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Abstract 

We show that fMRI analysis using machine learning tools are sufficient to distinguish valence (i.e., 

positive or negative) of freely retrieved autobiographical memories in a cross-participant setting. Our 

methodology uses feature selection (ReliefF) in combination with boosting methods, both applied directly 

to data represented in voxel space. In previous work using the same data set, Nawa and Ando showed 

that whole-brain based classification could achieve above-chance classification accuracy only when both 

training and testing data came from the same individual. In a cross-participant setting, classification 

results were not statistically significant. Additionally, on average the classification accuracy obtained when 

using ReliefF is substantially higher than previous results - 81% for the within-participant classification, 

and 62% for the cross-participant classification. Furthermore, since features are defined in voxel space, it 

is possible to show brain maps indicating the regions of that are most relevant in determining the results 

of the classification. Interestingly, the voxels that were selected using the proposed computational 

pipeline seem to be consistent with current neurophysiological theories regarding the brain regions 

actively involved in autobiographical memory processes.     

 

  



1. Introduction 

Memory encoding and retrieval are arguably two of the most complex cognitive processes performed 

by humans [1], [2]. Study of this process is a central concern of psychology and memory researchers. A 

technological window on cognitive activities in general, and memory in particular, is the use of 

neuroimaging techniques to help elucidate the neurophysiological basis underlying such memory 

processes. The combination of neuroimaging technology with machine learning techniques [3]–[6] has 

opened a promising front in the past decade or so. A common approach has been to attempt to identify 

cognitive processes, states or disorders from neuroimaging data using various types of machine learning 

techniques.  Although progress has been made in the field, the subtleties of memory processes pose a 

considerably more challenging task, as compared to tasks involving, for instance, the perception of visual 

stimuli.   

 The retrieval of episodic memories derived from events experienced from one’s personal past – 

i.e., autobiographical memories – has been shown to recruit a brain-wide network of regions, such as 

medial and lateral temporal structures, most notably the hippocampus (HC) and parahippocampus, 

prefrontal areas including dorsolateral and ventromedial regions, posterior midline regions such as 

precuneus (PCUN) and retrosplenial cortex (RSC), and lateral parietal cortex [7]–[10]. The retrieval of 

emotional memories, i.e., memories of events associated with greater levels of arousal or valence [11], in 

particular, has been associated with heightened activity in prefrontal regions, and oftentimes the 

amygdala [12]–[14].    

In Nawa and Ando [15] the authors investigated freely retrieved autobiographical memory 

formation and showed that, in fact, it is possible to reliably distinguish between autobiographical memory 

retrieval and a completely different cognitive task (in their case, counting backwards) based on data from 

a single fMRI scan (or volume). This worked also in a cross-participant setting; i.e., when using data from 

n-1 participants to train the machine learning classifier and using data from the left-out participant to test 

the classifier generalizability and accuracy. They decided to pursue this without choosing a priori regions 

of interest (ROIs), under the assumption that since memory retrieval is a complex process involving many 

regions, there could be loss of information by focusing in selected brain areas. They also proceeded to the 

even more delicate task of distinguishing between two different kinds of autobiographical memory, those 

with positive valence from those with negative valence. They did succeed in this task at a significant level 

but only in a within-participant setting, i.e., when using a subset of the scans not used for training when 

testing the generalizability and accuracy but with all scans collected from the same individual. However, 

they did not succeed in doing this for generalizing to memories from a novel individual (the cross-

participant setting). 

In this work, we show that it is possible to dramatically increase the performance for the cross-

participant setting when applying a combination of techniques, provided that a strong voxel selection is 

performed prior to the machine learning training stage proper. Although this may be in contradiction with 

the idea of using data from the entire brain because of the complexity of memory retrieval processes, 

feature selection may have an effect akin to strengthening the signal to noise in the training signal. 

Moreover, by examining the location of the voxels most often selected across participants, it was possible 

to confirm that qualitatively, some of the voxels driving the machine learning classification were located 

on brain regions that are known to be involved with autobiographical memory processes. This suggests 



that machine learning techniques may also serve as tools of discovery by suggesting to neuroscientists 

areas of potential interest with regard to a cognitive function, in an information theoretic principled way.  

