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Abstract Generalization, also called anti-unification, is the dual of unification.
A generalizer of two terms ¢t and ¢’ is a term t” of which ¢t and ¢’ are substitu-
tion instances. The dual of most general equational unifiers is that of least gen-
eral equational generalizers, i.e., most specific anti-instances modulo equations. In
a previous work, we extended the classical untyped generalization algorithm to:
(1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism;
(2) work modulo equational theories, where function symbols can obey any combi-
nation of associativity, commutativity, and identity axioms (including the empty
set of such axioms); and (3) the combination of both, which results in a modu-
lar, order-sorted equational generalization algorithm. However, Cerna and Kutsia
showed that our algorithm is generally incomplete for the case of identity axioms
and a counterexample was given. Furthermore, they proved that, in theories with
two identity elements or more, generalization with identity axioms is generally
nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either
solutions with repeated variables are disregarded or the considered theories are
restricted to having just one function symbol with an identity or unit element.
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In this work, we show how we can easily extend our original inference system to
cope with the non-linear fragment and identify a more general class than one—unit
theories where generalization with identity axioms is finitary.

Keywords least general generalization - rule-based languages - equational
reasoning - order-sorted - associativity - commutativity - identity

1 Introduction

Computing generalizations is relevant in a wide spectrum of automated reason-
ing areas where analogical reasoning and inductive inference are needed, such as
analogy making, case-based reasoning, web and data mining, ontology learning,
machine learning, theorem proving, program derivation, and inductive logic pro-
gramming, among others (Armengol, |2007; Muggleton, [1999; |Ontanén and Plazal,
2012).

Roughly speaking, in a pure syntactic and untyped setting, the syntactic gen-
eralization problem for two or more expressions consists in finding their least
general generalizer (lgg), i.e., the least general expression ¢ such that all of the
given expressions are instances of ¢ under appropriate substitutions. For instance,
the expression sibling(z,y), where x and y are variables, is a generalizer of both
sibling(john,sam) and sibling(tom,sam), but their least general generalizer is sib-
ling(z,sam).

In (Alpuente et all |2014b), the notion of least general generalization is ex-
tended to the order-sorted modulo axioms setting, where any function symbol f
can obey any combination of the associativity axiom (f(f(z,v),z) = f(=, f(y,2))),
the commutativity axiom (f(z,y) = f(y,z)), and the identity axiom (f(z,e) =z
and f(e,z) = x, for unit element e) including the empty set of such axioms. For
instance, the least general generalizer of sibling(sam,john) and sibling(tom,sam) is
still sibling(z,sam) when sibling is a commutative symbol. In general, there is no
unique least general generalizer in the framework of (Alpuente et al.| |2014b) due
to both the order-sortedness (Alpuente et al.l 2009)) and to the equational axioms
(Alpuente et al.| [2008). However, it is often the case that a minimal and complete
set of such least general generalizers exists so that any other generalizer has at
least one of them as an instance modulo the considered set E of axioms. The in-
comparable elements in such a set are called E-lggs. For instance, for the case of
a set B of equations consisting of any combination of associativity and commuta-
tivity axioms for different function symbols, the set of B-lggs is finite. However,
as shown in (Cerna and Kutsial 2020)), this may not be the case when B contains
identity axioms, i.e., ACU, AU, CU, and U.

The generalization type of an equational theory is defined similarly (but dually)
to the unification types, i.e., based on the existence and cardinality of a minimal
and complete set of B-lggs (Cerna and Kutsia, [2020)):

Unitary (type 1) Any generalization problem in the theory has one single B-lgg.

Finitary (type w) Any generalization problem in the theory has a finite, minimal,
and complete set of B-lggs whose cardinality is greater than one for at least
one problem.

Infinitary (type co) There exists a generalization problem in the theory which has
a minimal, infinite, and complete set of B-lggs.



Nullary (type 0) There exists a generalization problem in the theory which does
not have a minimal and complete set of B-lggs, i.e., every complete set of
generalizers for this problem contains two distinct generalizers such that one
is less general modulo B than the other.

In the motivating example of Section 2 of (Cerna and Kutsial, |2020), it was
shown that our inference system in (Alpuente et al., |2014b) is incomplete for the
case of the identity.

Ezxample 1 Let us assume the unsorted case where all symbols correspond to a
unique sort S, and consider two binary function symbols f and g such thatE| f has
an identity element ef (i.e., for all z, f(z,ey) = = and f(es,z) = «). Given three

extra constants a, b, and ¢, and the generalization problem g(f(a,c),a) H g(c,b),
where w stands for a variable denoting the computed generalizer, the algorithm
of (Alpuente et al. 2014b]) computes the generalizer given by {w — g(f(z,c),v)},
where z and y are new variables. However, the algorithm of (Cerna and Kutsia),
2020) computes the more specific, non-linear solution g(f(z,c), f(z,y)), where z
and y are new variables, which is actually the (only) least general B-generalizer for
the input problem, proving that our original algorithm was generally incomplete.
Nevertheless, completeness holds for linear generalization problems as shown in
(Cerna and Kutsia, [2020).

In (Cerna and Kutsia) 2020)), it was also proved that generalization with iden-
tity axioms is nullary, meaning that a complete and minimal set of least general
generalizers for a given generalization problem may not exist, not even infinite.

Ezample 2 Consider again the signature of Example[I] where the function symbol

g is now given an additional identity element e4. As shown in (Cerna and Kutsia)

2020), f(g(z,y),z) is a least general generalizer for the generalization problem
w

ef 2 eg since both ey and ey are substitution instances of f(g(z,y),z) by {z —
er,y — egt and {z — eg,y — ey}, respectively. Actually, (Cerna and Kutsia)
2020) shows that there is an infinite number of generalizers that are obtained by
instantiating variable z of each generalizer to the term f(g(z,y),z) itself, yielding
the sequence of generalizers z, f(g(z,v),z), f(9(f(9(z,y),z),y), f(g(x,y),z)), etc.
Note that each generalizer is less general (i.e., more specific) than the previous one
so that a minimal and complete set of B-lggs cannot be distilled from this infinite
sequence of generalizers, not even infinite.

Order-sorted specifications include many-sorted ones and these, in turn, in-
clude unsorted ones as special cases. Furthermore, the case of equational axioms
B includes the free case B = ) as a special instance. In such a highly general set-
ting, it might appear that finding practical and widely applicable conditions under
which order-sorted generalization modulo axioms B containing any combination of
associativity, commutativity, and identity axioms is finitary could be a challenging
problem. Yet, paradoxically, we have found out that the very generality of the
order-sorted setting makes solving this problem much easier than in the unsorted

1 Function g has also an identity element eg in Cerna and Kutsia’s counter-example but it is
unnecessary for the counter-example to work. We introduce eg4 only in Example [2| to illustrate
the nullary type.



case, and substantially reduces the chances of the problem appearing in actual
practice. This paper identifies such a widely applicable condition in a syntactic
way and provides the desired finitary order-sorted least general equational gener-
alization algorithm under such an easily checkable assumption. Below, we explain
our syntactic condition and show why it is widely applicable in practice by means
of some examples.

Recall that an order-sorted signature is a pair X' = ((S, <), F'), where (S, <) is
a partially ordered set of sorts/types, where s < s’ specifies a sort/type inclusion,
and F are function symbols whose argument sorts and result sort belong to S.
For example, the sorts Nat, Int, and Rat for, respectively, naturals, integers and
rationals have natural subsort inclusion Nat < Int < Rat, which semantically cor-
respond to the set inclusions N C Z C Q. Since the nullarity problem of Example
is caused by (non-linear) B-generalizers modulo identity of binary operators f and
g, note that these problems are less likely to occur in a many-sorted setting for
the simple reason that, when the respective unit elements ey and eg4 have different
sorts, no generalizers exist at all. The order-sorted setting is even more flexible.
Our easily checkable syntactic condition is as follows: a signature X = ((9, <), F)
is called U-tolerant modulo axioms B, where U C B denotes the set of identity
axioms, if and only if for any two different identity constants ey and ey with iden-
tity axioms for f and g in U, their respective least sortéﬂ LS(ey) and LS(ey) are
incomparable at the kind level, that is, [LS(ef)] # [LS(eg)]. The naturalness of this
property is later illustrated in Example

The contributions of this paper are the following:

(1) We identify U-tolerance as a mild syntactic condition on signatures frequently
achievable in practice, as explained above and in Section As further evi-
dence of the wide applicability of this concept, we have verified that the large
collection of examples considered in (Alpuente et al.|2019) —where an efficient
implementation of (Alpuente et al.| 2014b)) called ACUOS2 was provided—
are all U-tolerant except for just one of the (untyped) generalization problems,
which is both non-linear and not U-tolerant and combines A and U.

