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Abstract
In iterative voting systems, candidates are eliminated in consecutive rounds until either a 
fixed number of rounds is reached or the set of remaining candidates does not change any-
more. We focus on iterative voting systems based on the positional scoring rules plurality, 
veto, and Borda and study their resistance against shift bribery attacks introduced by Elkind 
et al. [1] and Kaczmarczyk and Faliszewski [2]. In constructive shift bribery (Elkind et al. 
[1]), an attacker seeks to make a designated candidate win the election by bribing voters 
to shift this candidate in their preferences; in destructive shift bribery (Kaczmarczyk and 
Faliszewski [2]), the briber’s goal is to prevent this candidate’s victory. We show that many 
iterative voting systems are resistant to these types of attack, i.e., the corresponding deci-
sion problems are NP-hard. These iterative voting systems include iterated plurality as well 
as the voting rules due to Hare, Coombs, Baldwin, and Nanson; variants of Hare voting are 
also known as single transferable vote, instant-runoff voting, and alternative vote.
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1 Introduction

One of the main themes in computational social choice [3, 4] is the study of the compu-
tational complexity of manipulative attacks on voting systems. Besides manipulation [5, 
6] itself (also referred to as strategic voting where voters cast insincere ballots instead of 
revealing their true preferences) and electoral control [7, 8] (where an election chairs seeks 
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to influence the outcome of an election by structural changes such as adding, deleting, or 
partitioning either candidates or voters), much work has been done to study bribery attacks. 
For a comprehensive overview of the formal models and the related complexity results, we 
refer to the book chapters by Conitzer and Walsh [9] for manipulation, by Faliszewski and 
Rothe [10] for control and bribery, and by Baumeister and Rothe [11] for all three topics.

1.1  Shift bribery and other bribery attacks in voting

Bribery in voting was introduced by Faliszewski et al. [12] (see also the article by Falisze-
wski et al. [13]). In their model, a briber intends to change the outcome of an election to his 
or her own advantage by bribing certain voters without exceeding a given budget. Bribery 
shares some features with manipulation, as the briber (just like a strategic voter) has to find 
the right preference orders that the bribed voters are then requested to change their votes 
to. Bribery also shares some features with electoral control, as the briber (just like an elec-
tion chair) has to pick the right voters to bribe so as to make the cost of bribing them low 
enough to stay within the allowed budget.

We will focus on shift bribery, which was introduced by Elkind et al. [1] for the con-
structive variant (where the briber’s goal is to make a favorite candidate win the election) 
and was later studied by Kaczmarczyk and Faliszewski [2] in the destructive variant (where 
the briber’s goal is to make sure that a despised candidate does not win the election). In 
swap bribery [1], which generalizes shift bribery, the briber has to pay for each swap of 
any two adjacent candidates in the votes. Shift bribery additionally requires that swaps 
always involve the designated candidate that the briber wants to see win (in the construc-
tive case) or not win (in the destructive case).

A natural interpretation of swap bribery—and thus in particular of shift bribery—
regards campaign management: A campaign manager organizing a political campaign for 
some candidate seeks to influence the public opinion about this candidate by legal activi-
ties such as, e.g., running targeted television ads. Those ads might influence voters to 
change their opinion (and consequently their vote) of the targeted candidate positively or 
negatively. Campaign managers are restricted by a budget and need to choose the right ads 
to run in order to increase their candidates’ chances of winning. The constructive variant 
of shift bribery can be seen to model campaign management in a more ethical way than 
general (constructive) swap bribery, as campaign managers then always target their own 
candidates only and thus cannot change the voters’ opinions over pairs of other candidates. 
On the other hand, negative campaigning can still be modeled as destructive shift bribery.

Another natural interpretation of swap bribery regards election fraud detection: If the 
winner of an election can be dethroned by only a few changes (by swapping candidates) 
to the votes then the election might have been tampered with or, from a more optimis-
tic viewpoint, small errors in the counting of the votes might have influenced the election 
result. In that situation, a recounting would be required since for a close election result 
only few errors in the counting are needed to elect a candidate that is not the “true” win-
ner of the election. This has been studied as the margin of victory, a critical robustness 
measure for voting systems. Specifically, Xia [14] has shown that the margin of victory is 
closely related to destructive bribery. Reisch et al. [15] add to this connection by showing 
that the former problem can be hard, even if the latter is easy. Furthermore, Baumeister 
and Hogrebe [16] and Boehmer et al. [17] consider swap bribery for counting problems to 
study election robustness. In this context, shift bribery models a more fine-grained search 
for election fraud which targets only a specific candidate.
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Swap bribery generalizes the possible winner problem [18, 19], which itself is a gener-
alization of unweighted coalitional manipulation.1 Therefore, each of the many hardness 
results known for the possible winner problem is directly inherited by the swap bribery 
problem. This was the motivation for Elkind et al. [1] to look at restricted variants of swap 
bribery such as shift bribery.

1.2  Some related work for shift bribery

Even though shift bribery possesses a number of hardness results [1], it has also been 
shown to allow exact and approximate polynomial-time algorithms in a number of cases [1, 
20, 21]. For example, Elkind et al. [1] provided a 2-approximation algorithm for shift brib-
ery when using Borda voting.2 This result was extended by Elkind and Faliszewski [20] 
to all positional scoring rules; they also obtained somewhat weaker approximations for 
Copeland and maximin voting. Very recently Faliszewski et al. [22] further extended this 
result to a polynomial-time approximation scheme. For Bucklin and fallback voting, the 
shift bribery problem is even exactly solvable in polynomial time [21]. Faliszewski et al. 
[23] have complemented these results on Bucklin and fallback voting. In particular, they 
studied a number of bribery problems for these rules, including a variant called “extension 
bribery,” which was previously introduced by Baumeister et al. [24] in the context of cam-
paign management when the voters’ ballots are truncated.

In addition, Bredereck et  al. [25] were the first to analyze shift bribery in terms of 
parameterized complexity, and only recently a long-standing open problem regarding the 
parameterized complexity of bribery (including shift bribery) with the number of candi-
dates as the parameter (see the survey by Bredereck et al. [26] for a deeper discussion on 
this problem) was solved by Knop et al. [27] for a multitude of voting rules.

Bredereck et al. [28] introduced combinatorial shift bribery in which a single shift brib-
ery action affects multiple voters and Bredereck et al. [29] studied shift bribery in the con-
text of multiwinner elections for various committee selection rules.

1 In the unweighted coalitional manipulation problem, we are given the votes of the nonmanipulators and 
a distinguished candidate c, whereas the manipulators’ votes are as yet unspecified, and we ask whether 
they can be set so as to make c win the election. This is the special case of the possible winner problem 
where some votes (namely those of the nonmanipulators) are completely specified and some other votes 
(namely those of the manipulators) are completely unspecified; in general, all votes in an instance of the 
possible winner problem can be partially ordered, and we ask whether they can be extended to complete lin-
ear orders such that the given candidate c wins. The possible winner problem, in turn, is the special case of 
the swap bribery problem where swaps between any two candidates that already are linearly ordered in the 
instance of the possible winner problem are made so costly that they exceed the briber’s budget, whereas 
any two candidates that are not linearly ordered can be swapped for free.
2 In Borda with m candidates, each vote is a linear order of the candidates, the i th candidate in a vote 
scores m − i points, and whoever has the most points wins. Borda is a very prominent positional scoring 
rule and can be described by the scoring vector (m − 1,m − 2,…, 0). Other prominent positional scoring 
rules are plurality, where only the top candidates in the votes score a point and no one else (i.e., plurality 
has the scoring vector (1, 0,…, 0)), and veto (a.k.a. antiplurality), where all except the bottom candidates 
in the votes score a point (i.e., veto has the scoring vector (1,…, 1, 0)); again, whoever has the most points 
wins in these rules.
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1.3  Iterative voting rules

While the complexity of shift bribery has been comprehensively investigated for many 
standard voting rules, it has not been considered yet for iterative voting systems. To close 
this glaring gap, we study shift bribery for eight iterative voting systems that are based on 
any one of the Borda, plurality, and veto rules (see Footnote 2 for their definitions) and that 
each proceed in rounds, eliminating (from the election) after each except the last round the 
candidates performing worst in a certain sense:

• The system of Baldwin [30] eliminates the candidates with the lowest Borda score,
• the system of Nanson [31] eliminates the candidates whose scores are lower than the 

average Borda score,
• the system of Hare (see, e.g., the book by Taylor [32]) eliminates the candidates with 

the lowest plurality score,
• the system called iterated plurality (again see, e.g., the book by Taylor [32]) eliminates 

the candidates that do not have the highest plurality score,
• the system called iterated veto is defined analogously to iterated plurality, except based 

on the veto rather than the plurality score, and
• the system of Coombs (defined, e.g., in the paper by Levin and Nalebuff [33]) elimi-

nates the candidates with the lowest veto score.

The last two systems that we consider differ from the above iterative voting systems 
because they always use exactly two rounds:

• Plurality with runoff (as defined, e.g., in the book by Taylor [32]) works as follows. In 
the first round, if there is a unique plurality winner, all candidates that do not have the 
highest or second-highest plurality score are eliminated; if there are two or more plural-
ity winners, all candidates that do not have the highest plurality score are eliminated. In 
the second round (the runoff ), all remaining candidates with the highest plurality score 
win.

• Veto with runoff is defined analogously, except that veto scores instead of plurality 
scores and veto winners instead of plurality winners are considered.

These voting systems have been thoroughly studied and are also used in the real world. 
Among the systems we consider, Hare voting and variants thereof (some of which are 
called single transferable vote, instant-runoff voting, or alternative vote) are most widely 
used, for example in Australia, India, Ireland, New Zealand, Pakistan, the UK, and the 
USA.

1.4  Our contribution and more related work

Table 1 gives an overview of our complexity results for constructive and destructive shift 
bribery in our eight voting systems, where the shorthand NP-c stands for “NP-complete.” 
Our results complement results by Davies et al. [34] who have shown unweighted coali-
tional manipulation to be NP-complete for Baldwin and Nanson voting (even with just a 
single manipulator)—and also for the underlying Borda system (with two manipulators; for 
the latter result, see also the paper by Betzler et al. [35]). Davies et al. [34] also list various 
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appealing features of the systems by Baldwin and Nanson, including that they have been 
applied in practice (namely, in the State of Michigan in the 1920s, in the University of Mel-
bourne from 1926 through 1982, and in the University of Adelaide since 1968) and that 
(unlike Borda itself) they both are Condorcet-consistent.3 Axiomatic properties of iterative 
voting systems were also studied by Freeman, Brill, and Conitzer [36] who showed, in 
particular, that Hare is the only iterative voting system based on scoring rules that satisfies 
the independence-of-clones property. Further, it was shown by Bartholdi and Orlin [37] 
that Hare (which is called STV in their work) is NP-hard to manipulate even with only 
one manipulator. This result was complemented by Davies, Narodytska, and Walsh [38] 
who showed the same result for Coombs and a general class of iterative versions of scor-
ing rules. For plurality with runoff, it was shown by Conitzer, Sandholm, and Lang [6] 
that unweighted coalitional manipulation is NP-hard. Finally, plurality with runoff and veto 
with runoff were also studied by Erdélyi et al. [39] with respect to electoral control.