2. Methodology 

2.1. Experimental Data  

In this work we used the same data set reported in Nawa and Ando [15]. Their protocol for the 

autobiographical recall task was as follows (for a more detailed explanation of the experiment, see  [15]).  

Participants performed three types of mental tasks while in the MRI scanner: a countdown task, a positive 

autobiographical memory retrieval task, and a negative autobiographical memory retrieval task. Figure 1 

shows a graphical representation of the data collection protocol.  In essence, each participant participated 

in 12 scanning sessions, each session consisted of three blocks of either “positive autobiographical 

memory retrieval  and counting backwards tasks” or three “negative memory and then counting tasks”. 

Each such experimental task block consisted of memory (either positive or negative) task and countdown 

task. The memory task lasted 32 seconds followed by 16 seconds of rest after which the countdown task 

(32sec) was executed.  Each block type was repeated 3 times in each session. In 6 sessions, subjects 

switched between  negative memory and countdown tasks (i.e., M_A and Cn tasks) and  in the remaining 

6 sessions they switched between tasks between positive memory and countdown tasks (i.e., M_B and 

Cn tasks). All sessions were performed in the same day. One hundred forty-seven scans were acquired in 

each session (TR = 2 s, 33 4-mm slices, in-plane spatial resolution of 3 mm x 3 mm). Each single scan was 

encoded as a vector containing the blood-oxygen level dependent (BOLD) signal of voxels covering the 

entire brain. From a machine learning perspective, the most important points of the study are that (i) 

there were no restrictions on the contents of the memories, i.e., the retrieved memories did not have to 

necessarily be associated with landmark personal events but rather with more mundane episodes; 

participants were only requested to thoroughly “relive” the original event during the scan, by focusing on 

the circumstances that led to the event and other details associated with it,  and (ii) the relatively long 

scanning time that allowed the participants to “freely engage” into the execution of the task. 



 

Figure 1 – 12 Sessions were recorded from participant, each session consisted from three memory tasks and three counting 
tasks (in alternating fashion), each task consisted from 32 seconds of recording time and 12 seconds of resting period. The 

scanning speed was 2 seconds resulting in 16 volumes per task.  

A machine learning-based scheme was then employed to predict the valence of the autobiographical 

memories recalled by human subjects based on the information contained in a single functional magnetic 

resonance imaging (fMRI) scan. Subjects (N = 11, 6 females, age 21 - 37, average 28.2 years old, right-

handed) were asked beforehand to prepare a list of happy and sad events that they had experienced in 

the past. During scanning, subjects were asked to keep their eyes closed and given auditory cues which 

indicated whether they should alternate between counting down numbers and  recollecting positive 

autobiographical memories or counting down and recollection of negative autobiographical memories 

(see Figure 1 for details). The memory recollection task was conducted in  a self-paced manner, during 

which subjects were asked to remember as many details as possible about the events.  

2.2. Machine Learning and Data Mining Methodology  

The entire process of classification is depicted in Figure 2.  After a standard data preprocessing step 

(for details, see [15]), the data of the participants were divided into training and testing groups. The 

machine learning procedures that were applied on the training group consisted of: (i) scoring the voxels 

by their relevance to the classification task, and then performing feature selection using a form of 

thresholding (ii) construction of a classification method using tree stumps from the selected voxels and 

(iii) a version of the AdaBoost methodology on the stump. Next, the classifier was evaluated on the test 

group data, and we examined both the efficiency of the selected features (i.e., brain regions), and the 

performance of the classification algorithm.   

These steps are explained in more detail below.  



2.2.1. Pre-processing step 

Imaging data was acquired on a 3T Siemens Magnetom Trio, A Tim System scanner (Siemens 

Healthcare, Erlangen, Germany) equipped with a 12-channel standard head coil. A standard preprocessing 

pipeline was adopted before the data was used to train and test the classifiers, which included temporal 

slice time correction, spatial realignment, normalization to a standard stereotaxic space (Montreal 

Neurological Institute, MNI) and spatial smoothing (Gaussian kernel of 8-mm full width at half maximum). 