(2) We complete the generalization calculi of (Alpuente et al. [2014b) with an
extra inference rule so that completeness holds for both linear and non-linear
order-sorted equational generalizations under the U-tolerance assumption.

(3) We show that, under the U-tolerance assumption, the completed calculus pro-
vides a finitary, minimal and complete set of order-sorted generalizers modulo
axioms B of associativity and/or commutativity and/or identity for any gen-
eralization problem.

(4) We provide a new implementation for our extended generalization calculus.

To the best of our knowledge, this is the first finite, minimal, and complete
procedure for order-sorted least general equational generalization modulo any com-
binations of associativity, commutativity, and identity axioms (i.e., A, C, U, AC,
AU, CU, and ACU) for different function symbols. Furthermore, it not only works
for unsorted and many-sorted specifications, but it also works for the more general
and expressive case of order-sorted specifications.

2 An easily checkable condition on ¥ = ((S, <), F) called pre-reqularity ensures that any
X-term ¢ has a least sort LS(¢t) € S in the subsort ordering (see Section 2).



2 Preliminaries

We follow the classical notation and terminology from (TeReSe| 2003|) for term
rewriting and from (Goguen and Meseguer} |1992; [Meseguer, |1997) for order-sorted
equational logic.

We assume an order-sorted signature X = (S, F, <) that consists of a finite poset
of sorts (S, <) and a family F of function symbols of the form f:s1 X ... xsp — s,
with s1,...,sn,s € S. Two sorts s and s’ belong to the same connected component
if either s < s’ or ' <'s. We assume a kind-completed signature such that: (i) each
connected component in the poset ordering has a top sort, and, for each s € S,
we denote by [s] the top sort in the connected component of s (i.e., if s and s are
sorts in the same connected component, then [s] = [s']); and (ii) for each operator
declaration f : s1X...Xsp — sin X, there is also a declaration f : [s1]X...x[sn] — [g]
in X. A given term ¢t in an order-sorted term algebra can have many different sorts.
Specifically, if t € Ts; has sort s, then it also has sort s’ for any s’ > s; and because
a function symbol f can have different sort declaration f :s; x...xs, — s, a term
f(t1,..,tn) can have sorts that are not directly comparable (Goguen and Meseguer)
1992).

We assume a fixed S-sorted family X = {Xs}scs of pairwise disjoint variable
sets (ie., Vs,s € S: AN Ay = 0), with each As being countably infinite. We
write the sort associated to a variable explicitly with a colon and the sort, i.e.,
x:Nat. A fresh variable is a variable that appears nowhere else. The set 7Ty (X)),
denotes all X-terms of sort s defined by Xs C Tx(X), and f(t1,...,tn) € Tx(X), if
fisix...xsp—wse€ X, n>0andt; € To(X), ..., tn € To(X), . Furthermore, if
t € Tx(X), and s < ¢, then t € T (X),,. For a term ¢, we write Var(t) for the set of
all variables in t. Ty, ¢ is the set of ground terms of sort s, i.e., t is a X-term of sort
s and Var(t) = 0. We write 75 (X) and Ty for the corresponding term algebras.
We assume that Ty, ¢ # 0 for every sort s.

We assume pre-regularity of the signature X': for each operator declaration f :
s1 X ... x sn — s, and for the set Sy containing all sorts s’ that appear in operator
declarations of the form f :s},...,s;, — s’ in ¥ such that s; < s for 1 < i < n,
then the set Sy has a least sort. Thanks to pre-regularity of ¥, each X-term ¢t
has a unique least sort that is denoted by LS(t). The top sort in the connected
component of LS(t) is denoted by [LS(¢)]. Since the poset (S, <) is finite and each
connected component has a top sort, given any two sorts s and s’ in the same
connected component, the set of least upper bound sorts of s and s’ always exists
(although it might not be a singleton set) and is denoted by LUBS(s,s’).

Throughout this paper, we assume that X has no ad-hoc operator overloading,
i.e., any two operator declarations for the same symbol f with equal number of
arguments, f :s; X ... xsp —sand f:s) x...xs), — s, must necessarily have
sl = i), [su] = (5], 6] = [¥)]

The set of positions of a term ¢, written Pos(t), is represented as a sequence of
natural numbers, e.g., 1.2.1. The set of non-variable positions is written Posy(t).
The root position of a term is 4. The subterm of ¢ at position p is t|p, and t[u]p is
the term obtained from ¢ by replacing t|, by u. By root(t), we denote the symbol
occurring at the root position of ¢.

A substitution o = {x1 — t1,...,Zn — tn} is a mapping from variables to
terms which is almost everywhere equal to the identity except over a finite set
of variables {z1,...,zn}, written Dom(c) = {z € X | xo # z}. Substitutions are



sort-preserving, i.e., for any substitution o, if € As, then zo € Ty (X),. We as-
sume substitutions are idempotent, i.e., xo = (zo)o for any variable z. The set
of variables introduced by o is VRan(o) = |J{Var(zo) | zo # x}. The identity
substitution is id. Substitutions are homomorphically extended to 75 (X). Substi-
tutions are written in suffix notation (i.e., to instead of o(¢)), and, consequently,
the composition of substitutions must be read from left to right, formally denoted
by juxtaposition, i.e., z(00’) = (zo)o’ for any variable z. The restriction of o to
a set of variables V is o|y. We call a substitution o a renaming if there is another
substitution ¢! such that (cm_l)|Dom(g) = id.

A Y-equation is an unoriented pair ¢ = ¢, where ¢ and t’ are X-terms for which
there are sorts s, s’ with t € 75 (X),, t' € T5(X),, and s, s’ are in the same connected
component of the poset of sorts (S,<). An equational theory (X, B) is a set B of
Y-equations. An equational theory (X, B) over a kind-completed, pre-regular, and
order-sorted signature X = (S, F,<) is called kind-completed, pre-regular, and
order-sorted equational theory. Given an equational theory (X, B), order-sorted
equational logic induces a congruence relation =g on terms t,t' € Tx(X), see
(Goguen and Meseguerl, [1992; [Meseguer}, (1997)).

The B-subsumption preorder <pg (simply < when B is empty) holds between
t,t' € Tx(X), denoted t <p ' (meaning that ¢ is more general than ¢ modulo B),
if there is a substitution ¢ such that t¢ =g t'; such a substitution ¢ is said to be a
B-matcher for t’ in t. The equivalence relation =g (or = if B is empty) induced by
<pisdefined ast =g t' if t < t' and ¢’ <g t. The B-renaming equivalence t ~p t'
(or ~ if B is empty) holds if there is a renaming substitution § such that t§ =g t'.
In general, the relations =g, =p and ~p do not coincide; actually =gC~gC=p.

Ezample 3 Consider terms t = f(f(a, X),Y) and ¢ = f(a, Z) where f is associative
and commutative with identity symbol 0 (ACU), and a and b are two constants.
We have that t =4cp t', de., t <qcy t and t' <gcp t since f(f(a, X),Y)o1 =acv
fla,Z) with o1 ={X — 0,Y — Z} and f(a,Z)o2 =acvu f(f(a,X),Y) with oo =
{Z — f(X,Y)}. However, t #4cy t', and moreover t %40y t', since they are not
even equal up to ACU-renaming.

For the sake of simplicity, we follow the common approach of order-sorted
equational languages such as Maude where the signature X' is considered to be
aware of f’'s axioms by attaching to its sort declaration special attributes denoting
that the function f obeys associativity (assoc), commutativity (comm), and identity
(id: e), for unit element e.

3 Order-Sorted Least General Generalizations modulo Axioms

In this section, we complete the inference system for order-sorted, equational least
general generalization presented in (Alpuente et al2014b)) by introducing an extra
inference rule. We ascertain a suitable requirement (called U-tolerance) ensuring
that generalization modulo identity is finitary, and moreover, that our extended
algorithm computes a finite, minimal, and complete set of B-lggs modulo any
combinations of associativity, commutativity and identity axioms.



3.1 Recovering completeness of the order-sorted equational least general
generalization calculus

In the following, we consider that each function symbol f in the signature X obeys
a subset of axioms ax(f) C {Ay,Cy,Us(e)} where e is the identity symbol for the
function f. Note that f may not satisfy any such axioms, i.e., az(f) = 0.

