration of variables with xc , c0 is zero).
Hence we can conclude that G, Ĝ (with xc intervened) and G0 admit the same factorization decom-
position.

6.2 Factorization equivalence and intervention in Bayesian hypergraphs

Intervention in Bayesian hypergraphs can be modeled analogously to the case of chain graphs. We use
the same notation as before. Let H be a DAH and {τ : τ ∈ D} be its chain components. Moreover,
assume further that a subset A of variables in V(H) are set such that for every a ∈ A, xa = a0.
Then a probability density f factorizes according to H (with A intervened) as follows: (where it is
understood that the probability of any configuration of variables inconsistent with the intervention is
zero):

f (x‖xA) =
∏
τ∈D

f (xτ\A | xpa(τ), xτ∩A). (11)

For each τ ∈ D, defineH∗τ to be the subhypergraph ofHτ∪paD(τ) containing all edges h inHτ∪pa(τ)
such that H(h) ⊆ τ, then

f (xτ\A | xpa(τ), xτ∩A) = Z−1(xpa(τ), xτ∩A)
∏

h∈M(H∗τ )

ψh(x). (12)

where Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈M(H∗τ )

ψh(x)µτ\A(dxτ\A) and ψh are non-negative functions that de-

pend only on xh.

Definition 3. Let H1 and H2 be two Bayesian hypergraphs. Given a subset of variables A1 ⊆

V(H1) and A2 ⊆ V(H2), we say (H1, A1) and (H2, A2) are factorization-equivalent if performing the
following operations toH1 andH2 results in the same directed acyclic hypergraph:
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(i) Deleting all hyperedges with empty head, i.e., hyperedges of the form (S , ∅).

(ii) Deleting every hyperedge that is contained in some other hyperedge, i.e., delete h if there is
another h′ such that T (h) ⊆ T (h′) and H(h) ⊆ H(h′).

(iii) Shrinking all hyperedges of Hi containing vertices in Ai, i.e. replace every hyperedge h of Hi

by h′ = (T (h)\Ai,H(h)\Ai) for i ∈ {1, 2}.

Typically, A is a set of constant variables in V created by intervention.

Theorem 7. LetH1 andH2 be two DAHs defined on the same set of variables V. Moreover, a com-
mon set of variables A in V are set by intervention such that for every a ∈ A, Xa = a0. If (H1, A) and
(H2, A) are factorization-equivalent, thenH1 andH2 admit the same factorization decomposition.

Proof. Similar to the proof in Theorem 5, let H0 be the DAH obtained from H1 (or H2) by per-
forming the operations above repeatedly. Let D1 and D0 be the set of chain components of H1 and
H0 respectively. First, note that performing the operation (i) does not affect the factorization since
hyperedges of the form h = (S , ∅) never appear in the factorization decomposition due to the fact that
H(h) ∩ τ = ∅ for every τ ∈ D1. Secondly, (ii) does not change the factorization decomposition too
since if one hyperedge h is contained in another hyperedge h′ as defined, then ψh(x) can be simply
absorbed into ψh′(x) by replacing ψh′(x) with ψh′(x) · ψh(x).

Now let τ ∈ D1 be an arbitrary chain component of H1 and h1 ∈ H1[τ]∗, i.e., the set of hy-
peredges in H1 whose head intersects τ. Suppose that τ is separated into several chain components
τ′1, τ

′
2, · · · , τ

′
t in H0 because of the shrinking operation. If h1 ∩ A = ∅, then h1 is also a hyperedge in

H0[τ\A]∗. If h1 ∩ A , ∅, there are two cases:

Case 1: H(h1) ⊆ A. Then since variables in A are constants, it follows that in Equation (12), ψh1(x)
does not depend on variables in τ\A. Hence ψh(x) appears as factors independent of variables
in τ\A in both Z−1(xpa(τ), xτ∩A) and

∏
h∈M(H∗τ )

ψh(x), thus cancels out with itself. Note that, h1

does not exist in H0 too since h1 becomes a hyperedge with empty head after being shrinked
and thus is deleted in Operation (i).

Case 2: H(h1)\A , ∅. In this case, H(h1)\A must be entirely contained in one of {τ′1, · · · , τ
′
t} .

Without loss of generality, say H(h1)\A ⊆ τ′1 inH0. Then note that h1\A must be contained in
some maximal hyperedge h′ in E(H0) such that H(h′)∩ τ′1 , ∅. Moreover, recall that variables
in A are constants. Hence ψh1 must appear in some factor in the factorization of f according to
H0.

Thus it follows that every probability density f that factorizes according to H1 also factorizes
according to H0. On the other hand, it is not hard to see that for every τ′ ∈ D0 and every hyperedge
h′ in (H0[τ′])∗, h′ is contained in some maximal hyperedge h in (H1[τ])∗ for some τ ∈ D1. Hence
we can conclude that H1 and H0 admit the same factorization decomposition. The above argument
also works forH2 andH0. Thus,H1 andH2 admit the same factorization decomposition.

�

We now present a graphical procedure (call it redirection procedure) for modeling intervention
in Bayesian hypergraph. Let H be a DAH and {τ : τ ∈ D} be its chain components. Suppose a set
of variables xA is set by intervention. We then modify H as follows: for each hyperedge h ∈ E(H)
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such as S = H(h) ∩ A , ∅, replace the hyperedge h by h′ = (T (h) ∪ S ,H(h)\S ). If a hyperedge has
empty set as its head, delete that hyperedge. Call the resulting hypergraph ĤA. We will show that the
factorization according to ĤA is consistent with Equation (12).