Those steps were performed using the functions available in SPM 5 (Wellcome Trust Centre for 

Neuroimaging, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm5). During the spatial normalization, 

for each subject, a visual inspection of the results was performed by validating the registration of selected 

landmark points with reference to the brain template. Most importantly, normalized images were 

rewritten using the voxel size originally employed during data collection (3 x 3 x 4 mm).   

2.2.2. Feature selection 

The goal of feature selection is twofold. First, from a purely data driven aspect, feature selection is an 

effective way to reduce the number of dimensions, and avoid the “curse of dimensionality“ problem [16]. 

Since each voxel represents a feature, the number of possible features is much larger than the amount of 

data points, i.e., brain scans: there were nearly 40,000 voxels for a total of about 600 scans (from the two 

conditions of positive and negative autobiographical memories for each one of the participants). Not 

having to deal with such an extremely large number of features, given the small number of data points, is 

likely to be crucial to improve classification results. The second goal of feature selection has to do with 

the role of machine learning classification in realm of neuroscience research; by keeping the features in 

voxel space during the process of dimensionality reduction, and  the machine learning based classification 

per se (as opposed to defining features in a more abstract space, e.g., the inner level representations 

common to deep learning networks [17]), it is possible to more easily understand the results, i.e., which 

areas of the brain contain the most discriminative information for the purposes of classification), and 

consequently, obtain more meaningful insights with regard to the brain regions or networks.  

This led us to the design of the following “two staged” feature selection process: first, a “gross” 

feature selection method is applied in order to select a subset of the features to concentrate the 

computational power on. This step is explained in this section.  Later, during the classification procedure, 

a finer and multivariate feature selection method is applied in order to focus on the most informative 

features and fuse them into a single spatial activation pattern. This step is explained in the next section 

(Classification).  

For the first, “gross”, feature selection step, a ReliefF [18] algorithm is used in this scheme. In essence, 

the algorithm works by randomly sampling instances and for each such instance locating its ‘k’ nearest 

neighbours from the same and opposite classes1.  The values of the features of the nearest neighbours 

are compared to the sampled instance and used to update (for each sampled instance) what is called the 

relevance scores for each feature (i.e., the closer a sample is to a same class sample, the higher its 

relevance). The relevance scores are calculated by the following equation: 

 
1 Note: Should all training data points be selected, the algorithm is deterministic. In this study, we sampled 10% of 
the data. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm5
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  (1) 

Here ‘K’ is the number of neighbors, ‘n’ is the number of repetitions (i.e., the number of randomly 

selected instances from the dataset), ‘H’ are the neighbors selected from the current sample’s group (i.e., 

“Hits”) and ‘M’ are the selected neighbors from the opposite group (i.e., “Misses”). The ( )HDist k is the 

distance between the selected instance and its k-th nearest neighbor in H (the same for M).  

This algorithm has several properties that makes it suitable for this type of preliminary feature 

selection. First, the algorithm provides feature ranking, in terms of its relevance to the classification task. 

Second, since the features are evaluated in “K-nearest neighbor” (KNN) fashion, its probability of error is 

close to a Bayesian decision rule (see [19]) and strongly correlated with impurity functions (in other words 

it calculates the amount of probability of a specific feature that is classified incorrectly when selected 

randomly [20]). This in turn makes this process relatively resilient to noise that is typically observed in 

fMRI data.  

The specific choice of "k" depends on a balance between the amount of data, computational resources 

and desired accuracy [21]. In essence, higher “K” will redure the sensitivity of algorithm to noise by 

calculating the average distance. On the other hand, in small datasets, higher “K” can account unrelated 

information. In our work, (see below) we settled on K=3. With substantially additional data and 

computational power, our impression from minor tests is that a larger K (e.g. K= 6) might improve our 

results. 

Thus, following the above methodology results in a choice of the subset of voxels both by maximizing 

the certainty of decision individually on each voxel as well as being relatively resilient to noise in the 

training data.   