A term t is a generalizer modulo B of ¢; and t» if there are two substitutions
o1 and o2 such that to; =g t1 and to2 =g t2.

We represent a generalization problem between terms t and t' as a constraint

x
t 2t where z is a fresh variable that stands for a generalizer of ¢ and t, that
becomes more and more instantiated as the computation proceeds until becoming
x

a least general generalizer modulo the considered axioms. Given a constraint ¢ 2 ¢/,
any generalizer w of t and ¢’ is given by a suitable substitution @ such that z6 = w.

€1 Tn
A set of constraints is represented by s1 £ t1 A...Asn £ tp, or O for the empty
x
set. Given a constraint t 2 ¢/, we call & an indez variable. We define the set of index
Yy
variables of a set C of constraints as Index(C) ={y € X | Ju 2 v € C}.

Note that, although it is natural to consider that a constraint ¢ H t’ is commuta-
tive, the inference rules that are described in this paper do not admit that commu-
tativity property for £ since we need to keep track of the origin of new generated
generalization subproblems to avoid non-termination. However, the constructor
symbol A that we use to build a set (conjunction) of constraints is associative and
commutative in the inference rules described in this paper.

Definition 1 A configuration (C' | S | 6) consists of three components: (i) the
constraint component C, which represents the set of unsolved constraints; (ii) the
store component S, which records the set of already solved constraints, and (iii) the
substitution component 6, which binds some of the index variables previously met
during the computation.

We consider any two terms t and t' in a constraint ¢ sy having the same top

sort; otherwise, they are incomparable and no generalizer exists. Starting from the
T[S

initial configuration (¢ é[] t' | 0| id) where [s] = [LS(t)] = [LS(¢')], configurations
are transformed until a terminal configuration (¢ | S | 6) is reached. When different
function symbols are considered that satisfy distinct combinations of associativity
and/or commutativity and/or identity axioms given by B, the inference rules of
Figures [6] and [7] must be used altogether to compute the set of B-lggs.
The new inference rule solving the generalization problem of Example [I] is given
in Figure [3} all of the other rules are taken from (Alpuente et al. [2014b) and
are included here for completeness. The transition relation — on configurations is
given by the smallest relation satisfying all of the rules.

Roughly speaking, given an equational theory (X, B) and the generalization

problem ¢ 2 t’, the basic rules Decomposey, Solvep, and Recoverp in Figure
extend to the (order-sorted) equational setting the standard, syntactic generaliza-
tion of (Huet, [1976; Plotkin, [1970; Reynolds} |1970) by handling the constraints
modulo B. The meaning of the basic rules in Figure[I]is as follows.



feXUX)NAy ax(f)NCy & ax(f)Nf:[s1] X ... x [sa] = [s]

Decomposep =
xT:(s
<f(t11~~'7tn) £ f(tlluvtiz)/\cls‘9> -
@1:[s1] T :[sn]
(t1 2 A At 2 U, ANC|S|b0)
where o = {z:[s] — f(z1:[s1],...,@n:[sn])}; z1:[s1], ..., Tn:[sn] are fresh variables, and n > 0
f=root(t) Ng=root(t') N f#gAUs(e) & ax(f) NUg(e') € ax(g)A
y:S//
s’ € LUBS(LS(t), LSt')) APyds”’ :t 2 t' €B S
Solvep

x:[s] 25

/
t 2 ¢ANC|S|0)—=(C|SAt 2 t']|00)
y
where 0 = {x:[s] — 2:5'}, 2:s’ is a fresh variable, and (¢t 2 ¢') €2 S means that there exists

y
u2u € Ssuchthat t =g uwand ¢/ =p .

y:s/
root(t) # root(t') ANJy3s’ :t 2 t' €B S
z:[s]
t 2 YANC|S|0) —(C|S]|b0o)
where o = {x:[s] — y:s'}, and €8 stands for membership modulo axioms.

Recoverp

Fig. 1: Basic inference rules for order-sorted least general B-—generalization
(Alpuente et al., 2014b])

x
— The Decomposep rule decomposes a constraint f(t1,...,tn) 2 f(th,...,tn)

into new constraints ¢ mél YA Atn zén t, to be solved provided that f does
not obey either associativity or commutativity axioms. If n = 0, then no con-
straints are generated. Note that this rule can be applied if f has an identity
symbol e, i.e., Us(e) € az(f), and even if f is the identity element of another
symbol. Additional, specialized decomposition rules are given in Figures 5] [6]
and [7] for the case when the root function symbol f obeys C, A, or AC, re-
spectively. Note that there is no inference rule for the ACU case, it is just a
combination of the rules that are applicable to AC and U.

x
— The Solvep rule moves a constraint ¢ £ ¢, with root(t) # root(t'), to the store

Yy
only when there is no constraint in S of the form u 2 v’ for two terms v and u’
that are respectively B-equal to ¢t and ¢'. Note that rule Solvep does not apply
xr

to a constraint ¢ 2 ¢’ such that either ¢ or ¢’ are rooted by a function symbol f
with Us(e) € ax(f), since it is given a more specialized treatment in the rule
Expandp of Figure [ If f or g are identity symbols of other symbols, the rule
is applied in the same way.

— The Recover g rule checks whether there is an already solved constraint u 1 o
in S for two terms v and «’ that are respectively B-equal to ¢ and t'. Then,
the previously computed generalizer given by the variable y is reused. This
allows us to handle common generalization subproblems that may appear more
than once, e.g., the least general generalizer of f(f(a,a),a) and f(f(b,b),a) is
f(f(y,y),a). Note that this rule may overlap with the specialized Recovery;
rule of Figure [3] and both rules would be non-deterministically applied.



c=(t z:éS] t') (resp. ¢ = (t/ zg] t) A
fils] x[s] = [s]| AUg(e) € ax(f) Aroot(t) = f At' #p e Aroot(t') # fA
t" € {f(e,t"), f(t',e)} A

x

x:[s] :[s]
d=(t £ t'") (resp. /' = (t"" £ t))

Expand =
xpandu (enC |56 5 (dAC|S]0)

Fig. 2: Order-sorted inference rule for expanding a term ¢ using a function f with
identity element e (Alpuente et al., |2014b))

x:[s] x:[s]
(t 2 /t’) (resp. c= (' 2 t)) A
S 1eB §)A Us(e) € ax(f) A f: [s] x [s] = [s] A

z:A?s] z:[s]
|

C

y:s’
Jy3s':t 2 e€B S (resp. e
(e
(enC
where o = {x:[s] — f(y:s/, 2:[s])} or 0 =

C/

t') (resp. ' = (t' 2 e€))
S0y = (' ANC|S|00)
{a:ls] = f(z:s],y:s")}

Recovery

Fig. 3: Order-sorted inference rule for recovering a partially computed generalizer
for a term ¢ and the identity element e of f

Special rules are introduced for dealing with constraints that may involve an
identity axiom:

x
— The Expand;; rule in Figure[2|allows any constraint f(¢1,t2) £ ¢ to be reduced
xr

to the constraint f(t1,t2) 2 f(t,e) (or f(t1,t2) H f(e,t)) whenever f has an
identity element e and root(t) # f. The rule is applied also when the constraint
has the form ¢ 2 ft1,t2).

— The new inference rule Recovery in Figure [3| applies to any constraint ¢ 2 t
such that either tge or e 2t has been respectively stored in S, with e being

the identity element of a given function f of the signature. Then, the new
z:[s] z:[s]

constraint e 2 t' (resp. t' 2 ¢) is added to C in order to be solved in a

subsequent step, while the index variable y from the recovered, previously

solved common subproblem is reused to instantiate = into f(y, z) (resp. f(z,v)).

Note that this is equivalent to first introduce a new, intermediate constraint
xr x
f(te) 2 fle,t') (vesp. f(e,t) 2 f(t',e)) by exploiting Ug(e), and then derive

z:[s] z:[s]
the added constraints e 2 ' (resp.t 2

constraint.

e) by decomposing this intermediate

Let us briefly discuss why the original calculus (without the Recovery rule of
Figure [3)) is incomplete.

Ezample 4 Let us again consider the generalization problem g¢(f(a,c),a) H g(c,b)
of Example Our extended algorithm computes the least general generalizer
by means of the computation sequence of Figure [d] which applies the new rule
Recovery at the penultimate step by exploiting the fact that g(f(a,c),a) is equal
modulo identity to g(f(a,c), f(a,er)). Note that, without the new rule Recovery,



there is no way to generalize the constants a and b in the second argument of g to its

least general generalizer f(wi1,ws22) modulo identity. Also, for the generalization
w

problem g(f(a,c), f(a,ef)) 2 g(f(ef,c), f(ef, b)), these rules allow us to identify the

w11

generalization sub-problem a 2 e; at two different locations, assigning them the

same variable wqq.