Theorem 8. Let H be a Bayesian hypergraph and {τ : τ ∈ D} be its chain components. Given an
intervened set of variables xA, let ĤA be the DAH obtained from H by replacing each hyperedge
h ∈ E(H) satisfying S = H(h) ∩ A , ∅ by the hyperedge h′ = (T (h) ∪ S ,H(h)\S ) and removing
hyperedges with empty head. ThenH and Ĥ admit the same factorization decomposition.

Proof. This is a corollary of Theorem (7) since performing the operations (i)(ii)(iii) in the definition
of factorization-equivalence of DAH toH and Ĥ results in the same DAH. �

a b

c
�

d e
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c
�

d e

a bc = c0

�

d e

Figure 12: (a) A chain graph G; (b) the canonical LWF DAHH of G; (c) the resulting hypergraph Ĥ
after performing the graphical procedure onH when the variable c is intervened.

Example 2. Let G be a chain graph as shown in Figure 12(a) andH be the canonical LWF Bayesian
hypergraph of G as shown in Figure 12(b), constructed based on the procedure in Section 2.4. H has
two directed hyperedges ({a}, {c, d}) and ({a, b}, {d, e}). Applying the redirection procedure for inter-
vention in Bayesian hypergraphs leads to the Bayesian hypergraph Ĥ in Figure 12(c). We show that
using equations (9) and (10) for Figure 12(a) leads to the same result as if one uses the factorization
formula for the Bayesian hypergraph in Figure 12(c).

First, we compute f (x||xc) for chain graph in Figure 12(a). Based on equation (9) we have:

f (x‖xc) = f (xa) f (xb) f (xde | xabc0),

as the effect of the atomic intervention do(Xc = c0). Then, using equation (10) gives:

f (x||xc) = f (xa) f (xb)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

. (13)

Now, we compute f (x) for Bayesian hypergraph in Figure 12(c). Using equation (6) gives:

f (x‖xc) = f (xa) f (xb) f (xde | xabc0).

Applying formula (7) gives:

f (x||xc) = f (xa) f (xb) f (xc)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

(14)

Note that f (xc) = 1, when xc = c0, otherwise f (xc) = 0. As a result, the right side of equations (13)
and (14) are the same.
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Figure 13: Commutative diagram of factorization equivalence

Remark 9. Figure 13 summarizes all the results in Section 6. Given a chain graph G and its canon-
ical LWF DAH H , Theorem 4 shows that G and H admit the same factorization decomposition.
Suppose a set of variables A is set by intervention. Theorem 5 and 6 show that the the DAH obtained
from G by the redirection procedure or deleting the variables in A admit the same factorization de-
composition, which is also consistent with the intervention formula introduced in [19]. Similarly,
Theorem 7 and 8 show that the DAH obtained from H by the redirection procedure or shrinking the
variables in A admit the same factorization decomposition, which is consistent with a hypergraph
analogue of the formula in [19].

7 Conclusion and Future Work

This paper presents Bayesian hypergraph, a new probabilistic graphical model. We showed that the
model generalizes Bayesian networks, Markov networks, and LWF chain graphs, in the following
sense: when the shadow of a Bayesian hypergraph is a chain graph, its Markov properties are the
same as that of its shadow. We extended the causal interpretation of LWF chain graphs to Bayesian
hypergraphs and provided corresponding formulas and two graphical procedures for intervention (as
defined in [19]).

Directed acyclic hypergraphs can admit much finer factorizations than chain graphs, thus are
more computationally efficient. The Bayesian hypergraph model also allows simpler and more gen-
eral procedures for factorization as well as intervention. Furthermore, it allows a modeler to express
independence of causal influence and other useful patterns, such as Noisy-OR, directly (i.e., graphi-
cally), rather than through annotations or the structure of a conditional probability table or function.
We conjecture that the greater expressive power of Bayesian hypergraphs can be used to represent
other PGMs and plan to explore the conjecture in future work.

Learning the structure and the parameters of Bayesian hypergraphs is another direction for future
work. For this purpose, we will need to provide a criterion for Markov equivalence of Bayesian
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hypergraphs. The success of constraint-based structure learning algorithms for chain graphs leads us
to hope that similar techniques would work for learning Bayesian hypergraphs. Of course, one should
also explore whether a closed-form decomposable likelihood function can be derived in the discrete
finite case.
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ting components in a chain graph. Kybernetika (Prague) 45 (2009), no. 2, 208–248

[37] Wermuth, N. and Cox, D.R. (2004). Joint response graphs and separation induced by triangular
systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 687-717.

[38] Wermuth, N., Cox, D. R. and Pearl, J. (1994). Explanation for multivariate structures derived
from univariate recursive regressions Technical Report No. 94(1), Univ. Mainz, Germany.

[39] Wermuth, N. and Lauritzen, S. L. (1983). Graphical and recursive models for contingency tables.
Biometrika 70 537-552.

28


	1 Introduction
	2 Terminology and concepts
	2.1 Graphs
	2.2 Hypergraphs
	2.3 Hypergraph drawing
	2.4 Construction of a directed acyclic hypergraph from chain graph

	3 Markov properties for undirected graphs
	4 Markov properties of chain graphs
	5 Bayesian Hypergraphs
	5.1 Markov Properties of Bayesian hypergraphs
	5.2 Factorization according to Bayesian hypergraphs
	5.3 Comparison between LWF chain graph and LWF Bayesian hypergraph

	6 Intervention in Bayesian hypergraphs
	6.1 Factorization equivalence and intervention in chain graphs
	6.2 Factorization equivalence and intervention in Bayesian hypergraphs

	7 Conclusion and Future Work
	8 Acknowledgements