However, since ReliefF is an iterative algorithm, in our use of the algorithm we have to consider that 

for each feature (40,000 voxels) all data points are needed, resulting in (~600 scans per participant x 11 

participants x the value of K) iterations so the algorithm could be very time-consuming. In order to make 

this feasible and to reduce the influence of the noisy features we used a sampling methodology which we 

chose to do over the data. That is, not all the data-points were used in order to evaluate feature’s 

influence. 

After the relevance values are computed, we chose (i.e., threshold) the best 2500 voxels as our 

features, i.e., N = 2500 voxels. Since this feature selection is really a univariant method; while our 

classification algorithm (below) is multi-variate a balancing between introducing too much noise in the 

classification algorithm (from not sufficiently relevant voxels) and having sufficient information available 

for the classification algorithm is required. In addition we also needed to keep in mind the processing 

speed (i.e. training and validation times). We heuristically chose 2500 as approximately 5 -10% of the total 

voxels in the brain volume since (i) we expected that only a small fraction of the brain in engaged in the 

specific task and (ii) in analyses of other tasks [3], [4], [22] we found that this amount of voxels on similar 

resolution scans gives an appropriate compromise.  

 



2.2.3. Classification 

While the initial feature selection scheme performed by the ReliefF algorithm aimed at finding the 

subset of voxels with reduced levels of noise (as explained in the previous section), the classification step 

aims to find a multivariate activation pattern between those voxels that can be reliably associated in 

distinguishing two cognitive states, i.e., any two of remembering positive autobiographical memory, a 

negative autobiographical memory, or counting numbers backwards. In order to achieve that, an 

ensemble learning method was used as the classification scheme. More specifically, in this paper we used 

the AdaBoost [23], [24] method. In earlier work [15] Nawa used support vector machines (SVM) as the 

algorithm on the entire brain. Some advantages of the AdaBoost method (as opposed to SVM or neural 

networks) can be seen by considering Eq. 2 below.  The underlying idea behind ensemble learning is to (i) 

find the best weak learners, i.e., maximally correlated with the desired classification, and then (ii) find the 

best linear combination of weak learners to strengthen the final classification. In our case this means 

finding the voxels whose ensembled activation is maximally correlated (even if the correlation have small 

positive or negative values) to the valence of autobiographical memories; and then finding the best linear 

combination of these voxels, in order to obtain a robust multivariate classification tool. Furthermore, since 

all the steps take place in voxel space, we can directly visualize, e.g., on a standard MNI brain, the location 

of the voxels, and their relative importance for classification accuracy. This is a relatively direct way to 

pick out important patterns of activation.   

In other words, we can represent this process as finding the appropriate weights of each of the 

selected voxel-based classifiers. Thus, our classifier is of the form of: 

                                                        1 1 1 2 2 2( ) ( ) ( ) ... ( )i i iP x w f x w f x w f x= + + +                                               (2)  

where the final decision is based on the sign of P. (Here ix  is the i'th coordinate of x .) 

 One way to tackle this problem is to find the ( )i i iw f x , i.e., turn each voxel into a “weak classifier”, 

( )i if x ,  that is based on a single voxel and performs slightly better than chance level.  The wi would be 

the weight of this classifier in the final decision. This can be achieved by using a decision tree stump 

methodology (i.e., a one-level decision tree) [25].  Practically, each voxel from the remaining set (i.e., after 

the feature selection procedure) splits the training dataset into two groups, namely positive and negative 

autobiographical memories, using a cut (in the voxel value) that gives the best separation gain. In this 

scheme, the gain was computed using Cross Entropy measure [26]. 

One method of finding the wi’s (see Eq. 2) is to proceed in a greedy fashion by starting with just one 

voxel (the highest correlated one) and then, in each iteration for each remaining voxel separately, find the 

optimal w; and then compare the best results over all choices of the voxels. In essence, we would like to 

minimize the training error Ei (see Eq. 3) with each iteration i (i.e. with each addition of a new classifier 

trained on additional modality). This iterative method is called AdaBoost [23].  