This paper is organized as follows. In Section 2, we will provide the needed definitions 
regarding elections and voting systems (in particular, iterative voting systems), define the 
shift bribery problem, and give some background on computational complexity. We will 
then study the complexity of shift bribery for Hare and Coombs elections in Section 3, for 
Baldwin and Nanson elections in Section 4, for iterated plurality and plurality with runoff 
in Section 5, and for iterated veto and veto with runoff in Section 6. Further, in Section 7 
we will discuss how the nonmonotonicity property of our iterative voting systems can be 
exploited in our reductions showing NP-hardness, exemplified for Hare voting and plural-
ity with runoff. Finally, we will conclude in Section 8 by presenting some open problems 
related to our work.

2  Preliminaries

Let us start by providing the needed notions and notation.

Elections and voting systems An election is specified as a pair (C,V) with C being a set 
of candidates and V a profile of the voters’ preferences over C, typically given by a list of 
linear orders of the candidates. A voting system is a function that maps each election (C,V) 
to a subset of C, the winner(s) of the election. An important class of voting systems is the 

Table 1  Summary of complexity results for shift bribery problems

Hare Coombs Baldwin Nanson

Constructive NP-c (Thm. 1) NP-c (Thm. 3) NP-c (Thm. 5) NP-c (Thm. 7)
Destructive NP-c (Thm. 2) NP-c (Thm. 4) NP-c (Thm. 6) NP-c (Thm. 8)

Iterated Plurality Plurality with Runoff Iterated Veto Veto with Runoff
Constructive NP-c (Thm. 9) NP-c (Thm. 9) NP-c (Thm. 11) NP-c (Thm. 11)
Destructive NP-c (Thm. 10) NP-c (Thm. 10) NP-c (Thm. 12) NP-c (Thm. 12)

3 A Condorcet winner is a candidate who defeats every other candidate in a pairwise comparison. Such a 
candidate does not always exist. A voting rule is Condorcet-consistent if it chooses only the Condorcet win-
ner whenever there exists one.
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family of positional scoring rules whose most prominent members are plurality, veto, and 
Borda count, see, e.g., the book chapters by Zwicker [40] and Baumeister and Rothe [11] 
and the survey by Rothe [41] on using Borda in collective decision making.

Recall from Footnote 2 in Section 1 that, in plurality, each voter gives her top-ranked 
candidate one point; in veto (a.k.a. antiplurality), each voter gives all except the bottom-
ranked candidate one point; in Borda with m candidates, each candidate in position i of a 
voter’s ranking scores m − i points; and the winners in each case are those candidates scor-
ing the most points.

Iterative voting systems The iterative voting systems we will study are based on plurality, 
veto, and Borda but, unlike those, their election winner(s) are determined in consecutive 
rounds. For all iterative voting systems considered here except for plurality with runoff and 
veto with runoff (which will be defined shortly afterwards), if in some round all remaining 
candidates have the same score (for instance, there may be only one candidate left), then all 
those candidates are proclaimed winners of the election. In each preceding round, however, 
all candidates with the lowest score are eliminated.4

Recall from Section 1 that the eight scoring methods we will use work as follows: The 
iterative voting systems due to Hare, Coombs, and Baldwin use, respectively, plurality, 
veto, and Borda scores in order to decide which candidates are the weakest and thus to be 
removed. The Nanson system eliminates in every (except the last) round all candidates that 
have less than the average Borda score. Iterated plurality eliminates all candidates that do 
not have the highest plurality score, and iterated veto eliminates all candidates that do not 
have the highest veto score.

Unlike the above multiple-round iterative voting systems, plurality with runoff (respec-
tively, veto with runoff ) always proceeds in two rounds: In the first round, it eliminates all 
candidates that do not have the highest plurality score (respectively, veto score), unless 
there is a unique plurality winner (respectively, veto winner) in which case all candidates 
are eliminated except those with the highest or second-highest plurality score (respectively, 
veto score); in the second round, all candidates with the highest plurality score (respec-
tively, veto score) win.

Shift bribery For any given voting system E , we now define the problem E-Shift-BriBery, 
which is a special case of E-Swap-BriBery, introduced by Faliszewski et  al. [13] in the 
context of so-called irrational voters (i.e., voters whose preferences can be intransitive) for 
Copeland and then comprehensively studied by Elkind et al. [1]. Informally stated, given 
a profile of votes, a swap-bribery price function exacts a price for each swap of any two 
candidates in the votes, and in shift bribery only swaps involving the designated candidate 
are allowed.

Formally, for a list of price functions � = (�1,… , �n) with �i ∶ ℕ → ℕ , in the construc-
tive case ρi(k) indicates the price the briber has to pay in order to move the designated 
candidate p in vote i by k positions to the top (respectively, to the bottom in the destruc-
tive case). For all i, we require that ρi is nondecreasing (ρi(ℓ) ≤ ρi(ℓ + 1)), ρi(0) = 0, and 
if p is at position r in vote i then ρi(ℓ) = ρi(ℓ − 1) whenever ℓ ≥ r in the constructive 

4 In the original sources defining these iterative voting systems as stated in the Introduction, certain tie-
breaking schemes are used whenever more than one candidate has the lowest score in some round. For the 
sake of convenience and uniformity, however, we prefer eliminating them all and will therefore disregard 
tie-breaking issues in such a case.
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case (respectively, whenever ℓ ≥ |C| − r + 1 in the destructive case). The latter condition 
ensures that p can be shifted upward no farther than to the top (respectively, the bottom).5 
When the voter i in ρi is clear from the context, we omit the subscript and simply write ρ.

E-ConStruCtive-Shift-BriBery

Given: An election (C,V) with n votes, a designated candidate p ∈ C, a budget B, and a list of price 
functions � = (�1,… , �n).

Question: Is it possible to make p the unique E winner of the election by shifting p in the votes so that the 
total price does not exceed B?

In the corresponding problem E-DeStruCtive-Shift-BriBery, given the same input, we 
ask whether it is possible to prevent p from being a unique winner.

These problems are here defined in the unique-winner model where a constructive (respec-
tively, destructive) bribery action is considered successful only if the designated candidate 
can be made (respectively, can be prevented from being) the only winner of the election. We 
also consider these problems in the nonunique-winner model where for a constructive (respec-
tively, destructive) bribery action to be considered successful it is required that the designated 
candidate is merely one among possibly several winners (respectively, does not win at all). 
Note that a yes-instance of E-ConStruCtive-Shift-BriBery in the unique-winner model is also 
a yes-instance of the same problem in the nonunique-winner model, whereas a yes-instance 
of E-DeStruCtive-Shift-BriBery in the nonunique-winner model is also a yes-instance of the 
same problem in the unique-winner model; analogous statements apply to the no-instances of 
these problems by swapping the unique-winner model with the nonunique-winner model. We 
will make use of these facts in our proofs, which all work in both winner models.

Membership in NP is obvious for all considered problems, so it will be enough to show 
only NP-hardness so as to prove in fact NP-completeness.

Our proofs use the following notation: A vote of the form a b c indicates that the voter ranks 
candidate a on top position, then candidate b, and last candidate c. If a set S ⊆ C of candidates 
appears in a vote as �⃗S , its candidates are placed in this position in lexicographical order. By �⃖S we 
mean the reverse of the lexicographical order of the candidates in S. If S occurs in a vote without 
an arrow on top, the order in which the candidates from S are placed here does not matter for our 
argument. We use ⋯ in a vote to indicate that the remaining candidates may occur in any order.

Computational complexity We assume familiarity with the standard concepts of com-
plexity theory, including the classes P and NP, polynomial-time many-one reducibility, and 
NP-hardness and NP-completeness. We will use the following NP-complete problem:

Exact-Cover-by-3-Sets (X3C)

Given: A set X = {x1,…, x3m} and a family of sets S = {S1,… , Sn} such that Si ⊆ X and |Si| = 3 for all 
Si ∈ S.

Question: Does there exist an exact cover of X, i.e., a subset S′ ⊆ S such that |S�| = m and 
⋃

Si∈S
� Si = X?

5 If p is in the first (respectively, the last) position of a vote, this voter cannot be bribed and we tacitly 
assume a price function of ρ(t) = 0 for each t ≥ 0. We will disregard these voters when setting price func-
tions for the other voters in our proofs.
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In instances of X3C, we assume that each xj ∈ X is contained in exactly three sets Si ∈ S ; 
thus |X| = |S| . Gonzalez [42] shows that X3C under this restriction remains NP-hard. 
Note that if not stated otherwise, we will use (X,S) to denote an X3C instance, where 
X = {x1,…, x3m} , S = {S1,… , S3m} , and Si = {xi,1,xi,2,xi,3}. Also note that we assume xi,1 to 
be the xj ∈ Si with the smallest subscript and xi,3 to be the xj ∈ Si with the largest subscript.

One-In-Three-Positive-3SAT

Given: A set X of boolean variables, a set S of clauses over X, each containing exactly three unnegated 
literals.

Question: Does there exist a truth assignment to the variables in X such that exactly one literal is set to 
true for each clause in S?

In instances of one-in-three-poSitive-3Sat, we assume that each xj ∈ X is contained 
in exactly three clauses. Porschen et  al. [43] show that this restricted problem remains 
NP-complete.

For more background on computational complexity, the reader is referred to, for 
instance, the textbooks by Garey and Johnson [44] and Papadimitriou [45].

3  Hare and Coombs

We start by showing NP-hardness of shift bribery for Hare elections. Right after the proof 
of Theorem 1, its construction is explained and illustrated in Example 1.

Theorem 1 In both the unique-winner and the nonunique-winner model, Hare-ConStruC-
tive-Shift-BriBery is NP-hard.

Proof NP-hardness follows by a reduction from X3C. Given an X3C instance (X,S) , con-
struct an instance ((C,V),p,B,ρ) of Hare-ConStruCtive-Shift-BriBery with candidate set 
C = X ∪ S ∪ {p} , designated candidate p, and the following list V of votes, with # denoting 
their number:

line # vote for

1 1  Si xi,1 ����������������⃗X ⧵ {xi,1}⋯   1 ≤ i ≤ 3m 

2 1  Si xi,2 ����������������⃗X ⧵ {xi,2}⋯   1 ≤ i ≤ 3m 

3 1  Si xi,3 ����������������⃗X ⧵ {xi,3}⋯   1 ≤ i ≤ 3m 

4 4  xi �������������⃗X ⧵ {xi}⋯   1 ≤ i ≤ 3m 

5 1  Si p ⋯ 1 ≤ i ≤ 3m 
6 3   p ⋯ 
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Note that when Si occurs in a vote here or in later proofs, we mean the candidate cor-
responding to the 3-element set Si ∈ S (and not the three candidates corresponding to the 
three elements of this set).

For votes of the form Si p ⋯, we use the price function ρ(1) = 1, and ρ(t) = m + 1 for all 
t ≥ 2; and for every other vote, we use the price function ρ with ρ(t) = m + 1 for all t ≥ 1. 
Finally, set the budget B = m. Without loss of generality, we assume that m > 1.