(a(F(a,c),a) £ gle,b) | O | id)

w1 wo
— (f(a,c) 2 cha 2 0|0 {w— g(wi,w2)}) (Decomposep)
w1 wo

= (fla,c) & flef,e)na 2 0|0 [ {wr g(wi,w2)}) (Expandy)
w11l wi2 w2

—(a 2 efAc 2 cAha 2 b|0|{w— g(f(wi,wi2),w2)}) (Decomposep)
w12 w2 wil ’

e Fena £ola 2 er | {wr g(fwhy, wiz),wa)}) (Solve)
w2 wyy ,

S Ebla & er | {we g(f(wh,o),w)}) (Decomposens)
wa2 wiy , ,

— (e 2 bla 2 ef[{w g(f(wiy,0), flwir, we2)}) (*Recovery)

—(0la £ ephep & b {wr g(f(wiy, o), flwir, waa)}) (Solvey)

Fig. 4: Execution of our inference rules for the generalization problem
w
9(f(a,c),a) £ g(c,b)

Termination was straightforward in the original calculus of (Alpuente et al.,
2014b)), but the addition of the new rule Recovery in Figure breaks down termi-
nation unless suitable restrictions are imposed. Indeed, (Cerna and Kutsial, [2020))
proves that generalization with more than one identity symbol becomes nullary,
i.e., the existence of a minimal and complete set of least general generalizers is not
guaranteed (not even infinite), and two shortcut solutions are proposed: restrict-
ing to linear generalization problems for completeness (i.e., to compute a finite,
minimal and complete set of generalizers) and restricting to (unsorted) one-unit
signatures (i.e., with a unique function obeying identity) for finiteness of the set of
B-lggs, even though their algorithm may generate an infinite complete set of gen-
eralizers. In the following section, we revisit the one-unit restriction and ascertain
a more general notion that not only guarantees non-nullarity but also finiteness
of the set of solutions so that our extended algorithm computes a finite, complete
and minimal set of least general equational generalizers.

3.2 Ensuring finiteness of least general generalization modulo identity

w
The only inference rule that can be applied to the generalization problem ey £ eg of
Example |2| using our original order-sorted, equational least general generalization

10



calculus in (Alpuente et all [2014b) is the rule Solvep in Figure I} However, the
extended calculus proposed in Subsectiondoes not terminate on this problem as
shown by any of the following non-terminating computations that infinetely apply

the inference rule Recovery: (ef H eg | ef i eg | 0) = (e 2 eg | ef geg | 0{z —
T Yy T Yy
Fly.a)}) -, and (e 2eg | ef £ eq | 0) = (ef 2 eq | ef 2 e | 0z — g(y,a')}) -
In the following, we generalize to our order-sorted equational setting the re-
striction to one-unit signatures of (Cerna and Kutsiaj, [2020). This is done by for-
malizing a new notion, called U-tolerance, which focuses on the generalization
problems themselves so that U-tolerance may hold for equational theories that do
not satisfy Cerna and Kutsia’s condition provided the connected component of
sorts that corresponds to the problem subsignature is one-unit.
Note that for any binary function symbol obeying any combination of A, C,
and U axioms (except for just C), the top sort of both arguments coincides with
the top sort of the result.

’

Definition 2 (U-tolerant signature of generalization problems) Given a kind-
completed, B-pre-regular, order-sorted equational theory (X, B), and a general-
ization problem I', consider the restriction Xy = (S, F, <) of ¥ to the function
symbols of I'. X is called U-tolerant if it does not contain two different function
symbols f :s¢ x sf = sf and g : sg X sg — sg with different identity symbols ey and
eg, respectively, such that [LS(ef)] = [LS(eg)].

We may simply say that the whole signature X is U-tolerant when no general-
ization problem I' is made explicit and X' satisfies the U-tolerance condition.

Note that the one-unit requirement of (Cerna and Kutsia, 2020|) implies U-
tolerance. In the following we show how our more relaxed, yet syntactic, U-
tolerance condition is widely applicable in practice by means of some examples.

Ezample 5 Consider the following Maude functional module that defines lists and
multisets of natural numbers:

fmod LIST+MSET-NO-U-tolerant is
sorts Nat List MSet Top .
subsorts Nat < List < Top .
subsorts Nat < MSet < Top .
op nil : -> List [ctor]

op _;_ : List List -> List [ctor assoc id: nil] .
op null : -> MSet [ctor] .
op _,_ : MSet MSet -> MSet [ctor assoc comm id: null]

op 0 : —> Nat [ctor]
op s : Nat -> Nat [ctor] .
endfm

where the ctor declarations specify that all of these operators are data constructors,
as opposed to defined functions such as list reverse, or multiset cardinality, and
the axioms B are specified by the assoc, comm, and id: keywords. Note that,
since Nat < List and Nat < MSet, 0 is both a list of length one and a singleton
multiset, but the list 0 ; s(0) ; s(s(0)) and the multiset 0 , s(0) , s(s(0))
have incomparable least sorts List and MSet. Moreover these are also the least
sorts of nil and null, respectively. However, this signature is not U-tolerant, since
the kind of List and MSet coincide, i.e., the sort Top added for kind-completeness.

11



However, it is easy to repair it by using extra symbols [.] and {_} to encapsulate
a natural as an element of a list or multiset, respectively.

fmod LIST+MSET-U-tolerant is

sorts Nat List MSet .

op [_] : Nat -> List .

op {_} : Nat -> MSet .

op nil : -> List [ctor]

op _;_ : List List -> List [ctor assoc id: nil] .
op null : -> MSet [ctor] .

op _,_ : MSet MSet -> MSet [ctor assoc comm id: null]
op 0 : -> Nat [ctor]

op s : Nat -> Nat [ctor] .

endfm

The former list and multiset are now represented as [0] ; [s(0)] ; [s(s(0))] and
{0} , {s(0)} , {s(s(0))}. They have incomparable least sorts List and MSet and
kinds [List] and [MSet], which coincide with the least sorts and kinds of nil and
null. Therefore, this signature is not one-unital in the sense of (Cerna and Kutsia,
2020) yet it is U-tolerant, and thus any generalization problem in this theory has
a finite set of least general generalizers.

Besides order-sortedness, there are two additional reasons why, in practice, the
U-tolerance requirement is a mild one.

First of all, most reasoning about generalization modulo B happens in the
context of algebraic specifications in which operators are naturally classified into
constructor symbols and defined function symbols. The point is that the use of axioms
B is much more important for constructor symbols —allowing us to define data
structures such as the lists and multisets above— than for defined functions, where
they are not really needed, although they may be useful to have. This distinction
can help us totally avoid lacks of U-tolerance that would seem unavoidable, such as
the possible conflict between identity elements 0 and 1 for + and * in the natural
numbers as illustrated in the following example.

Ezample 6 Consider the following Maude functional module that defines addition
and multiplication of natural numbers:

fmod NAT-ACU .

sort Nat .

ops 0 1 : -> Nat [ctor]

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _*_ : Nat Nat -> Nat [assoc comm] .

vars N M : Nat .

eq N *x0=0.

eqN * (1 +M) =N+ (N M .

endfm

The constructor terms for this example are the additive monoid with identity
0 generated by 1. This means that any binary function f can be defined by recur-
sive equations of the form f(u1,u2) = t, where the ui,us are constructor terms.
Therefore, f itself will never occur in the uy,us. This implies that even if f has an
identity element ey, specifying such an f with an identity axiom is entirely useless.
This is indeed the case for the multiplication function, even though associativity
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and commutativity are still useful multiplicative axioms, and even if the identity
property is provable from the above equations:

zxl=paxx(1+0)=z+ (z+x0)=z+0=p=x

Note that adding NAT-ACU to LIST+MSET-U-tolerant does not change the U-
tolerant property, since there are three connected components Nat, List, and MSet.

The second reason why U-tolerance can be achieved in practice in cases where
its failure might seem unavoidable can also be illustrated by a simple example.