 1[ ( ) ( )]i i i t i i

i

E E P x w f x−= +   (3) 



Here Ei is the sum of the training error at iteration i, iP  is the final classifier after i iterations, ( )i if x  

is the output hypothesis produced by a single classifier for each voxel in the training data-set and wi is the 

weight assigned to the i’s.  

 

  

Figure 2 – a) A sketch of the proposed method, that includes feature selection, classifier’s training and testing phases, and b) an 
example of a histogram showing the frequency of specific voxels in the normalized brain coordinates being chosen, sorted by 

frequency during the feature selection process. 

 

2.2.4. Further generalization  

We would like, if possible, to not only succeed in the classification but also try to identify the most 

important brain areas involved in this task. This is not direct from the classification for various reasons: (i) 

there is a variability in the selected features due to the cross-validation iterations that leaves out 

substantial amount of data (for validation), (ii) the methodology we use for the voxel feature selection 

process is actually non-deterministic, in the sense that there is randomness in the ReliefF algorithm action 

(the feature weighting algorithm) due to the sampling process (see section 2.2)  and (iii) because the data 

may contain noise of non-physiological nature, for instance, task engagement may vary across scans.       
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To overcome some of these issues, we used a “histogram methodology”.  That is, we rerun the analysis 

(the left path of the diagram in Figure 2a) many times and give some indication of the frequency of a 

specific voxel being selected as feature on which classification algorithm will be trained.  Initially, this was 

suggested in the work Boehm and Manevitz [27],  but the computational resources were not available for 

that study at that time.  An example of such a run can be seen in Figure 2b, where the x-axis indicate 

selected voxels (a.k.a. features) and the y-axis indicate frequency (i.e., the repeatability of a specific 

feature through different selections). From Figure 2b it can be seen that there is a relatively small set of 

voxels that is frequently repeated between the different folds. Using this histogram methodology (i) made 

the feature selection more stable and as a result substantially lowered the standard deviations as given in 

table 2 below, and (ii) supports our assumption that significant amount of voxels introduced noise into 

the “whole brain analysis” based classification scheme used in previous research. 

Since the ReliefF is an iterative algorithm (i.e. for each feature (40,000 voxels) all data points (~600 

scans per participant x 11 participants) are sampled over the amount of neighbors (4)) the algorithm is 

very time-consuming. Consequently sampling methodology was used; i.e., not all the data-points were 

used in order to evaluate a feature’s influence at each fold). Besides, the decrease in running time, this 

method reduced the influence of noisy data-samples due to the sampling process. The sampling ratio of 

10% was chosen as a reasonable compromise between the running time and representation of the 

dataset.  

It is possible that further research on optimizing the parameters, such as sampling percentage, 

might improve these results presented in Section 3.  Note that the main result is the success  of separation 

by valence, which was not successfully generalized in Nawa [15]. 

3. Results 

We report here three types of results; first, classification results for (i) each participant (i.e. within-

participant) and (ii) cross-participants. Both analyses were made at the brain volume level.  Second, we 

show that it is possible to correlate between the classification success and each user’s reported degree of 

vividness experienced during the retrieval of memories. Lastly, a visual analysis of the voxels selected by 

the algorithm is presented. Note that due to the equal number of positive and negative memory tasks no 

balancing of the training dataset was required. 

For both sets of classification results, in AdaBoost we stopped after choosing the best 260 voxels.  

The stoppage at this time was done after limited preliminary results (e.g., around 100 was substantially 

worse results, while even at the level of 600 there was no significant increase).  Recall that the candidate 

2500 voxels were chosen by their univariate quality.  

Within-participant results.  For each participant, the recorded data was divided into train and test 

groups in the task block level, i.e. if a specific task is selected to the testing set, all of its 16 volume scans 

were excluded from the training set. Since there is a bold recovery period followed by execution of a 

neutral task, “block level” selection should be sufficient in order to avoid a data leakage between training 

and testing groups. The division is made randomly using 70%-30% to train and test group respectively (i.e., 

Monte Carlo cross validation) with 100 cross validation cycles. The ReliefF algorithm narrowed the data 

to 2500 voxels (approximately 6% of the voxels with highest weights were selected), and the final 



classification performed using a combination of 260 voxels selected from this subset using the AdaBoost 

algorithm as described in previous section.   