Note that p scores three points while the rest of the candidates score four points each, so 
p is eliminated in the first round and does not win the election without bribing voters.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Hare-ConStruCtive-
Shift-BriBery, regardless of the winner model.

(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover 
S

′ ⊆ S of size m. We now show that it is possible for p to become a unique Hare winner of 
an election obtained by shifting p in the votes without exceeding the budget B. For every 
Si ∈ S

� , we bribe the voter with the vote of the form Si p ⋯ by shifting p once, so her new 
vote is of the form p Si ⋯; each such bribe action costs us only 1 from our budget, so the 
budget will not be exceeded. In the first round, p now has m + 3 points, every candidate 
from S ′ has 3 points, and every other candidate has 4 points. Therefore, all candidates in S ′ 
are eliminated. In the second round, all candidates in X now gain one point from the elimi-
nation of S ′ , since it is an exact cover. Therefore, p and all candidates in X proceed to the 
next round and the remaining candidates S ⧵ S ′ are eliminated. In the next round with only 
p and the candidates from X remaining, p has 3m + 3 points, while every candidate in X 
scores 7 points (recall that every xi ∈ X is contained in exactly three members of S ). Since 
all candidates from X have been eliminated now, p is the only remaining candidate and thus 
the unique Hare winner.

(⇐) Suppose that (X,S) is a no-instance of X3C. Then no subset S ′ ⊆ S with |S ′| ≤ m 
covers X. We now show that we cannot make p become a Hare winner of an election 
obtained by bribing voters without exceeding budget B. Note that we can only bribe at most 
m voters with votes of the form Si p ⋯ without exceeding the budget. Let S ′ ⊆ S be such 
that Si ∈ S

� exactly if the voter with the vote Si p ⋯ has been bribed. Clearly, |S ′| ≤ m and 
in all those votes p has been shifted once to the left, so p is now ranked first in these votes. 
Therefore, p now has 3 + |S �| points and every Si ∈ S

� scores 3 points. Since every other 
candidate scores as many points as before the bribery (namely, 4 points), the candidates in 
S

′ are eliminated in the first round. Let X� = {xi ∈ X∣xi ∉
⋃

Sj∈S
� Sj} be the subset of candi-

dates xi ∈ X that are not covered by S ′ . We have X′ ≠ ∅ (otherwise, S ′ would have been an 
exact cover of X). In the second round, unlike the candidates from X ⧵ X′ , the candidates in 
X′ will not gain additional points from eliminating the candidates in S ′ . Thus, in the cur-
rent situation, the candidates from X′ and S ⧵ S ′ are trailing behind with 4 points each and 
are eliminated in this round.6 Therefore, in the next round, only p and the candidates from 
X ⧵ X′ are remaining in the election. Let x

�
∈ X ⧵ X� be the candidate from X ⧵ X′ with the 

smallest subscript. Since all candidates from S are eliminated, p has 3m + 3 points and 
every candidate from X ⧵ X′ except xℓ has 7 points. On the other hand, xℓ gains additional 
points from eliminating the candidates from X′ ; therefore, xℓ survives this round by scoring 
more than 7 points. In the final round with only p and xℓ remaining, p is eliminated, since 
3m ⋅ 7 > 3m + 3. □

6 Note that in the case that |S�| = 1 , i.e., only one voter was bribed, p also gets eliminated in this round and 
is consequently not a Hare winner, which is what we want to show. Therefore, we will now assume that at 
least two voters were bribed.
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Example 1 Let (X,S) be a yes-instance of X3C defined by

Construct ((C,V),p,B,ρ) from (X,S) as in the proof of Theorem  1; in particular, the 
budget is B = 2. If we bribe the voters with S1p⋯ and S2p⋯ so as to shift p to the top of 
their votes, p will be the unique winner of the election, which proceeds as follows (where 
the numbers in the columns below candidates give their scores):

Round p x ∈ X S1,S2 S3,S4,S5,S6 

1 5 4 3 4
2 5 5 out 4
3 9 7 out out

Now consider a no-instance (X,S) of X3C with

If we bribe no voter, p gets eliminated in the first round and so does not win. If we bribe 
one voter, say the one with vote S1 p ⋯, then p gets eliminated in the second round:

Round p x1 x2, x4 x3, x5, x6 S1 Si ∈ S ⧵ {S1}

1 4 4 4 4 3 4
2 4 5 5 4 out 4
3 out ≥ 28 ≥ 7 out out out

Since (X,S) is a no-instance of X3C, no matter which two subsets Si, Sj ∈ S we choose, 
at least one xk is in both subsets, so p loses the direct comparison in the last round. For 
example, if we bribe the voters with S1 p ⋯ and S2 p ⋯, the election proceeds as follows:

Round p x1 x3 x4 x2,x5,x6 S1, S2 S3,S4,S5,S6 

1 5 4 4 4 4 3 4
2 5 5 4 6 5 out 4
3 9 14 out 7 7 out out
4 9 42 out out out out out

This completes Example 1.
Next, we show that shift bribery is NP-hard for Hare also in the destructive case.

Theorem 2 In both the unique-winner and the nonunique-winner model, Hare-DeStruC-
tive-Shift-BriBery is NP-hard.

Proof Again, we use a reduction from X3C. Construct from a given X3C instance (X,S) a 
Hare-DeStruCtive-Shift-BriBery instance ((C,V),p,B,ρ) as follows. Let D = {d1,… , d3m} 

X = {x1,…, x6} and

S = {{x1, x2, x3}, {x4, x5, x6}, {x2, x3, x6}, {x2, x4, x5}, {x1, x3, x4}, {x1, x5, x6}}.

X = {x1,…, x6} and

S = {{x1, x2, x4}, {x4, x5, x6}, {x2, x3, x6}, {x2, x3, x5}, {x1, x3, x4}, {x1, x5, x6}}.
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be a set of 3m dummy candidates. The candidate set is C = X ∪ S ∪ D ∪ {p,w} with desig-
nated candidate p. The list V of votes is constructed as follows:

line # vote for

1 2  Si xi,1 ����������������⃗X ⧵ {xi,1} w p ⋯   1 ≤ i ≤ 3m 

2 2  Si xi,2 ����������������⃗X ⧵ {xi,2} w p ⋯   1 ≤ i ≤ 3m 

3 2  Si xi,3 ����������������⃗X ⧵ {xi,3} w p ⋯   1 ≤ i ≤ 3m 

4 7  xi �������������⃗X ⧵ {xi} w p ⋯   1 ≤ i ≤ 3m 

5 1  p Si ⋯ 1 ≤ i ≤ 3m 
6 12  wp⋯ 
7 18m  p⋯ 
8 6  di Si p ⋯ 1 ≤ i ≤ 3m 

For votes of the form p Si ⋯, we use the price function ρ(1) = 1, and ρ(t) = m + 1 for all 
t ≥ 2; and for every other vote, we use the price function ρ with ρ(t) = m + 1 for all t ≥ 1. 
Finally, set the budget B = m.

Without bribing, the election (C,V) proceeds as follows:

Round p w xi ∈ X  Si ∈ S di ∈ D 

1 21m 12 7 6 6
2 39m 12 13 out out
3 39m + 12 out 13 out out

It follows that p has won the election after three rounds.
We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Hare-DeStruCtive-Shift-

BriBery, regardless of the winner model.
(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover 

S
′ ⊆ S of size m. We now show that it is possible to eliminate p from an election obtained 

by shifting p in the votes without exceeding the budget B. For every Si ∈ S
� , we bribe the 

voter with the vote of the form p Si ⋯ by shifting p once, so her new vote is of the form 
Si p … ; each such bribe action costs us only 1 from our budget, so the budget will not be 
exceeded. Now the election proceeds as follows:

Round p w xi ∈ X  Si ∈ S
�  Si ∈ S ⧵ S� di ∈ D 

1 20m 12 7 7 6 6
2 32m 12 11 13 out out
3 32m 33m + 12 out 13 out out
4 39m 39m + 12 out out out out

We see that p is eliminated in the fourth round and w wins.
(⇐) Suppose that (X,S) is a no-instance of X3C. Then no subset S′ ⊆ S with |S′| ≤ m 

covers X. We now show that p will not be eliminated in any election obtained by brib-
ing voters without exceeding budget B but will in fact become the only winner. Note that 
we can only bribe at most m voters with votes of the form p Si ⋯ without exceeding the 
budget. Let S′ ⊆ S be such that for every Si ∈ S

� we have bribed the voter whose vote is 

1027



C. Maushagen et al.

1 3

p Si ⋯. We can assume that |S′| > 0 . Every candidate in S′ will gain an additional point 
and therefore survives the first round. All candidates from D and S ⧵ S′ will be eliminated, 
since p only loses at most m points.

In the second round, the remaining candidates from S will additionally gain six points 
from the elimination of candidates in D and will score 13 points in this round (and in all 
subsequent rounds with p still standing). If a candidate Si ∈ S was eliminated in the previ-
ous round, every xi ∈ Si gains two additional points in this round. Partition X into sets X0, 
X1, X2, and X3 so that xi ∈ Xk ⇔ |{Sj ∈ S

�∣xi ∈ Sj}| = k for k ∈{0,1,2,3}. Note that X0, X1, 
X2, and X3 are disjoint and |X0| > 0, but one or two of X1, X2, and X3 may be empty. Then xi 
∈ Xj scores 7 + (6 − 2j) ∈{7,9,11,13} points depending on how many times xi is covered 
by S′ . Therefore, every xi ∈ X0 scores more points than w who has 12 points. Thus there 
are candidates from X that survive this round and other candidates from X (more precisely, 
candidates from X1, X2, or X3) who are eliminated.

In the third round, the candidate xℓ ∈ X with the smallest subscript who is still stand-
ing gains at least seven points from the eliminated candidates according to the votes of the 
form xi �������������⃗X ⧵ {xi} w p ⋯ , so that xℓ scores at least 16 points.7 All other candidates (i.e., still 
standing candidates from X except xℓ, all candidates from S′ , p, and w) still score the same 
number of points as in the last round. Therefore, p scores at least 20m points, w scores 
still 12 points, every Si ∈ S

� scores 13 points, and every still standing candidate from X 
except xℓ scores at most 13 points. Since w can only gain additional points when all can-
didates from X are eliminated and only xℓ gains points from the elimination of candidates 
from X ⧵{xℓ}in the subsequent rounds, all candidates X ⧵ ({xℓ}∪ X0) and w are eliminated. 
Then all still standing candidates from X0 ⧵{xℓ} and candidates from S′ who each score 
13 points are eliminated, which leaves p and xℓ in the last round. In this round, p scores 
39m + 12 points and xℓ scores 39m points, so p solely wins the election, no matter how 
we bribe voters within the budget, i.e., we have a no-instance of Hare-DeStruCtive-Shift-
BriBery in both winner models. □

Next, we turn to shift bribery for Coombs elections. While the idea of the reduction is 
similar, and perhaps even simpler than in the previous two proofs, the proof of correctness 
is way more involved. Again, we explain and illustrate the reduction right after the proof of 
Theorem 3 in Example 2.