Ezample 7 The U-tolerance of the LIST+MSET-NO-U-tolerant of Example [5] can be
easily obtained in a semantics-preserving manner. This is so for the following reason.
Suppose we have an order-sorted equational theory & = (X, E U B) specified in
Maude as a functional module with axioms B and equations F, which, oriented
as rules, are confluent and terminating modulo B. Now let Uy C U C B be a set
of identity axioms for some of the operators in X. Then, as explained in (Duran
et al.,|2009)), there is an automatic theory transformation & — &y, such that: (i) €
and &y, are equivalent equational theories and therefore have isomorphic initial
algebras; (ii) the axioms of &y, are B\ Up, and the Uy now becomes additional
equations in &y, ; (iii) € is confluent and terminating iff £y, is so. In other words,
the transformation £ — &y, is semantics-preserving in the strongest way possible.

How would we apply this transformation to our LIST+MSET-NO-U-tolerant mod-
ule? We would just choose the identity axioms of nil and null as Up. The effect
of the £ — &y, transformation for £ in our LIST+MSET-NO-U-tolerant example
would be as follows: (i) we would drop the id: nil attribute; (ii) we would add
the following equations, where X and Y are of sort List:

eq nil ; X =X .
eq X ; nil ; Y=X ;Y .
eqY ; nil =Y

(iii) we would drop the id: null attribute; and (iv) we would add the following
equations, where Z is of sort MSet:

eqnull , Z =172 .

The resulting module is a semantically equivalent specification that is now U-
tolerant.

As we have discussed so far, the U-tolerance condition is much more pow-
erful than it might appear at first sight. Actually, when order-sorted equational
generalization is applied in the context of rewriting logic tools such as program
transformers or correctors (Alpuente et al., |2020aljb) (where computing B-lggs is
key for ensuring correctness and termination of the transformation), only general-
ization problems that are normalized w.r.t. the equational theory are considered
so that any defined function symbols (together with their identity elements) have
been evaluated away prior to generalization.

Regarding the benchmark examples in (Alpuente et al.|[2019), we have verified
that all of the examples are U-tolerant, except for synthetic. The examples in
(Alpuente et al.,|2019) which contain the identity axiom for some function symbol
are the following;:
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— spouses (AU) and children (ACU), two classical generalization problems bor-
rowed from the logic programming domain that are described in (Alpuente
et al., [2014al);

— only-U, a generalization problem without associative or commutative axioms;

— synthetic, an involved generalization example mixing U and A axioms for two
distinct binary symbols;

— chemical, a case-based reasoning problem for chemical compounds inspired by
(Armengol, 2007);

— graph, the leading example of (Baumgartner et al., [2018]); and

— biological, a cell model for the analysis of biological systems.

All of the generalization problems spouses, children, only-U, chemical, and
biological are one-unit, hence U-tolerant. As for the graph example, it is U-
tolerant since the two identity elements in the signature (empty for the graph con-
structor and nil for the list constructor) have incomparable least sorts, similarly
to Example p| The only generalization problem that does not fulfill U-tolerance
is synthetic, which can be seen as a more complex version of Example |I| that is
both non-linear and not U-tolerant (actually, it contains two functions f and g
with identity elements ey and eg, respectively, similarly to Example [2) and com-
bines U with A. As we have shown, in our order-sorted setting we can deal with
this problem by either introducing incomparable least sorts for ey and eq, or in
the case when this would not be appropriate, we could easily achieve U-tolerance
of the equational theory E by applying the transformation in (Duran et al.l |2009)
that we sketched in Example[7]

More precisely, in a real application involving an equational specification & =
(X, E @ B), we are interested to compute least general generalizers w.r.t. (X, B).
The transformation &€ — &y, of (Duran et al. 2009) technically relies on computing
variantsﬂ for the equations in E with the axioms of Uy oriented as rules. In the
transformed specification £y, , the new set of axioms is B\ Uy while the equations
in Up have been oriented as rules. Formally, &y, = (X, (Ey, U Up) W (B \ Uy)),
where the equations that are used as rules are: 1) Ey,, the set of variants that are
generated by E using the theory (X,Up W (B \ Up)), and 2) the equations of Up.
Note that the equational axioms to be used for generalization in the transformed
equational theory &y, (which is semantically equivalent to £) are B\ Uy so that
the problematic identity axioms Uy have now become oriented equations of the
transformed specification, which are executed modulo B\ Up.

So far we have provided a modular algorithm for least general generalization
in equational theories containing different axioms such as associativity, commu-
tativity, and identify (and their combinations). However, our modular algorithm
does not provide, a priori, a minimal set lggg (¢,t") of least general equational gen-
eralizers for ¢ and t' so that it must be filtered out to obtain one of the possible
minimal sets of E-1gg’s (see (Alpuente et al. [2014b))). That is, first a complete set
of E-generalizers is computed by the inference rules of Figures I} 2} [3] B} [6] and [7]}
given above, and then they are filtered to obtain lggg(t,s) by using the fact that,

3 Given £ = (X, E W B), the equational variants (or simply variants) of a term ¢ are the
set of all pairs (¢/,0), where t’ is the canonical form of ¢to for a substitution o (Escobar et al.|
2012). Intuitively, the variants of ¢ are the “irreducible patterns” to which ¢ can be symbolically
evaluated by applying E modulo B. An equational theory &£ has the finite variant property
(FVP) (or & is called a finite variant theory) iff there is a finite and complete set of most
general equational variants for each term.
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Decomposec

f:8Ix[s'] = [s|]ACt € ax(f) NAf & ax(f) Ai e {1,2}

z1:[s'] x2;[5']

z:(s]
(f(t1,t2) & ftLt)ANC|S|0) = (t1 2 t)Ato aNCI|S|bo)

/
t(i mod 2)

where o = {z:[s] — f(z1:[s'], z2:[s'])}, and =z1:[s'], z2:[s'] are fresh variables

Fig. 5: Order-sorted decomposition rule for a commutative function symbol f
(Alpuente et al., 2014b])

Decompose 4 _jeft

filsl x[s] = [s]AAf € ax(f) ACy & ax(f)A
n>2Am>2Ake{l,...,n—1}
x:[s]
(F1,000st0) = 16t 1 CTS10) =

(Fltrseesth) 2 UGN flthsnseostn) 2 f(thoo ) AC | S| 00)

where o = {z:[s] — f(z1:[s], z2:[s])}, and x1:[s], z2:[s] are fresh variables

Decompose 4 _ight

filsl x[s] = [s]AAf € ax(f) ACy & ax(f)A
n>2Am>2Ake{l,...,m—1}

x:[s]
(1, tn) 2 f(H,. . t) ANC LS| 0) —
wlA:[s] zo:[s]

(tr 2 fQ -t ) A f(t2setn) 2 flthprs- - t) AC| S| 00)
where o = {x:[s] — f(z1:[s], z2:[s])}, and z1:[s], z2:[s] are fresh variables

Fig. 6: Order-sorted decomposition rules for an associative (non—commutative)
function symbol f (Alpuente et al., 2014b])

for all theories E in the parametric family of theories we consider in this paper,
there is a matching algorithm modulo E that provides the relation <g.

In the following section we establish the correctness and termination of our
resulting order-sorted, equational least general generalization algorithm.

4 Termination and Correctness of Order-sorted Equational Least General
Generalization

Let us first establish that the extended, order-sorted least general generalization
calculus modulo axioms of Section [3] terminates. The proof of this theorem is in
Appendix

Let us call a set B of Y-equational axioms AVCVU iff B = (J;cy az(f) and
a;r:(f) (- {Af, Cf, Uf}.

Theorem 1 (Termination) Given a kind-completed, B-pre-regular, order-sorted equa-
tional theory (X, B) with a set B of AVCVU azioms, and a generalization problem

x:[s]
I'=t =

t', with [s] = [LS(t)] = [LS(t')], such that the subsignature X is U-tolerant,
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Decompose 4¢ _jeft

filsl x[s] = [sS]A{Af,C¢} Cax(f) An>2Am>2A
{it, . ,in}=0{1,...,n} ANkne{l,...,n—1} Ak € {1,...,m}
x:[s]
il <f(t1»"'7tn) £ f(t/lavtin)/\c|s‘9>4)

[s]
(f(ti17~'~:t’ik") = t;;;m/\f(ti(kn+1)v~-'7tin) £ f(tllz'~~7t;€m_1’t;€m+1’~"7t"m)/\C|S‘90->

>

where o = {x:[s] — f(z1:[s], z2:[s]) }, and z1:[s], z2:[s] are fresh variables
Decompose sc _right
filsl x[s] = [sS]A{Af,C¢} Cax(f) An>2Am>2A
{i1,..,im}=8{1,...,m} ANkm €{l,....m—1} Nkp € {1,...,n}
z:s]

Ultstn) & S ) 1 C| 510
EIC

Hkm+1)""

25 [s]

(tkn = f(t;l,... t )/\f(t17~~~7tkn—latkn+1y~~-7tn)

i, st YNC| S| 80)
where o = {z:[s] — f(z1:[s], z2:[s])}, and z1:[s], z2:[s] are fresh variables

Fig. 7: Order-sorted decomposition rules for an associative—commutative function
symbol f (Alpuente et al., |2014b)

every derivation stemming from an initial configuration (I" | § | id) using the inference
rules of Figures [8 [3 [@ and [] terminates in a final configuration of the form
@1516).