The overall classification results for each of the 11 participants are presented in Table 1. A 

permutation test of independence was applied in order to validate the results.  In order to calculate the 

p-value, 1000 permutations were performed at the block level per participant, resulting p-values of the 

classification result reported in the Table 1 below. (A p-value of 0.001 is the minimum in this case).  

Table 1 – Classification results within participant at task level. First column indicates participant number, second column is the 
average classification result and third is a result of a permutation test (1000 permutations used). 

# Classification Result P-value derived from 
permutation tests 

1 0.852 0.032 

2 0.684  0.045 

3 0.750 0.030 

4 0.869 0.028 

5 0.617 0.041 

6 0.782 0.021 

7 0.649 0.039 

8 0.924 0.008 

9 0.897 0.015 

10 0.951 0.003 

11 0.971 0.003 

 

Cross-participant results.  Table 2 presents cross participants results. The cross-validation division 

into train and validation sets was 70% - 30% accordingly at the participant level (i.e., all the volumes of 

selected participants were included or excluded from the training set). The presented results were 

generated using 20 cross validation cycles, with random choice of the train/test groups. To validate the 

results, a permutation test was carried out, wherein we repeated the same classification process with 

permuted labels at block level. We repeated the test 100 times (a smaller number of permutations was 

used due to computational constraints) in order to create the probability function for randomized results 

and measure the significance level of the classification, which is p=0.039.    

Table 2 – Confusion matrix for cross-participants classification results. The number in the upper left corner is the average of the 
diagonal (i.e., the average classification result). 

Cross Participants  
(0.624) 

Mem Neg’ Mem Pos’ 

Mem Neg’ 0.633±0.018 0.367±0.018 

Mem Pos’ 0.384±0.024 0.616±0.024 

 

Correlating neuroimaging data with psychological data. Figure 3 presents the correlation 

between the classification success rate (y-axis), within participant, and the reported degree of vividness 

(x axis) per each participant. Participants were asked to evaluate the vividness of the retrieved memories 

after scanning using a 11-point scale (0: low, 10: high) [15]. 



 

Figure 3 – Correlation between the classification success rate and the reported degree of vividness. (Note, that this graph omits 
one outlier) 

   

Selected voxels visual analysis.  

For visual analysis of the brain areas which give the candidate voxels (i.e., the univariate choices) 

from which voxels were selected for the classification, the following procedure was performed: First, the 

feature selection step from the classification pipeline is executed using 100 folds for each participant, i.e., 

re-choosing the 70-30 training-validation split.  During each fold, 2500 voxels with highest weights were 

selected and the occurrence of each voxel across the different folds was counted. Then, the resulting 

“voxel counts” from all the participants were superimposed (added) on the same MNI brain volume. Later, 

for visualization purposes,  the resulting image was smoothed using a Gaussian kernel of 6-mm full width 

at half maximum and then manually  thresholded to show the ~2500 voxels with the highest values (out 

of which clusters containing less than 5 voxels were removed).  Figure 4 presents a view of the results of 

this procedure where warmer colors indicate higher values of the smoothed averaged histogram values. 

(This method eliminates isolated voxels even with relatively high histogram values; thereby allowing 

visualization of the most relevant brain areas based on our classification methods.) 



 

Figure 4 – A representation (over a normalized MNI brain)  of the average of the individual histograms (over the 100 feature 
selection folds) of best features for classification within individuals. Warmer colors indicate higher average histogram values. 

The two biggest clusters include the Precuneus (PCUN) and Superior Frontal Gyrus (SFG).  

It can be seen that there are two main (i.e., largest) clusters, located at the general area of Precuneus 

(PCUN) and Superior Frontal Gyrus (SFG), which are known to be related to recollection of emotional 

encodings (SFG) and with episodic memories (Precuneus).    