Theorem 3 In both the unique-winner and the nonunique-winner model, Coombs-Con-
StruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we now describe a reduction from X3C to Coombs-Con-
StruCtive-Shift-BriBery. Given an X3C instance (X,S) , construct an election (C,V) with 
the set C = {p,w,d1,d2,d3}∪ X ∪ Y of candidates, where p is the designated candidate and Y 
= {yi∣xi ∈ X}. Construct the following list V of votes:

7 Since this candidate xℓ is still in the election, xℓ cannot have been in X3 and thus must have had at least 
nine points.
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line # vote for

1 1 ⋯ xi,1 xi,2 xi,3 p 1 ≤ i ≤ 3m 
2 2m  ⋯ p �������������⃗Y ⧵ {yi} yi xi 1 ≤ i ≤ 3m 

3 2m  ⋯ p �⃗Y w d1 d2 d3 
4 1  ⋯ p �⃗Y w X d1 d2 d3 
5 m  ⋯ p �⃗Y w 

For votes of the form ⋯ xi,1 xi,2 xi,3 p, we use the price function ρ(1) = ρ(2) = ρ(3) = 1, 
and ρ(t) = m + 1 for all t ≥ 4; and for all the remaining votes, we use the price function ρ(t) 
= m + 1 for all t ≥ 1. Furthermore, our budget is B = m.

The candidates have the following veto counts: p has 3m vetoes, each xi ∈ X has 2m 
vetoes, w has m vetoes, d3 has 2m + 1 vetoes, and the remaining candidates each have 0 
vetoes. Therefore, p will be eliminated in the first round and thus does not win the election.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Coombs-ConStruCtive-
Shift-BriBery, regardless of the winner model.

(⇒) Assume that (X,S) is in X3C. This means that there exists a subset S ′ ⊆ S with 
|S �| = m and 

⋃
Si∈S

� Si = X . So we have a partition of X into three sets, X = X1 ∪ X2 ∪ X3, 
such that:

Let Y = Y1 ∪ Y2 ∪ Y3 be the corresponding partition of Y (i.e., xi ∈ Xj ⇔ yi ∈ Yj).
We bribe the voters with votes of the form ⋯ xi,1 xi,2 xi,3 p for Si ∈ S

� so that they change 
their votes to ⋯ p xi,1 xi,2 xi,3. Since S ′ is an exact cover of X, it follows that p now has a 
total of 2m vetoes, whereas each x ∈ X3 receives an additional veto for a total of 2m + 1. 
The number of vetoes for the remaining candidates remain unchanged. If a candidate has 
the highest number of vetoes then she has the fewest number of points and cannot proceed 
to the next round (unless all candidates have the same score). Here, the candidates in X3 
and d3 have the highest number of vetoes (and higher than the other candidates) and there-
fore are eliminated in the first round.

Without the candidates in X3, each candidate in X2 gets an additional veto and the can-
didates in Y3 each take all but one of the vetoes of the eliminated candidates in X3. Further-
more, d2 receives the vetoes of d3. As a consequence, in the second round the candidates 
in X2 and d2 have the highest number of vetoes (and higher than the remaining candidates) 
and are eliminated.

Similarly to the first round, vetoes from candidates in X2 and d2 are passed on to candi-
dates in X1 and Y1 and to d1. Thus the candidates have the following veto counts in the third 
round: p and each y ∈ Y2 ∪ Y3 receive 2m vetoes, w receives m vetoes, each y ∈ Y1 receives 
zero vetoes, and d1 and each xi ∈ X1 receive 2m + 1 vetoes. Consequently, all the candidates 
xi ∈ X1 and d1 are eliminated in the third round, so in the next round there are no candidates 
from X and no di, 1 ≤ i ≤ 3.

It follows that w receives 2m + 1 additional vetoes in the fourth round, so w has the 
most vetoes in this round and is eliminated. We need 3m further rounds until p ends up as 
the last remaining candidate and sole winner of the election. In each of these rounds, the 

X1 = {xi,1∣Si ∈ S
�},

X3 = {xi,3∣Si ∈ S
�}, and

X2 = X ⧵ (X1 ∪ X3).
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candidate in Y that is still alive and has the highest subscript has at least 2m + 2m + 1 + m 
= 5m + 1 vetoes, while p always has only 3m vetoes.

(⇐) Suppose that (X,S) is a no-instance of X3C. We will show that ((C,V),p,B,ρ) then is 
a no-instance of Coombs-ConStruCtive-Shift-BriBery in the nonunique-winner (and thus 
also in the unique-winner) model. Observe that if we were going to make p a winner of the 
election, we would have to bribe at least m voters with a vote of the form ⋯ xi,1 xi,2 xi,3 p.8 
Due to our budget, on the other hand, we can bribe no more than m (and thus would have 
to bribe exactly m) such voters and cannot bribe any further voters. Let S ′ ⊆ S be such that 
Si ∈ S

� exactly if the voter with the vote of the form ⋯ xi,1 xi,2 xi,3 p has been bribed. Note 
that |S �| = m and S ′ does not cover X because we have a no-instance of X3C. Now p has 
only 2m vetoes and will not be eliminated in the first round.

Let X1 be the set of candidates xi ∈ Si for Si ∈ S
� with the smallest subscript in Si, let X2 

be the set of candidates xi ∈ Si for Si ∈ S
� with the second-smallest subscript in Si, and let 

X3 be the set of candidates xi ∈ Si for Si ∈ S
� with the highest subscript in Si. Note that X1 ∪ 

X2 ∪ X3≠X, since S ′ does not cover X.
For w to have more vetoes than p, the candidates d1, d2, and d3 need to be eliminated. 

For that to happen, there must be three rounds in which no candidate has more than 2m 
+ 1 vetoes. In the round where di, 1 ≤ i ≤ 3, is eliminated, all still standing candidates in 
Xi are eliminated as well. Assume there were three rounds in which 2m + 1 was the maxi-
mal number of vetoes for a candidate. Then d1, d2, d3, and all candidates in X1 ∪ X2 ∪ X3 
are eliminated. Note that those candidates that are not covered by S ′ always have only 2m 
vetoes and are still participating in the election. Therefore, in the next round, p and w have 
3m vetoes each, the remaining candidates from X have at most 2m + 1 vetoes, and the can-
didates from Y have at most 2m vetoes. So even if p survives the first rounds with the can-
didates d1, d2, and d3 still present, p will then surely be eliminated in the following round. 
If there is at least one voter who shifts p only one or two positions upward, then p has to 
drop out with d1 or even before d1 drops out, because at the latest after two rounds (with 2m 
+ 1 being the maximal number of vetoes for a candidate) p receives another veto and thus 
has at least the same number of vetoes as d1. □

Example 2 Let (X,S) be a yes-instance of X3C defined by

Construct ((C,V),p,B,ρ) from (X,S) as in the proof of Theorem  3; in particular, the 
budget is B = 2. If we bribe the voters that correspond to the sets in the exact cover, S1 and 
S2, to change their votes from ⋯ x1 x2 x3 p and ⋯ x4 x5 x6 p to ⋯p x1 x2 x3 and ⋯p x4 x5 x6, 
then p alone wins the election that proceeds as follows, where in order to make this exam-
ple easier to follow, the numbers in the table count the candidates’ vetoes, not their points, 
i.e., the candidates with the highest number in a round (row) get eliminated:

X = {x1,…, x6} and

S = {{x1, x2, x3}, {x4, x5, x6}, {x2, x3, x6}, {x2, x4, x5}, {x1, x3, x4}, {x1, x5, x6}}.

8 Assume that we bribe fewer than m votes. Then either (a) p is still the candidate with the most vetoes with 
a total of more than 2m vetoes and would be eliminated in the first round, or (b) there is at least one candi-
date xi that has at least 2m + 2 vetoes after the bribery action, but eliminating any such xi only increases the 
number of vetoes for a corresponding candidate yi (to a total of 2m) so that eventually p will be eliminated.
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Round p w x1,x4 x2,x5 x3,x6 y1 y2 y3 y4 y5 y6 d1 d2 d3 

1 4 2 4 4 5 0 0 0 0 0 0 0 0 5
2 4 2 4 5 out 0 0 4 0 0 4 0 5 out
3 4 2 5 out out 0 4 4 0 4 4 5 out out
4 6 7 out out out 4 4 4 4 4 4 out out out
5 6 out out out out 4 4 4 4 4 11 out out out
6 6 out out out out 4 4 4 4 15 out out out out
7 6 out out out out 4 4 4 19 out out out out out
8 6 out out out out 4 4 23 out out out out out out
9 6 out out out out 4 27 out out out out out out out
10 6 out out out out 31 out out out out out out out out

It follows that p is the sole winner of the election.
Now consider a no-instance (X,S) with

Recall that we can bribe at most two voters. If we bribe fewer than two voters, however, 
p will be eliminated in the first round. Since (X,S) is a no-instance of X3C, no matter 
which two subsets Si, Sj ∈ S we choose, at least one xk is in both Si and Sj. For example, if 
we bribe the voters that correspond to the sets S1 and S2, changing their votes from ⋯ x1 x2 
x4 p and ⋯ x4 x5 x6 p to ⋯p x1 x2 x4 and ⋯p x4 x5 x6, then the election proceeds as follows:

Round p w x1 x2,x5 x3 x4,x6 y1 y2,y5 y3 y4,y6 d1 d2 d3 

1 4 2 4 4 4 5 0 0 0 0 0 0 5
2 4 2 4 5 4 out 0 0 0 4 0 5 out
3 5 2 5 out 4 out 0 4 0 4 5 out out
4 out ≥ 6 out out ≥ 5 out ≥ 4 ≥ 4 ≥ 0 ≥ 4 out out out
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Since x4 is in both S1 and S2, p gets an additional veto in round 3 and is subsequently 
eliminated. The same will happen for similar reasons in every other case.

This completes Example 2.
We now modify the previous reduction so as to work for the destructive case in Coombs 

elections.

Theorem  4 In both the unique-winner and the nonunique-winner model, Coombs-
DeStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we again reduce from the NP-complete problem X3C to 
Coombs-DeStruCtive-Shift-BriBery. Given an X3C instance (X,S) where we may assume 
that m > 2 for |X| = 3m, we construct a DeStruCtive-Shift-BriBery instance ((C,V),p,B,ρ) 
as follows. Let C = X ∪ S ∪ D ∪ {p,w, y} be the candidate set with designated candidate p 
and a set D = {di,j∣1 ≤ i ≤ m − 1,1 ≤ j ≤ 4} of dummy candidates. Let D = D1 ∪ D2 ∪ D3 ∪ 

X = {x1,…, x6} and

S = {{x1, x2, x4}, {x4, x5, x6}, {x2, x3, x6}, {x2, x3, x5}, {x1, x3, x4}, {x1, x5, x6}}.
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D4 be a partition of D with Dj = {di,j∣1 ≤ i ≤ m − 1} for 1 ≤ j ≤ 4. The list V of votes is then 
constructed as follows:

line # vote for

1 1 ⋯ p Si 1 ≤ i ≤ 3m
2 4m p ⋯ w xi,1 xi,2 xi,3 Si 1 ≤ i ≤ 3m
3 4m + 1 ⋯ p X di,1 di,2 di,3 di,4 1 ≤ i ≤ m − 1 
4 1 p ⋯ y xi 1 ≤ i ≤ 3m
5 3 ⋯ p 
6 2 p ⋯ w 

Unlike in the previous proofs, it is here necessary that the candidates that are repre-
sented by “⋯” are placed in lexicographical order. For votes of the form ⋯ p Si, we use the 
price function ρ(1) = 1, and ρ(t) = 2m + 1 for all t ≥ 2; and for all the remaining voters, we 
use the price function ρ(t) = 2m + 1 for all t ≥ 1. Finally, we set the budget B = 2m.