In order to prove correctness (Theorem [2| below) and completeness (Theorem
below) of the order-sorted, least general equational generalization procedure, we
follow the same proof schema of (Alpuente et al., [2014b)) and define order-sorted
B-lgg computation by subsort specialization. In other words, we mimick the com-
putation of least general generalizers by first removing sorts (i.e., upgrading vari-
ables to top sorts), then computing (unsorted) B-lggs, and finally obtaining the
right subsorts by a suitable specialization post-processing. Note that this naive
procedure, formalized in Appendix [A-3] is not used in practice but only as a useful
reference for the proofs of correctness and completeness of Appendix [A-2]

Since we follow the proof scheme of (Alpuente et al. 2014b) and the only
change is in the identity case, we only need to modify the following lemma from
(Alpuente et all [2014Db)), whose proof is in Appendix

Lemma 1 Given termst and t' such that every symbol int and t' is either free or has
an identity element, and a fresh variable z,

x
—if (¢ 2t | 0] id) =" (C | S| 0) using the inference rules of Figuresl% andl%
then x6 is a generalizer of t and t' modulo identity;

x
— if u is a generalizer of t and t' modulo identity, then there is a derivation (t 2t |
0 |id) =" (C | S| 0) using the inference rules of Figures @, and@ such that
u=pg z0.

In order to precisely state correctness, we need the following. We use flattened
versions of terms that use poly-variadic versions of the associative symbols, i.e.,
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given an associative symbol f with n arguments, and n > 2, flattened terms are
canonical forms w.r.t. the set of rules given by the following rule schema

Flut, . s f(o1,- o vn)y ey um) = fut, .o, 01,y Ony e um) m> 1
Given an associative symbol f and a term f(t1,...,tn), we call f-alien terms (or
simply alien terms) those terms among the t1,...,t, that are not rooted by f.

Theorem 2 (Correctness) Given a kind-completed, B-pre-reqular, order-sorted equa-
tional theory (X, B) with a set B of AVCVU azioms, and a generalization problem

x:[s]
=t 2 ¢ with [s] = [LS(t)] = [LS(')], such that t and t' are flattened X-terms
T: [s
and the subsignature X is U-tolerant, if (t t' | 0| id) =* (0| S| 6) using the
inference rules of Fzguresl @ @ @ @ and@, then (x:[s])0 is a generalizer of t and t'.

Theorem 3 (Completeness) Given a kind-completed, B-pre-regular, order-sorted
equational theory (X, B) with a set B of AVCVU azioms, and a generalization problem

x:[s]
=t 2 t, with [s] = [LS(t)] = [LS(t")], such that t and t' are flattened X -terms and

the subsignature X is U-tolerant, if u is a least general generalizer of t and t' modulo
Z:[S

]
B, then there is a derivation {t 2 t' |0 |id) —=* (C | S |0) using the inference rules

of Figures (1, [3 [3 [8l [6 and[7 such that u =p (z:[s])6.

Note that, because of termination, the filtering procedure of (Alpuente et al.
2014b)) can be finally applied to get rid of those generalizers that are not least
general so that minimality of the set of E-lgg’s trivially holds.

5 Conclusions

We have completed the generalization calculus of (Alpuente et al. 2014b|) with
an extra inference rule so that completeness holds for both linear and non-linear
order-sorted equational generalization under a mild syntactic condition on sig-
natures, called U-tolerance, ensuring finiteness of the set of B-lggs that is easily
achievable in practice. To our knowledge, this is the first finite, minimal, and com-
plete procedure for order-sorted equational least general generalization modulo
any combinations of associativity, commutativity, and identity axioms for differ-
ent function symbols (i.e., A, C, U, AC, AU, CU, and ACU). Furthermore, it not
only works for unsorted and many-sorted specification, but it also works for the
more general and expressive case of order-sorted specifications. This allows us to
deal with equational theories more expressive than the unsorted ones currently
handled by (Cerna and Kutsial, 2020)). Furthermore, this is done without resorting
to heuristics or tree grammars.

We have implemented the extended, order-sorted, least general generalization
algorithm described in this paper in the ACUOS? system, which is publicly avail-
able at http://safe-tools.dsic.upv.es/acuos2. We also endowed the ACUOS?
system with a new capability to check the U-tolerance property, which can be
accessed as a suitable tool option.
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A Proofs of technical results

A.1 Proof of Theorem [1I

Theorem (Termination). Given a kind-completed, B-pre-regular, order-sorted equational

x:[s]
theory (X, B) with a set B of AVCVU azioms, and a generalization problem I' =t 2 t/,
with [s] = [LS(t)] = [LS(t')], such that the subsignature X is U-tolerant, every derivation
stemming from an initial configuration (I' | 0 | id) using the inference rules of Figures
[3 [3 [6 and[A terminates in a final configuration of the form (| S| 0).

Proof Identical to the proof of (Alpuente et all |2014b)) since it is not possible to have a

w
generalization problem of the form ey £ ¢4 in a U-tolerant signature. O

A.2 An auxiliary least general generalization procedure

In order to prove correctness and completeness (Theorems [2| and respectively, in Ap-

pendix of the order-sorted, equational least general generalization procedure, we follow

the same proof schema of (Alpuente et al., |2014b)) and define order-sorted B-lgg computation

by subsort specialization. In other words, we mimick the computation of least general general-

izers by first removing sorts (i.e., upgrading variables to top sorts), then computing (unsorted)

B-lggs, and finally obtaining the right subsorts by a suitable specialization post-processing.
First, we recall the notion of a conflict pair.

Definition 3 (Conflict Position/Pair) Given terms ¢ and t’, a position p € Pos(t)NPos(t’)
is called a conflict position of t and t' if root(t|p) # root(t'|p) and for all ¢ < p, root(t|q) =
root(t'|q). Given terms t and ¢/, the pair (u,v) is called a conflict pair of t and t' if there exists
at least one conflict position p of ¢ and ¢’ such that u = t|, and v = t/[,.

The following notions of pair of subterms and conflict pair are specialized to the case when
function symbols obey C, A, AC, and U and are the basis for our overall proof scheme.
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Definition 4 (Commutative Pair of Subterms) Given terms ¢t and ¢/
such that every symbol in ¢t and t’ is either free or commutative, the pair (u,v) of terms is
called a commutative pair of subterms of t and t’ if and only if there are positions p € Pos(t)
and p’ € Pos(t') such that:
— tlp = u, |,y = v, depth(p) = depth(p’),
— for each 0 < i < depth(p), root(t|,|,) =
— for each 0 < j < depth(p):
— if root(t|,|,_,) is free, then (p); = (p');, and

root(t'| ), and

— if root(t],),_,) is commutative, (p); = (p")j or (p); = ((p'); mod 2) + 1.

Definition 5 (Commutative Conflict Pair) Given terms ¢ and ¢’ such that every symbol
in t and t is either free or commutative, the pair (u,v) is called a commutative conflict pair
of t and t' if and only if root(u) # root(v) and (u,v) is a commutative pair of subterms of ¢
and t'.