 

4. Summary and Discussion 

In Nawa and Ando [15] the researchers felt that it was preferable to do a whole-brain analysis; and 

they suggested some potential machine learning advantages.  Most important of these was the suggestion 

that since the autobiography memory task is a complex one; much more of the brain (and hence its 

activation pattern) would be involved in the task; and therefore, using all of the voxels would boost the 

percentage of the appropriate signal in the data being used for the classification.  We do not feel the work 

in this paper contradicts this and, in fact, it is reasonably understood that memory tasks are quite 

sophisticated cognitively and apparently utilize many brain regions.  (For example, frontal brain structures 

involved in working memory also underlie declarative memory in both encoding and recall [28].)     

Nonetheless, in this paper we clearly saw that the use of extensive feature selection (in this case using 

ReliefF and AdaBoost) opens the door to other techniques of machine learning that allows us to 

successfully classify the cross-participant  autobiography  positive versus negative valence, something  at 

which the techniques of [15] did not succeed.  Furthermore, in the tasks at which they did succeed, the 



feature selection methods in this paper gave much more accurate results as can be seen by comparing 

our results with those appearing  in Table 1 and Figure 2 in [15].  Moreover, while the  analysis in [15] gave 

significant results  both cross-participant  and within participant for Countdown versus  Autobiography;  

the feature selection methods used here gave much more accurate results (not reported here). (Note that 

applying a feature selection step before the machine learning training is not the same as an a priori 

selection of anatomically or functionally defined regions of interest (ROIs). Instead, we used the strength 

of the machine learning classification tools themselves to properly select individual voxels directly.) 

We believe it is clear that instead of using "full brains", feature selection allows us to do more accurate 

and deal with more delicate separation tasks.    

In our opinion, the reason for this is not the focusing on areas responsible for the tasks; but rather on 

areas having a higher signal to noise ratio; where the "signal" is information related to the task. In 

principle, such voxels do not necessarily indicate that they are actually causally involved in the task; just 

that from the information perspective, there is a correlation which can be levered for classification.    

Accordingly, one has to be quite careful in interpreting diagrams (like Figure 4). We are only discovering 

correlates. Looked at in this way; we might find that, e.g., if a subject was going to blink an eye (right or 

left) based on positive or negative valence; a simple voxel in the motor cortex would probably  be sufficient 

to clearly distinguish between the cases; even though the voxel had nothing to do with the memory recall. 

Since our tools for classifying are mostly correlation based, it may be that the more focused the features 

are, the better results we can expect. 

There are several directions that might be followed up from this work: (i) it seems to us that "significance 

vs non-significance" as a measure can be substantially refined by looking at the degree of classification.   

For example, in the cases where Nawa and Ando ([15]) succeeded; we did as well, but to a much higher 

(around 15% difference) percentage of classification accuracy. (ii) We now have a clear view as to why 

more advanced feature selections are advantageous (e.g., compared to ANOVA and certainly to no feature 

selection).  

We point out that the use of multivariate methods can in principle find non-local inter-relationships 

between features. In this work, especially that described in section 3, tends in fact to eliminate this 

potential. AdaBoost in principle searches at each stage for a voxel that would add the most information, 

which gives a bias against nearby voxel who often carry similar information. (Philosophically, it has a 

similar intuition to what is called "active learning" in AI [29]; or "optimal experimental design" [30], [31] 

in the statistics literature.) On the other hand, the possible candidates for selection in AdaBoost are 

chosen univariately, as the voxels, which by themselves cause the best separation of the classes. This 

multi-variate choice of voxels is what allows good classification from only 260 voxels.  Potentially the inter-

action between such chosen voxels might offer further biological insight. We hope that future work will 

more deeply consider this aspect of the multi-variate methodology. 

In section 3, on the other hand, we used a histogram approach to locate the main areas in the brain, 

leveraging the biological variance in each scan; and then following with blurring and thresholding for 

visualization purposes.      

In summary, the take-home message is that subtle cognitive tasks can be classified using a 

combination of machine learning techniques; more specifically, the current results suggest that the 



differences in terms of neurophysiological mechanisms characterizing these processes are sufficiently 

coherent across participants, thus enabling above-chance cross-participant classification.  
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