Analyzing the constructed election without bribing voters, the candidates have the fol-
lowing veto counts: p has three vetoes, w has two vetoes, each x ∈ X has one veto, each 
Si ∈ S and each d ∈ D4 has 4m + 1 vetoes, and the remaining candidates each have zero 
vetoes. It follows that all candidates from S and D4 are eliminated. The candidates from D4 
transfer their vetoes to candidates in D3 who each have 4m + 1 vetoes now; p gets 3m addi-
tional vetoes from the eliminated candidates in S ; and the remaining 12m2 vetoes (from the 
second group of voters) are shared among candidates from X. Since they are ordered lexi-
cographically in those votes, there must be one candidate from X (now and in the following 
rounds) that obtains more than 4m + 1 vetoes leading to the elimination of all candidates 
from X in the following rounds. One after another, the candidates w, y, and the remaining 
candidates in D are eliminated, eventually leaving p as the last standing candidate and sole 
winner.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Coombs-DeStruCtive-
Shift-BriBery, regardless of the winner model.

(⇒) Assume that (X,S) is in X3C. This means that there exists a subset S ′ ⊆ S with 
|S �| = m and 

⋃
Si∈S

� Si = X . So we have a partition of X into three sets, X = X1 ∪ X2 ∪ X3, 
such that

We bribe the voters with a vote of the form ⋯ p Si with Si ∈ S ⧵ S � such that they 
change their vote to ⋯ Si p. Now the election proceeds as follows, where we again count 
the vetoes and not the points:

Round p w y Si ∈ S
�  Si ∈ S ⧵ S �   xi ∈  

X1

xi ∈  
X2

xi ∈  
X3

di,1 ∈  
D1

di,2 ∈  
D2

di,3 ∈  
D3

di,4 ∈  
D4 

1 2m + 3 2 0 4m + 1 4m 1 1 1 0 0 0 4m + 1
2 3m + 3 2 0 out 4m 1 1 4m + 1 0 0 4m + 1 out

X1 = {xi,1∣Si ∈ S
�},

X3 = {xi,3∣Si ∈ S
�}, and

X2 = X ⧵ (X1 ∪ X3).
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Round p w y Si ∈ S
�  Si ∈ S ⧵ S �   xi ∈  

X1

xi ∈  
X2

xi ∈  
X3

di,1 ∈  
D1

di,2 ∈  
D2

di,3 ∈  
D3

di,4 ∈  
D4 

3 3m + 3 2 m out 4m 1 4m + 1 out 0 4m + 1 out out
4 3m + 3 2 2m out 4m 4m + 1 out out 4m + 1 out out out
5 4m2 + 2 4m2 + 2 3m out 4m out out out out out out out

We see that p is eliminated in the fifth round, whereas y and some other candidates from 
S ⧵ S ′ are still in the election. Hence, p does not win.

(⇐) Suppose that (X,S) is a no-instance of X3C. Then no subset S ′ ⊆ S with |S ′| ≤ m 
covers X. We now show that p will not be eliminated in an election obtained by bribing vot-
ers without exceeding budget B but will in fact become the only winner. Note that we can 
only bribe at most 2m voters with votes of the form ⋯ p Si without exceeding the budget. 
Let S ′ ⊆ S be such that for every Si ∈ S ⧵ S � we have bribed the voter whose vote was ⋯ p 
Si and now is ⋯ Si p. We can assume that |S ⧵ S ′| > 0.

Every candidate in S ⧵ S ′ will gain an additional point and therefore survives the first 
round. All candidates in D4 and S ′ will be eliminated in the first round. It follows that p 
has 3m + 3 vetoes in the second round. At this point, p is in each voter group other than the 
third voter group (with votes of the form ⋯ p X di,1 di,2 di,3 di,4) either the most (groups 2, 
4, and 6) or the least preferred (groups 1 and 5) candidate; therefore, p does not receive any 
further vetoes before some candidate d ∈ D1 is eliminated.

Note that |S ′| ≥ m . Since S ′ is not an exact cover of X, we have at least one x in X that 
is in two sets S, S � ∈S

′ . Let X� = {x ∈ X∣∃ S, S � ∈   S �
, S ≠ S �, x ∈ S ∩ S �} . In the next 

three rounds, it can happen that (1) a candidate x ∈ X� receives at least 8m + 1 vetoes (e.g., 
because this x has the same subscript in different S, S � ∈ S

� ) and is therefore eliminated 
without also eliminating the candidates in D3 (respectively, D2) with 4m + 1 vetoes, and 
(2) a candidate x ∈ X� with a high subscript in S ∈ S

� has a low subscript in S � ∈ S
� and is 

therefore eliminated early, so that w has a total of at least 4m + 2 vetoes. Both cases lead to 
w having at least 4m + 2 vetoes while each d ∈ D1 still has at most 4m + 1 vetoes. After w 
is eliminated, in each following round the candidate x with the highest subscript and later 
the candidate S with the highest subscript, y, and all possibly remaining d ∈ D2 ∪ D3 will 
be eliminated. It follows that only p and the candidates d ∈ D1 are still in the election. Now, 
in each round that follows, p has at most 4m2 − 4m + 1 vetoes (3m from line 1, (4m + 1)
(m − 2) from line 3 since there is at least one d ∈ D1 still standing, and three vetoes from 
line 5) while the still standing candidate d ∈ D1 with the highest subscript receives at least 
12m2 + 7m + 3 vetoes. Hence, eventually p alone wins the election. □

4  Baldwin and Nanson

We now show NP-hardness of shift bribery for Baldwin and Nanson elections. Note that 
our reductions are inspired by and similar to those used by Davies et al. [34] to show NP-
hardness of the unweighted coalitional manipulation problem for these voting systems.

For a preference profile V over a set of candidates C, let avg(V ) be the average Borda 
score of the candidates in V (i.e., ���(V) = 1

2
(|C| − 1)|V| ). To conveniently construct 

votes, for a set of candidates C and c1,c2 ∈ C, let
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 Under Borda, from the two votes in W(c1,c2)
 candidate c1 scores |C| points, c2 scores |C|− 2 

points, and all other candidates score |C|− 1 points. Also, observe that if a candidate c*∈ C 
is eliminated in some round and c*∉{c1,c2} then all other candidates lose one point due to 
the votes in W(c1,c2)

 ; if c* = c1 then c2 loses no points but all other candidates lose one point; 
and if c* = c2 then c1 loses two points and all other candidates lose one point. Therefore, if 
c* is eliminated, the point difference caused by this elimination with respect to the votes in 
W(c1,c2)

 remains the same for all candidates, with two exceptions: (a) If c* = c1 then c2 gains 
a point with respect to every other candidate, and (b) if c* = c2 then c1 loses a point with 
respect to every other candidate. Note that this construction of votes makes determining the 
Borda score of a candidate ci very convenient: We only need to look at pairs of votes W(c1,c2)

 
in which ci is c1 or c2, and the other candidate (c2 and c1, respectively) is still standing.

Furthermore, let score(C,V)(x) denote the number of points candidate x obtains in a 
Borda election (C,V), and let dist(C,V)(x,y) = score(C,V)(x) − score(C,V)(y).

We start with the complexity of shift bribery in Baldwin elections for the construc-
tive case.

Theorem 5 In both the unique-winner and the nonunique-winner model, Baldwin-Con-
StruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce the NP-complete problem X3C to Baldwin-Con-
StruCtive-Shift-BriBery. From a given X3C instance (X,S) , we construct an election (C,V) 
with the set of candidates C = {p,w, d} ∪ X ∪ S and designated candidate p and with V 
consisting of two lists of votes, V1 and V2, where V1 contains the following votes:

# votes for # votes for

1  W(Sj ,p)
 1 ≤ j ≤ 3m 2  W(xj,3 ,Sj)

 1 ≤ j ≤ 3m 
2  W(xj,1 ,Sj)

 1 ≤ j ≤ 3m 2  W(w,xi)
 1 ≤ i ≤ 3m 

2  W(xj,2 ,Sj)
 1 ≤ j ≤ 3m 7  W(w,p) 

The votes in V1 give the following scores to the candidates in C:

Furthermore, V2 contains the following votes:

# votes for # votes

2m + 1  W(d,Sj)
 1 ≤ j ≤ 3m 1 W(p,d)

2m + 9  W(d,xi) 1 ≤ i ≤ 3m 2m + 14 W(d,w)

W(c1,c2)
= (c1 c2

��������������������⃗C ⧵ {c1, c2},
�⃖�������������������C ⧵ {c1, c2} c1 c2).

score(C,V1)
(xi) = avg(V1) + 4 for every xi ∈ X,

score(C,V1)
(Sj) = avg(V1) − 5 for every Sj ∈ S,

score(C,V1)
(p) = avg(V1) − 3m − 7,

score(C,V1)
(w) = avg(V1) + 6m + 7,

score(C,V1)
(d) = avg(V1).
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The votes in V2 give the following scores to the candidates in C:

Let V = V1 ∪ V2 and avg(V ) = avg(V1) + avg(V2). Then we have the following Borda 
scores for the complete preference profile V over C:

Regarding the price function, for every first vote of W(Sj,p)
 (i.e., a vote of the form 

Sj p
������������������⃗C ⧵ {Sj, p} ), let ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every other vote, let ρ(t) 

= m + 1 for every t ≥ 1. Finally, we set the budget B = m.
It is easy to see that p is eliminated in the first round in the election (C,V) and thus does 

not win.
We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Baldwin-ConStruCtive-

Shift-BriBery, regardless of the winner model.
(⇒) Suppose there is an exact cover S ′ ⊆ S . Then we bribe the first votes of W(Sj,p)

 for 
every Sj ∈ S

� by shifting p to the left once. Note that we won’t exceed our budget, since 
shifting once costs 1 in those votes and |S�| = m . After this bribery, for every Sj ∈ S

� , the 
two votes from W(Sj,p)

 result in two votes that are symmetric to each other (i.e., 
p Sj

������������������⃗C ⧵ {Sj, p} equals the vote �⃖�����������������C ⧵ {Sj, p} Sj p in reverse order) and can thus be disre-
garded from now on, as all candidates gain the same number of points from those votes and 
all candidates lose the same number of points if a candidate is eliminated from the election. 
After those m votes have been bribed, only the scores of p and every Sj ∈ S

� change. Let V ′ 
denote the correspondingly changed profile. With

 all candidates in S ′ are tied for the last place. If any Sj ∈ S
� is eliminated in a round (this 

might be the case for more than one of those candidates in a round), the three candidates 
xj,1, xj,2, and xj,3 will lose two points more than the candidates from S � ⧵ {Sj} that had the 
minimum score before Sj was eliminated. Therefore, those three candidates from X will 
then be in the last position in the next round. This means that all candidates S ′ and every xi 
∈ X that is covered by S ′ will be eliminated in the subsequent rounds. Since S ′ is an exact 
cover, now there is no candidate from X left. Thus the point difference between p and w is 1 
and between p and the remaining Sj ∈ (S ⧵ S �) is − 6. Note that p can beat d only if no can-
didate of C ⧵{p,d} is still participating. So in the next round, w is eliminated. From this p 
gains seven points on all Sj ∈ (S ⧵ S �) , so these are tied for the last place. Therefore, the 
remaining candidates from S are eliminated, which leaves p and d for the next and final 
round, where d is eliminated and p wins the election alone.