Definition 6 (Associative Pair of Positions) Given flattened terms ¢ and ¢’ such that
every symbol in ¢ and t’ is either free or associative, and given positions p € Pos(t) and
p’ € Pos(t'), the pair (p,p’) of positions is called an associative pair of positions of t and t' if
and only if

— depth(p) = depth(p'),
— for each 0 < i < depth(p), root(t|,),) = root(t'|,,), and
— for each 0 < j < depth(p):

— if root(t|p‘j71) is free, then (p); = (p);, and

— if root( ,) is associative, then no restriction on (p); and (p’);.

t|p\j,
Definition 7 (Associative Pair of Subterms) Given flattened terms ¢ and t’ such that
every symbol in t and ' is either free or associative, the pair (u,v) of terms is called an
associative pair of subterms of t and t' if and only if either

1. (Regular subterms) for each pair of positions p € Pos(t) and p’ € Pos(t’) such that ¢|, = u,
t'|,; = v, then (p,p’) is an associative pair of positions of ¢ and #'; or
2. (Associative subterms) there are positions p € Pos(t), p’ € Pos(t’) such that the following
conditions are satisfied:
— (p,p’) is an associative pair of positions of ¢t and #',

—u=f(U1,. -, Uny, ), Pu =1, v=f(v1,...,Vn,), no > 1, f is associative,
- t|P = f(tlv"'7tk1’u17"'7Unu7tk27"'7tnp)7 Np > 2» t/‘p’ = f(tllz"'vt;/lyvlz"'z
Unv7t;€/27"'7t:1,p/)7np227 and

— k1 =0 (no arguments before uy) if and only if ¥{ = 0 (no arguments before v1), and,
— k2 > np (no arguments after un,,) if and only if kf > n,/ (no arguments after v, ).

Definition 8 (Associative Conflict Pair) Given flattened terms ¢ and ¢’ such that every
symbol in ¢t and t’ is either free or associative, the pair (u,v) is called an associative conflict
pair of t and t' if and only if root(u) # root(v) and (u,v) is an associative pair of subterms of
t and t'.

Definition 9 (Associative-commutative Pair of Positions) Given flattened terms ¢ and
t’ such that every symbol in t and t’' is either free or associative-commutative, and given
positions p € Pos(t) and p’ € Pos(t’), the pair (p,p’) of positions is called an associative-
commutatve pair of positions of t and t' if it satisfies the conditions for being an associative
pair of positions of ¢ and ¢'.

Definition 10 (Associative-commutative Pair of Subterms) Given flattened terms ¢
and t’ such that every symbol in ¢ and t’ is either free or associative-commutative, the pair
(u,v) of terms is called an associative-commutative pair of subterms of t and t’ if and only if
either

1. (Regular subterms) for each pair of positions p € Pos(t) and p’ € Pos(t’) such that ¢|, = u,
|,y =, then (p,p’) is an associative-commutative pair of positions of ¢ and t'; or

2. (Associative-commutative subterms) there are positions p € Pos(t), p’ € Pos(t') such that
the following conditions are satisfied:
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(p,p’) is an associative-commutative pair of positions of ¢ and ', and
—u=f(Ul,.-,Uny ), Pu > 1, v=f(v1,...,0n,), no > 1, f is associative,
tlp = f(t1,. . stny,), np > 2, | = f(t], ... ,t%p,), Ny > 2,

for all 1 <i < ny, there exists 1 < j < np s.t. u; =g tj;, and

for all 1 <4 < ny, there exists 1 < j <nyr s.t. v; =p t;..

Definition 11 (Associative-commutative Conflict Pair) Given flattened terms ¢ and ¢’
such that every symbol in ¢t and t’ is either free or associative-commutative, the pair (u,v) is
called an associative-commutative conflict pair of t and t' if and only if Toot(u) # root(v) and
(u,v) is an associative-commutative pair of subterms of ¢ and t'.

Definition 12 (Identity Pair of Positions) Given terms ¢ and ¢’ such that every symbol
in t and ¢’ is either free or has an identity, and given positions p € Pos(t) and p’ € Pos(t'), the
pair (p,p’) of positions is called an identity pair of positions of t and t' if and only if either

1. (Base case) p = 4 and p’ = 4;
(Free symbol) p = q.i, p’ = ¢'.i, root(t'| /) = root(tlq) is a free symbol, and (g,q’) is an
identity pair of positions of ¢ and t';

3. (Identity on the left) depth(p) > depth(p’), p = g.i, root(t|q) has an identity symbol e, and
(¢,p’) is an identity pair of positions of ¢ and t'; or

4. (Identity on the right) depth(p') > depth(p), ' = ¢'.i, root(t'|,) has an identity symbol
e, and (p,q’) is an identity pair of positions of ¢ and t'.

Definition 13 (Identity Pair of Subterms) Given terms ¢ and ¢’ such that every symbol
in t and ¢’ is either free or has an identity, the pair (u,v) of terms is called an identity pair of
subterms of ¢ and t’ if and only if for each pair of positions p € Pos(t) and p’ € Pos(¢') such
that t|, = u, t'|,, = v, then (p,p’) is an identity pair of positions of ¢ and t'.

Definition 14 (Identity Conflict Pair) Given terms ¢ and ¢’ such that every symbol in ¢
and t’ is either free or has an identity, the pair (u,v) is called an identity conflict pair of t and
t’ if and only if root(u) # root(v) and (u,v) is an identity pair of subterms of ¢ and t'.

We also recall a special notation for subterm replacement when we have associative or
associative-commutative conflict pairs and order-sorted information.

Definition 15 (A-Subterm Replacement) Given two flattened terms ¢ and t’ and an
associative conflict pair (u,v) with a pair of conflict positions p € Pos(t) and p’ € Pos(t') such
that w = f(u1,...,um), m > 1, v = f(v1,...,vp), n > 1, f is associative, t|, = f(wi,...,
wkl,ul,...,um,w’l,...,wfm), k1 >0, k2 >0, and t/|,, = f(w’l’,...,wgs,vl,...,vn,w’l”,...,
wy"), ks > 0, kg > 0, we write t[[z:s]]p and ¢/[[z:s]],/ to denote the terms t[[z:s]]p, = t[f (w1,
ey Why, TS, W, ,wfm)]p7 and t'[[z:s]],r = t[f(wY,..., wgg_,x:s,w’l”, o ,wfc’i)]p/.

Definition 16 (AC-Subterm Replacement) Given two flattened terms ¢ and ¢ and an
associative-commutative conflict pair (u,v) with a pair of conflict positions p € Pos(t) and
p’ € Pos(t') such that u = f(u1,...,um), m > 1, v = f(vi,...,vn), n > 1, f is associative-
commutative, t|, = f(w1,...,wy,) s.t. for each i € {1,...,m}, there is j € {1,...,k1} with
u; =g wj, and ']y = f(wi,.. .,w;w) s.t. for each i € {1,...,n}, thereis j € {1,...,ka} with
v; =p W}, then we write t[[z:s]], and ¢'[[2:s]],/ to denote the terms ¢[[z:s]lp = t[f(@T, ..., Wy,
x:5)]p where {wr,...,Wr, } = U{wi | 1 <4 < k1,V1 < j < n,w; #B uj}, and ¢[[zs]]y =
tf(wy, ... wy,,@s)]y where {wi, ... wy b =U{w] |1 <4< ko, V1 <j<mwj #p vs}

Note that B-pre-regularity is essential here because it ensures that after replacing a sub-
term by a variable, the least sort does not depend on the chosen representation within the
equivalence class of a term, i.e., it does not depend on how the flattened version of the term
is obtained.

We recall order-sorted B-lgg computation by subsort specialization using top-sorted gen-
eralization and sort-specialized generalization.
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Definition 17 (Top-sorted Equational Generalization) Given a  kind-
completed, B-pre-regular, order-sorted equational theory (X, B) with a set B of AVCVU ax-
ioms, and flattened X-terms ¢ and ¢’ such that [LS(¢)] = [LS(t)], let (u1,v1), ..., (uk, vE) be the
B-conflict pairs of t and ¢/, and for each such conflict pair (ui, v;), let (p’i7 . ,p%i , qi, e q;i),
1 < i < k, be the corresponding B-conflict positions, and let [sj] = [LS(u;)] = [LS(v;)]. We
define the term denoting the top order-sorted equational least general generalization as

tsgp(t,t) = tllet:a], o mnylsllly, e [l ,wﬁki[SkH]pff,...,pgk
where x1:[s1], ..., a}, :[s1], ..., =¥ s, x,’ﬁk :[sk] are fresh variables.
The order-sorted equational lggs are obtained by subsort specialization.
Definition 18 (Sort-specialized Equational Generalization) Given a

kind-completed, B-pre-regular, order-sorted equational theory (X, B) with a set B of AvCVU
axioms, and flattened Y-terms ¢ and ¢’ such that [LS(t)] = [LS(t')], let (u1,v1),..., (ug,vk)

be the conflict pairs of ¢t and ¢/, and for each such conflict pair (u;, v;), let p},... 3Py
1 < ¢ < k, be the corresponding B-conflict positions, let [s;] = [LS(u;)] = [LS(v;)], and
let z}:[s1],. .., CE,}LI 1 L % ,xﬁk :[sk] be the variable identifiers used in Deﬁnition
We define

sort-down-subsg (t,t') = {p | Dom(p) = {z1:[s1], ..., zp :[s1], ..., z¥:[si], - . ,a:ﬁk skl A

VI<i<kVI<j<m:
(z%:[si))p = zizs{ A s| € LUBS(LS(w;), LS(vi))}

where all the x;:s] are fresh variables. The set of sort-specialized B-generalizers is defined as
ssgp(t,t') = {tsgp(t,t")p | p € sort-down-subsg (t,t’)}.