(⇐) Suppose there is no exact cover. It is obvious that at most m of the first votes of 
W(Sj,p) can be bribed without exceeding the budget. Without bribing, p is in the last place 

score(C,V2)
(xi) = avg(V2) − (2m + 9) for every xi ∈ X,

score(C,V2)
(Sj) = avg(V2) − (2m + 1) for every Sj ∈ S,

score(C,V2)
(p) = avg(V2) + 1,

score(C,V2)
(w) = avg(V2) − (2m + 14),

score(C,V2)
(d) = avg(V2) + 12m2 + 32m + 13.

score(C,V)(xi) = avg(V) − 2m − 5 for every xi ∈ X,

score(C,V)(Sj) = avg(V) − 2m − 6 for every Sj ∈ S,

score(C,V)(p) = avg(V) − 3m − 6,

score(C,V)(w) = avg(V) + 4m − 7,

score(C,V)(d) = avg(V) + 12m2 + 32m + 13.

score(C,V �)(p) = avg(V �) − 2m − 6 and score(C,V �)(Sj) = avg(V �) − 2m − 7,
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and the point difference to the second-to-last candidate(s) is dist(C,V )(p,Sj) = m, 1 ≤ j ≤ 3m. 
By bribing, as explained above, p gains m points while m candidates from S each lose a 
point and then will be eliminated from the election. This leads to the elimination of all xi 
∈ X that are covered by the set S ′ ⊆ S of candidates that were eliminated. Since there is 
no exact cover, S ′ doesn’t cover X. So there are candidates X′ ⊆ X , |X′| ≥ 1 , who were not 
eliminated before, as for every candidate xi ∈ X� all three candidates Sj ∈ (S ⧵ S �) with xi ∈ 
Sj are still in the election. With the candidates C1 = {p,w, d} ∪ (S ⧵ S �) ∪ X� still standing, 
the point differences of p to the other remaining candidates are as follows:

Therefore, p has the lowest score and is eliminated and thus does not win. □

The proof of the following theorem, which handles the destructive variant for Bald-
win, uses a similar idea as the proof of Theorem 5. That is why we refrain from present-
ing all proof details in full; a proof sketch will suffice.

Theorem  6 In both the unique-winner and the nonunique-winner model, Baldwin-
DeStruCtive-Shift-BriBery is NP-hard.

Proof Sketch To prove NP-hardness, we reduce the NP-complete problem X3C to 
Baldwin-DeStruCtive-Shift-BriBery. From a given X3C instance (X,S) , we construct 
an election (C,V), where C = {p,w, b, d} ∪ X ∪ S is the set of candidates, p is the desig-
nated candidate, and V consists of two lists of votes, V1 and V2, where V1 contains the 
following votes:

# votes for # votes for

1  W(p,Sj)
 1 ≤ j ≤ 3m 2  W(w,xi)

 1 ≤ i ≤ 3m 
2  W(Sj ,xj,1)

 1 ≤ j ≤ 3m 3m + 7  W(w,d) 
2  W(Sj ,xj,2)

 1 ≤ j ≤ 3m m + 10  W(b,Sj)
 1 ≤ j ≤ 3m

2  W(Sj ,xj,3)
 1 ≤ j ≤ 3m 

Furthermore, V2 contains the following votes:

# votes for # votes

1  W(d,p) 6m + 14 W(p,w) 
2m + 7  W(p,Sj) 1 ≤ j ≤ 3m 3m2 + 33m + 12 W(p,b) 

3m + 3  W(p,xi) 1 ≤ i ≤ 3m 

Let V = V1 ∪ V2. Then we have the following Borda scores for the complete profile V:

dist(C1,V
�)(p, d) = −2m − 5 − 2m(2m + 1) − |X�|(2m + 9) − (2m + 14) < 0,

dist(C1,V
�)(p,w) = 1 − 2|X�| < 0,

dist(C1,V
�)(p, xi) = −1 for every xi ∈ X�, and

dist(C1,V
�)(p, Sj) ≤ 0 for every Sj ∈ S ⧵ S �.
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Regarding the price function, for every first vote of W(p,Sj)
 in V1 (i.e., a vote of the 

form p Sj
������������������⃗C ⧵ {Sj, p} ), let ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every other vote, 

let ρ(t) = m + 1 for every t ≥ 1. Finally, we set the budget B = m.
It is easy to see that p wins the election (C,V). We claim that (X,S) is in X3C if and 

only if ((C,V),p,B,ρ) is in Baldwin-DeStruCtive-Shift-BriBery, regardless of the winner 
model.

(⇒) Suppose there is an exact cover S ′ ⊆ S . Then we bribe the first votes of W(p,Sj)
 

for every Sj ∈ S
� by shifting p to the right once. With a similar argument as in the proof 

of Theorem 5, d alone wins the election, i.e., p is not among the winners.
(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆ S with |S ′| ≤ m , there is at 

least one xi ∈ X that is not covered by S ′ . It is obvious that at most m of the first votes of 
W(p,Sj)

 can be bribed without exceeding the budget. We can then show, similarly as in the 
proof of Theorem 5, that d will always be eliminated before w and therefore p cannot be 
prevented from winning the election alone. □

Finally, we turn to Nanson elections for which we again will show that shift brib-
ery is NP-hard. The reduction below will only use pairs of votes of the form Wc1,c2

 . 
Although these types of votes have been discussed at the beginning of this section, we 
will now briefly explain how they behave in Nanson elections. The average Borda score 
for those two votes is |C| − 1. The candidate c1 scores one point more than the average 
Borda score and c2 scores one point fewer than the average Borda score. The other can-
didates score exactly the average Borda score. If a candidate is eliminated in a round, 
the average Borda score required to survive the next round decreases by one. Regard-
less of which candidate is eliminated, all remaining candidates that are not c1 or c2 lose 
one point and still have exactly the average Borda score. If c2 is eliminated, c1 loses its 
advantage with respect to the average Borda score and now scores exactly the average 
Borda score as well. If one of the other candidates is eliminated, c1 continues to have 
one point more than the average Borda score. By symmetry, this holds analogously for 
c2: If c1 is eliminated, c2 scores the average Borda score, and if one of the other candi-
dates is eliminated, c2 still has one point fewer than the average Borda score.

Theorem  7 In both the unique-winner and the nonunique-winner model, Nanson-Con-
StruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce the NP-complete problem X3C to Nanson-Con-
StruCtive-Shift-BriBery. Again, starting from a given X3C instance (X,S) , we construct 
an election (C,V) with the set of candidates C = {p,w1,w2, d} ∪ X ∪ S , where p is the des-
ignated candidate. Then we construct two sets of votes, V1 and V2, where V1 contains the 
following votes:

score(C,V)(xi) = avg(V) − 3m − 11 for every xi ∈ X,

score(C,V)(Sj) = avg(V) − 3m − 12 for every Sj ∈ S,

score(C,V)(d) = avg(V) − 3m − 6,

score(C,V)(w) = avg(V) + 3m − 7,

score(C,V)(b) = avg(V) − 3m − 12,

score(C,V)(p) = avg(V) + 18m2 + 72m + 25.
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# votes for # votes for

1  W(Sj ,p)
 1 ≤ j ≤ 3m 1  W(xj,3 ,Sj)

 1 ≤ j ≤ 3m 
1  W(xi ,p)

 1 ≤ i ≤ 3m 4  W(Sj ,w1)
 1 ≤ j ≤ 3m 

1  W(xj,1 ,Sj)
 1 ≤ j ≤ 3m 15m  W(w1,w2)

 
1  W(xj,2 ,Sj)

 1 ≤ j ≤ 3m 3m  W(p,w1)
 

Furthermore, V2 contains the following votes:

# votes for

2m  W(p,d) 
2  W(d,Sj) 1 ≤ j ≤ 3m 

4  W(d,xi) 1 ≤ i ≤ 3m 

Let V = V1 ∪ V2. Then we have the following Borda scores for the complete profile V:

The price function is again defined as follows. For every first vote of W(Sj,p)
 (i.e., a vote 

of the form Sj p ������������������⃗C ⧵ {Sj, p} ), let ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every other 
vote, let ρ(t) = m + 1 for every t ≥ 1. Finally, we set the budget B = m.

It is easy to see that p is eliminated in the first round of the election (C,V) and so does 
not win.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Nanson-ConStruCtive-
Shift-BriBery, regardless of the winner model.

(⇒) Suppose there is an exact cover S ′ ⊆ S . Then, for every Sj ∈ S
� , we bribe the first 

vote of W(Sj,p)
 by shifting p to the left once in all those votes. Note that we won’t exceed our 

budget, since this bribe action costs 1 per vote and |S�| = m . With the additional m points, 
p reaches the average Borda score and is not eliminated in the first round. However, all can-
didates in S ′ lose one point and are eliminated. Additionally, w2 will be eliminated as well.

In the next round, w1 will be eliminated, since she has 11m points fewer than the aver-
age Borda score required to survive this round. Since the candidates in S ′ were eliminated 
in the last round and S ′ is an exact cover, every candidate in X now has fewer points than 
the average Borda score and is eliminated.

In the third round, only p, d, and the candidates in S ⧵ S ′ are still standing. There-
fore, the only pairs of votes that are not symmetric are W(Sj,p)

 , twice W(d,Sj)
 for every 

Sj ∈ (S ⧵ S �) , and 2m pairs of W(p,d). Since |S ⧵ S �| = 2m , we have that p scores exactly the 
average Borda score and survives this round, just as d. Every Sj ∈ (S ⧵ S �) has one point 
fewer than the average Borda score and is eliminated. This leaves only p and d in the last 
round, which p alone wins.

(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆ S with |S �| = m , there is at 
least one xi ∈ X that is not covered by S ′ . Note that we can only bribe the first votes of any 
W(Sj,p)

 without exceeding the budget. For p to survive the first round, we need to bribe m of 

score(C,V)(xi) = avg(V) for every xi ∈ X,

score(C,V)(Sj) = avg(V) for every Sj ∈ S,

score(C,V)(p) = avg(V) − m,

score(C,V)(w1) = avg(V),

score(C,V)(w2) = avg(V) − 15m,

score(C,V)(d) = avg(V) + 16m.
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those votes by shifting p to the left once. Let S ′ ⊆ S be such that S ′ contains Sj exactly if 
the first vote of W(Sj,p)

 has been bribed, and let V ′ be the changed profile. Then every Sj ∈ S
� 

has a score of avg(V �) − 1 and p has a score of avg(V �) . Therefore, in the first round, every 
candidate from S′ and w2 are eliminated from the election.

In the second round, w1 will be eliminated because of the 15m pairs of votes W(w1,w2)
 

and the elimination of w2. Furthermore, a candidate xi ∈ X reaches the average Borda score 
with p and d still standing only if all three Sj ∈ S with xi ∈ Sj are also not yet eliminated. 
Since the candidates in S ′ were eliminated in the previous round, for every Sj ∈ S

� , all 
three xi ∈ Sj will be eliminated in this round. Since S ′ is not an exact cover, there are can-
didates X′ ⊆ X that survive this round. d also reaches the average Borda score, as there are 
2m candidates S ⧵ S ′ and those candidates S ⧵ S ′ survive due to w1.

In the next round, the candidates still standing are p, d, X′ , and S ⧵ S ′ . Because |X′| ≥ 1 , 
candidate p has |X′| points fewer than the average Borda score and is eliminated in this 
round. Thus p does not win. □

Our last result in this section shows that the destructive variant of shift bribery in 
Nanson elections is intractable as well.

Theorem  8 In both the unique-winner and the nonunique-winner model, Nanson-
DeStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce the NP-complete problem X3C to Nanson-
DeStruCtive-Shift-BriBery. Once more, given an X3C instance (X,S) , we construct an 
election (C,V) with the set of candidates C = {p,w1,w2,w3, d} ∪ X ∪ S , where p is the 
designated candidate and (X,S) is the given X3C instance. Then we construct two sets of 
votes, V1 and V2, where V1 contains the following votes:

# votes for # votes for

1  W(p,Sj)
 1 ≤ j ≤ 3m 6  W(Sj ,w3)

 1 ≤ j ≤ 3m 
1  W(d,xi)

 1 ≤ i ≤ 3m 20m  W(w1,w2)
 

2  W(xj,1 ,Sj)
 1 ≤ j ≤ 3m 19m  W(w3,w1)

 
2  W(xj,2 ,Sj)

 1 ≤ j ≤ 3m 3m + 1  W(w3,d)
 

2  W(xj,3 ,Sj)
 1 ≤ j ≤ 3m 

Furthermore, V2 contains the following votes:

# votes for # votes

1  W(d,p) 3m + 1  W(p,w3) 
1  W(p,xi) 1 ≤ i ≤ 3m 

Let V = V1 ∪ V2. Then we have the following Borda scores for the complete profile V:
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The price function is again defined as follows. For every first vote of W(p,Sj)
 (i.e., a vote 

of the form p Sj
������������������⃗C ⧵ {Sj, p} ), let ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every other 

vote, let ρ(t) = m + 1 for every t ≥ 1. Finally, we set the budget B = m.
It is easy to see that p will only have fewer points than the average Borda score if all 

candidates from S , X, and the candidate w3 are eliminated while d is still standing. Without 
bribing, d is eliminated in the third round while w3 is still standing, and eventually p wins 
the election (C,V).

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Nanson-DeStruCtive-
Shift-BriBery, regardless of the winner model.

(⇒) Suppose there is an exact cover S ′ ⊆ S . Then, for every Sj ∈ S
� , we bribe the first 

vote of W(p,Sj)
 by shifting p to the right once in all those votes. Note that we won’t exceed 

our budget, since this bribe action costs 1 per vote and |S�| = m . After those m votes have 
been bribed, every Sj ∈ S

� gains a point and therefore survives the first round. All other 
candidates S ⧵ S ′ and w2 are eliminated.

Let C1 = {p, d,w1,w3} ∪ X ∪ S
� be the set of candidates present in the second round. w1 

loses 20m points on the average Borda score from the elimination of w2 and is eliminated. 
Additionally, all candidates of X lose four points on the average Borda score but still sur-
vive this round, as they now have exactly the average Borda score.

Let C2 = {p, d,w3} ∪ X ∪ S
� be the candidates in the third round. In this round, only w3 is 

eliminated because w3 lost 19m points on the average Borda score from the elimination of w1.
Let C3 = {p, d} ∪ X ∪ S

� be the candidates in the fourth round and let V ′ be the changed 
profile. The scores are as follows:

Therefore all candidates in S ′ are eliminated. In the following round, all candidates in X 
are eliminated. This leaves only p and d in the final round in which p is eliminated and thus 
cannot win.

(⇐) Suppose there is no exact cover. Then, for every S ′ ⊆ S with |S ′| ≤ m , there is at 
least one xi ∈ X that is not covered by S ′ . Note that we can only bribe the first votes of any 
W(p,Sj)

 without exceeding the budget.
We now show that, even with optimal bribing, d will be eliminated in the third round 

and, therefore, p alone wins the election. Within our budget, we can prevent at most m can-
didates from S , say S ′ , of being eliminated in the first round by bribing the corresponding 
vote of W(p,Sj)

 . Since S ′ cannot be an exact cover of X, there is at least one xi ∈ X for which 
all Sj ∈ S with xi ∈ Sj are eliminated. This xi is eliminated in the second round, as it has 

score(C,V)(xi) = avg(V) + 4 for every xi ∈ X,

score(C,V)(Sj) = avg(V) − 1 for every Sj ∈ S,

score(C,V)(d) = avg(V),

score(C,V)(w1) = avg(V) + m,

score(C,V)(w2) = avg(V) − 20m,

score(C,V)(w3) = avg(V) + m,

score(C,V)(p) = avg(V) + 9m.

score(C3,V
�)(xi) = avg(V �) for every xi ∈ X,

score(C3,V
�)(Sj) = avg(V �) − 7 for every Sj ∈ S

�,

score(C3,V
�)(d) = avg(V �) + 3m + 1,

score(C3,V
�)(p) = avg(V �) + 4m − 1.

1040



Complexity of shift bribery for iterative voting rules  

1 3

lost six points on the average Borda score from the eliminations of candidates in the previ-
ous round. In the third round, w3 is still participating since w1 was only eliminated in the 
previous round and gains most of its points from the votes W(w3,w1)

 . Therefore, the score of 
d minus the average Borda score of this round is at most − 1 (remember that at least one 
candidate from X was eliminated in the previous round), which means that d is eliminated in 
this round. Thus, there is no candidate left that can prevent p from winning the election. □

5  Iterated plurality and plurality with runoff

In this section, we show hardness of shift bribery for iterated plurality and plurality with 
runoff, handling both voting systems simultaneously and starting with the constructive 
case.

Theorem 9 In both the unique-winner and the nonunique-winner model, for iterated plu-
rality and plurality with runoff, ConStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce X3C to ConStruCtive-Shift-BriBery for these two 
voting systems. Let (X,S) be a given X3C instance. We construct the ConStruCtive-Shift-
BriBery instance ((C,V),p,B,ρ) as follows. Let C = {p,w} ∪ X ∪ S ∪ D be the set of candi-
dates, where p is the designated candidate and D = {di,j∣1 ≤ i ≤ 3m and 1 ≤ j ≤ m − 7} is a 
set of dummy candidates. The list V of votes is constructed as follows:

line # vote for

1 1  Si p ⋯ 1 ≤ i ≤ 3m 
2 2  Si xi,1 ����������������⃗X ⧵ {xi,1}⋯ 1 ≤ i ≤ 3m 

3 2  Si xi,2 ����������������⃗X ⧵ {xi,2}⋯ 1 ≤ i ≤ 3m 

4 2  Si xi,3 ����������������⃗X ⧵ {xi,3} ⋯ 1 ≤ i ≤ 3m 

5 1  Si di,j �������������⃗X ⧵ {xi} ⋯ 1 ≤ i ≤ 3m, 1 ≤ j ≤ m − 7 

6 m  xi �������������⃗X ⧵ {xi} ⋯ 1 ≤ i ≤ 3m 

7 m  di,j �⃗X ⋯ 1 ≤ i ≤ 3m, 1 ≤ j ≤ m − 7 

8 3  w p ⋯ 

For voters with votes of the form Si p ⋯, we use the price function ρ(1) = 1, and ρ(t) = 
m + 1 for all t ≥ 2; and for every other voter, we use the price function ρ(t) = m + 1 for t 
≥ 1. Finally, set the budget B = m.

Without bribing, p has a score of zero and is eliminated immediately in both voting 
systems.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in ConStruCtive-Shift-
BriBery for either of the two voting systems, regardless of the winner model.

(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover S ′ ⊆ S 
of size m. We now show that it is possible for p to become a unique iterated-plurality (respec-
tively, plurality-with-runoff) winner of an election obtained by shifting p in the votes without 
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exceeding the budget. For every Si ∈ S
� , we bribe the voter with the vote of the form Si p ⋯, 

so her new vote is of the form p Si ⋯. In the first round p, every xi ∈ X, every di,j ∈ D, and 
every Si ∈ S ⧵ S � is a plurality winner, so only these candidates participate in the next round. 
In the second round, p receives three further points from the three voters whose vote is w p 
⋯. Every candidate xj ∈ X receives two further points from the votes of the form Si xj ⋯ with 
xj ∈ Si and Si ∈ S

� . Every di,j with Si ∈ S
� and 1 ≤ j ≤ m − 7 receives one additional point 

from the voters with vote Si di,j ⋯. It follows that p has the most points and therefore p is the 
unique iterated-plurality (respectively, plurality-with-runoff) winner.

(⇐) Suppose that (X,S) is a no-instance of X3C. Then, for every S ′ ⊆ S with |S �| = m , 
there is at least one candidate in X that is not covered and, therefore, at least one candidate in X 
occurring in at least two sets from S ′ . We show that it is not possible for p to become a winner 
of the election obtained from the original election by bribing without exceeding the budget.

To become a winner of such an election with bribed voters, it is necessary for p to get at 
least m points in the first round. Due to the budget, it is also necessary to bribe m voters with 
a vote of the form Si p ⋯ with Si ∈ S

� . It follows that p, each x ∈ X, each Si ∈ S ⧵ S � , and 
each di,j ∈ D participate in the second round. As mentioned above, at least one candidate in X 
receives at least four further points due to the fact that S ′ is not a cover of X. Thus p does not 
win. That means that ((C,V),p,B,ρ) is a no-instance of ConStruCtive-Shift-BriBery for either 
of iterated plurality and plurality with runoff regardless of the winner model. □

We have the same result in the destructive case. This is the first proof where we use an 
NP-complete problem other than X3C to show NP-hardness, namely one-in-three-poSi-
tive-3Sat, which was also defined in Section 2.