A.3 Proof of Theorems 2] and [3

The auxiliary notions and results in this section are similar to the corresponding ones in
(Alpuente et all [2014b), although the proofs of some of the results were just sketched there
and we have completed them.

Let us prove that the range of the substitutions partially computed at any stage of a
generalization derivation coincides with the set of the index variables of the configuration,

x
except for the generalization variable x of the original generalization problem ¢ 2 ¢/. This is
stated in the following lemma that is similar to Lemma 28 of (Alpuente et al., [2014b).

Lemma 2 (Range of Substitutions) Given terms ¢ and t' and a fresh variable x such that
x

T2t |0]id) =* (C|S|6) using the inference rules of Figures@ B (mdB, then

Index(SUC) C VRan(0) U{z}, and VRan(0) = Var(z0).

Proof Immediate by construction. 0O

The following lemma establishes an auxiliary property that is useful for formulating the

notion of an identity conflict pair of terms. It is similar to Lemma 30 of (Alpuente et al.,
2014b)).

Lemma 3 Given terms t and t' such that every symbol in t and t' is either free or has an

T Y
identity, and a fresh variable z, then there is a sequence (t 2t |0 |id) =* (u2vAC | S|0)
using the inference rules of Figures[d] [J and[3 such that there is mo variable z such that
z

u2v €S if and only if (u,v) is an identity pair of subterms of t and t'.

Proof Straightforward by successive application of the inference rule
Decomposep of Figure |I| and the inference rule Expand;; of Figure @ O
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The following lemma expresses the precise connection between the constraints in a deriva-
tion and the identity conflict pairs of the initial configuration. It is similar to Lemma 31 of
(Alpuente et al., |2014b)).

Lemma 4 Given terms t and t' such that every symbol in t and t' is either free or has an

T Y
identity, and a fresh variable z, then there is a sequence (t 2t |0 |id) =* (C|u2vAS|0)
using the inference rules of Figures E and@ if and only if (u,v) s an identity conflict pair
of t and t'.

x Yy
Proof (=) Since (¢ 2¢' |0 |id) =* (C|u2vAS|8), then there must be two configurations
y y
(uév/\Cl | S1 | 91), (CQ |uév/\52 | 92) such that

x Y
<tét/‘@|id>—>* (uév/\C1 |Sl|91)7

y y
(u2vAC1|S1]601) —solveg (C2 |uzvASa|02),

y Yy
(Coluz2vASe|02) > (D |uzvAS|0),
and, by application of the inference rule Solveg, root(u) # root(v). By using Lemmawith

T Yy
the derivation (¢2¢ |0 |id) —=* (u2vACi|S1|61), (u,v') is an identity pair of subterms
of ¢ and t'. Therefore, (u,v) is an identity conflict pair.

Y T
(<) By Lemma , there is a configuration (u2v A Cq | S | 61) such that (t2¢ | 0 |
y
id) =* (u2vAC1 | S1| 61), and root(u) # root(v). Then, the inference rule Solvep is
y y y
applied, i.e., (u2vANCy1 | S1]61) = (C1 |utvA St |61) and u 2 v will be part of S in the
final configuration (@ | S | 9).

Finally, the following lemma establishes the link between the computed substitution and
a proper generalizer. It is similar to the proof of Lemma 32 of (Alpuente et al [2014b). We
have underlined the beginning of the extra necessary cases that allow us to repair the original
proof of (Alpuente et al.| [2014b).

Lemma Given terms t and t' such that every symbol in t and t' is either free or has an
identity, and a fresh variable x,

—if (t 2t |0]|id)y =* (C|S|0) using the inference rules of Figures B andB then x6

is a genmeralizer of t and t' modulo identity;

x
— if u is a generalizer of t and t' modulo identity, then there is a derivation (t 2t' | 0 |
id) —* (C'| S| 0) using the inference rules of Figures[] [8 and[§ such that u=p z6.

Proof By structural induction on the term z6 (resp. u). If 20 = x (resp. w is a variable), then
0 = id and the conclusion follows. If z0 = f(u1,...,ug) (resp. u = f(u1,...,ux)) and f is free,
then the inference rule Decomposep of Figureis applied and we have that ¢t = f(t1,...,tx)
and t' = f(t},...,t}). If f has an identity symbol e and x6 = f(u1,u2) (resp. u = f(u1,u2)),
then we have two possibilities: (1) the inference rule Expandy of Figure is applied and we
have that either: (i) t = f(t1,t2) and t' = f(t],t}); (ii) ¢t = f(t1,¢2) and root(t’) # f; or (iii)
root(t) # f and t' = f(t},t5). (2) the inference rule Recovery of Figure is applied and we
have that root(t) # f and root(t') # f.

For the case when f is free, by using the induction hypothesis, u; is a generalizer of ¢; and
t?, for each i.

For the case when f has an identity symbol e and the inference rule Expandy was
applied, by using the induction hypothesis, u; is a generalizer of either t; and ¢/, t; and ¢
(by applyingf(z,e) = x to t’), or t and t| (by applyingf(z,e) = x to ¢). Similarly, uz is
a generalizer of either ¢2 and t}, t2 and t' (by applyingf(e,z) = = to t’), or t and ¢, (by
applyingf(e,z) = x to t).

For the case when f has an identity symbol e and the inference rule Recovery was
applied, by using the induction hypothesis, either u; is a generalizer of ¢ and e and u2 is a
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generalizer of ¢’ and e, or u; is a generalizer of ¢ and e and wug is a generalizer of ¢ and e.
Now, if for each pair of terms in w1, ..., u; there are no shared variables, then the conclusion

follows. Otherwise, for each variable z shared between two different terms wu; and u;, there is
z

a constraint wi £ wg € S, and, by Lemma there is an identity conflict pair (w1, ws2) in ¢;

and t;. Thus, the conclusion follows. O

Correctness and completeness are finally proved as follows.

Theorem IE (Correctness). Given a kind-completed, B-pre-regular, order-sorted equational
z:[s]
theory (X, B) with a set B of AVCVU azioms, and a generalization problem I' =t 2 t/,
with [s] = [LS(t)] = [LS(t')], such that t and t' are flattened X-terms and the subsignature X
z:[s]
is U-tolerant, if (t 2 t'|0]id) —=* (0| S| 0) using the inference rules of Figures , Q
@ and Iz,then (z:[s])0 is a generalizer of t and t'.

Proof By Lemmall] O

Theorem (Completeness). Given a kind-completed, B-pre-regular, order-sorted equa-
tional theory (X, B) with a set B of AVCVU azioms, and a generalization problem I' =
z:[s]
t 2 ¢, with [s] = [LS(t)] = [LS(t')], such that t and t' are flattened X -terms and the subsig-
nature X1 is U-tolerant, if u is a least general generalizer of t and t' modulo B, then there
x:[s]
is a dertvation (t 2 t' |0 ]id) —=* (C | S| 0) using the inference rules of Figures Q HQ
[0 and [A such that w =p (2:]s])6.

x
Proof By contradiction. Consider a derivation (¢t £ ¢/ | 0 | id) —* (@ | S | 0) such that 20 is not
a least general generalizer of t and ¢’ up to renaming. Since zf is a generalizer of ¢ and t’ by
Lemma [I] there is a substitution p which is not a variable renaming such that z6p =g u. By
Lemma [2] VRan(0) = Var(z6); hence, we can choose p with Dom(p) = Var(z8). Now, since
p is not a variable renaming, either:

1. there are variables y,y’ € Var(z) and a variable z such that yp = y'p = z, or
2. there is a variable y € Var(x6) and a non-variable term v such that yp = v.

In case , there are two conflict positions p,p’ for ¢ and ¢’ such that ul, = z = ulp and
z6|p = y and x6|,, = y’. Specifically, this means that t|, = t|,» and t'|, = t'|,,. However, this
is impossible by Lemmas and In case , there is a position p such that z0|, = y and p is
neither a conflict position of ¢ and ¢’ nor is it under a conflict position of ¢ and t’. Since this
is impossible by Lemmas [d] and 2} the claim is proved. 0O
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