Theorem  10 In both the unique-winner and the nonunique-winner model, for iterated 
plurality and plurality with runoff, DeStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce the NP-complete problem one-in-three-poS-
itive-3Sat to DeStruCtive-Shift-BriBery for both voting systems. Let (X,S) be a given 
one-in-three-poSitive-3Sat instance, where X = {x1,… , x3m} and S = {S1,…S3m} with 
Si = {xi,1, xi,2, xi,3} ⊆ X for each 1 ≤ i ≤ 3m. Without loss of generality, we can assume that 
m > 6. We construct the DeStruCtive-Shift-BriBery instance for both voting systems as 
follows. Let C = {p,w,e,f}∪ D ∪ Y ∪ X with D = {di,j∣1 ≤ i ≤ 3m and 1 ≤ j ≤ 2m − 1} and 
Y = {yi,j∣1 ≤ i ≤ 3m and 1 ≤ j ≤ 4} and where p is the designated candidate. The list V of 
votes is constructed as follows:

line # votes for

1 1 p xi ⋯ 1 ≤ i ≤ 3m 
2 1 yi,1 xi,1 xi,2 w p ⋯ 1 ≤ i ≤ 3m 
3 1 yi,2 xi,2 xi,3 w p ⋯ 1 ≤ i ≤ 3m 
4 1 yi,3 xi,1 xi,3 w p ⋯ 1 ≤ i ≤ 3m 
5 4 yi,4 xi,1 xi,2 xi,3 p ⋯ 1 ≤ i ≤ 3m 
6 1 xi di,j p ⋯ 1 ≤ i ≤ 3m, 1 ≤ j ≤ 2m − 1 
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line # votes for

7 2m di,j p ⋯ 1 ≤ i ≤ 3m, 1 ≤ j ≤ 2m − 1 
8 2m w p ⋯ 
9 2m − 1 e p ⋯
10 m f p ⋯

For votes of the form p xi ⋯ we use the price function ρ(1) = 1 and p(t) = m + 1 for all 
t ≥ 2. For every other vote, we use the price function ρ(t) = m + 1 for t ≥ 1. Finally, set the 
budget B = m.

Without bribing, the election proceeds as follows. In the first round, p scores 3m points, 
w and every di,j ∈ D scores 2m points, and each of the remaining candidates scores fewer 
than 2m points. In the second round, p scores 18m − 1 points, w scores 11m points, and 
every di,j scores 2m + 1 points. It follows that p is the unique winner for either of iterated 
plurality (there would not be a second round here as p already uniquely wins in the first 
round) and plurality with runoff.

We claim that (X,S) is in One-in-Three-Positive-3SAT if and only if ((C,V),p,B,ρ) is in 
DeStruCtive-Shift-BriBery for either of the two voting systems, regardless of the winner 
model.

(⇒) Suppose that (X,S) is a yes-instance of One-in-Three-Positive-3SAT. Then there 
exists a subset U ⊆ X such that for each clause Sj we have |U ∩ Sj| = 1. We bribe the 
voters with the vote of the form p xi ⋯ with xi ∈ U so that the new vote has the form xi 
p ⋯. It follows that p, w, every xi ∈ U, and every di,j ∈ D reach the second round with 
2m points each. In the second round, p gains 3m − 1 additional points (since e and f 
were eliminated) while w gains 3m additional points (since candidates in Y and X ∖ U 
were eliminated). It follows that p is not a winner of the election, so ((C,V),p,B,ρ) is a 
yes-instance of DeStruCtive-Shift-BriBery for both voting systems, regardless of the 
winner model.

(⇐) Suppose that (X,S) is a no-instance of one-in-three-poSitive-3Sat. We show 
that ((C,V),p,B,ρ) is also a no-instance of DeStruCtive-Shift-BriBery for both voting 
systems. To ensure that p is not the only plurality winner in the first round, it is neces-
sary to bribe m voters with votes of the form p xi ⋯ to now vote xi p ⋯. Note that we 
can only bribe at most m such voters without exceeding the budget. Let U ⊆ X be the 
set of candidates that benefit from the bribery action. It follows that p, every di,j ∈ D, 
every xi ∈ U, and w can move forward to the next round with 2m points each. In this 
round, the designated candidate p gains 3m − 1 additional points from the votes of the 
form e p ⋯ and f p ⋯; every candidate di,j with xi∉U gains one additional point; every 
candidate xi ∈ U can receive at most 18 additional points (this is due to the fact that 
every xi ∈ U appears in exactly three sets of S); and w is discussed separately in the 
following paragraph.

To prevent the victory of p, it is necessary that w gains at least 3m points (since if w 
gains only 3m − 1 points, it follows that w and p move forward to the final round, where p 
would achieve a clear victory). For w to gain at least one point from any one of the three 
votes of the form yi,1 xi,1 xi,2 w p ⋯, yi,2 xi,2 xi,3 w p ⋯, and yi,3 xi,1 xi,3 w p ⋯, it is neces-
sary that at most one candidate xi,j participates in the second round. On the other hand, if 
no candidate xi,j participates in the second round, p gains four points from the voters of the 
fifth line, whose vote is yi,4 xi,1 xi,2 xi,3 p ⋯, i.e., this clause harms w. Only a clause Si with 
|Si ∩ U| = 1 helps w to reduce the point difference to p. Since (X,S) is a no-instance of one-
in-three-poSitive-3Sat, there are at most 3m − 2 clauses with this property.
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Due to those clauses the point difference of w to p reduces to (at most) one.9 With the 
two remaining clauses the point difference is growing because either (a) |Si ∩ U| = 0 and p 
gains four points or (b) |Si ∩ U| > 1 and w gains no points for this clause. This implies that 
p is always a unique winner of the election, i.e., ((C,V),p,B,ρ) is a no-instance of DeStruC-
tive-Shift-BriBery for both voting systems, regardless of the winner model. □

6  Iterated veto and veto with runoff

In this section, we show hardness of shift bribery for iterated veto and veto with runoff, 
again handling both voting systems simultaneously and starting with the constructive case.

Theorem 11 In both the unique-winner and the nonunique-winner model, for veto with 
runoff and iterated veto, ConStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce X3C to ConStruCtive-Shift-BriBery for 
veto with runoff and iterated veto at the same time. Let (X,S) be a given X3C instance 
and construct the ConStruCtive-Shift-BriBery instance ((C,V),p,B,ρ) as follows. Let 
C = {p, d1, d2} ∪ X ∪ S be the set of candidates, where p is the designated candidate, and 
construct the voter preferences in V as follows. Without loss of generality, we assume that 
m > 3.

line # votes for

1 1 ⋯ Si p 1 ≤ i ≤ 3m 
2 2 ⋯ xi,1 Si 1 ≤ i ≤ 3m 
3 2 ⋯ xi,2 Si 1 ≤ i ≤ 3m 
4 2 ⋯ xi,3 Si 1 ≤ i ≤ 3m 
5 2m − 6 ⋯ d2 Si 1 ≤ i ≤ 3m 
6 2m ⋯ xi 1 ≤ i ≤ 3m 
7 m ⋯ d2 xi d1 1 ≤ i ≤ 3m
8 m + 2 ⋯ d2 Si d1 1 ≤ i ≤ 3m
9 2m ⋯ d2 
10 1 ⋯ p d1 

For votes of the form ⋯ Si p, we use the price function ρ(1) = 1, and ρ(t) = m + 1 for all 
t ≥ 2; and for every other voter, we use the price function ρ(t) = m + 1 for t ≥ 1. Finally, set 
the budget B = m.

Note that for both voting rules, p is eliminated in the first round with 3m vetoes and 
therefore cannot be the winner without bribing voters.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in ConStruCtive-Shift-
BriBery for either of iterated veto and veto with runoff, regardless of the winner model.

9 As explained above, due to the candidates in X ∖ U being eliminated in the previous round and the can-
didates in U still present, for each of those clauses with |Si ∩ U| = 1, exactly one of the associated votes in 
lines 2–4 has w on top now.

1044



Complexity of shift bribery for iterative voting rules  

1 3

(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover 
S

′ ⊆ S of size m. Shift p one position forward in the votes of the form ⋯ Si p for each 
Si ∈ S

� , so that the new vote has the form ⋯ p Si. It follows that p, each S ∈ S ⧵ S � , each xi 
for 1 ≤ i ≤ 3m, and d2 are veto winners with 2m vetoes each and thus proceed to the second 
round. Since S ′ is an exact cover, each xi receives two additional vetoes from the voters in 
lines 2–4 corresponding to the sets in the exact cover and m vetoes from the voters in line 
7. Furthermore, each S ∈ S ⧵ S � receives m + 2 vetoes from the voters in line 8, whereas p 
receives m vetoes from the voters in line 1 and only one additional veto from the voter in 
the last line. Since d2 gains far more than m + 1 vetoes in this round, it follows that p is the 
unique veto winner of the election with bribed voters. Thus ((C,V),p,B,ρ) is a yes-instance 
of ConStruCtive-Shift-BriBery for either of iterated veto and veto with runoff, regardless 
of the winner model.

(⇐) Suppose that (X,S) is a no-instance of X3C. This means that for every S ′ ⊆ S , 
|S ′| ≤ m\,there is an x� ∈ X that is not covered by any S ∈ S

�.
In the first round, all candidates but those with the fewest vetoes—in this case 2m—will 

be eliminated. Note that p has 3m vetoes, the budget is m and only voters in line 1 can 
be bribed without exceeding the budget. Therefore, exactly m voters in line 1 have to be 
bribed to change their vote to ⋯ p Si. Let S ′ ⊆ S , |S �| = m , be the set that consists of the Si 
corresponding to these bribed voters. After this bribery action, only the candidates p and d2 
as well as each S ∈ S ⧵ S � and each xi, 1 ≤ i ≤ 3m, reach the second round with 2m vetoes.

Since S ′ is not an exact cover, there is an x� ∈ X that is not covered by S ′ and therefore 
does not receive a veto from the voters in lines 2–4. This x′ only gains m vetoes from vot-
ers in line 7 for a total of 3m vetoes, whereas p receives m vetoes from voters in line 1 
and one veto from the voter in line 10 for a total of 3m + 1 vetoes. It follows that p is not 
winning the election for either of the two voting rules. That means that ((C,V),p,B,ρ) is a 
no-instance of ConStruCtive-Shift-BriBery for either of iterated veto and veto with runoff, 
regardless of the winner model. □

We now turn to the destructive variant of shift bribery for iterated veto and veto with 
runoff.

Theorem 12 In both the unique-winner and the nonunique-winner model, for veto with 
runoff and iterated veto, DeStruCtive-Shift-BriBery is NP-hard.

Proof To prove NP-hardness, we reduce the NP-complete problem one-in-three-poSitive-
3Sat to DeStruCtive-Shift-BriBery for veto with runoff and iterated veto simultaneously. 
Given an instance (X,S) of one-in-three-poSitive-3Sat, where X = {x1,… , x3m} and 
S = {S1,…, S3m} , with Si = {xi,1, xi,2, xi,3} ⊆ X for each 1 ≤ i ≤ 3m, we construct the elec-
tion (C,V) with candidate set C = {p,w,d1,d2}∪ X, designated candidate p, and the follow-
ing list V of votes:

line # votes for

1 1 ⋯ p xi 1 ≤ i ≤ 3m 
2 2 ⋯ p xi,1 xi,2 d1 1 ≤ i ≤ 3m 
3 2 ⋯ p xi,2 xi,3 d1 1 ≤ i ≤ 3m 
4 2 ⋯ p xi,1 xi,3 d1 1 ≤ i ≤ 3m 
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line # votes for

5 7 ⋯ w xi,1 xi,2 xi,3 d1 1 ≤ i ≤ 3m 
6 2m ⋯ d2 xi 1 ≤ i ≤ 3m 
7 22m ⋯ d2 xi d1 1 ≤ i ≤ 3m 
8 2m ⋯ d2

9 m ⋯ p 
10 2m ⋯ w 
11 8m − 1 ⋯ w d1

For every vote of the form ⋯ p xi, let the price function be ρ(1) = 1 and ρ(t) = m + 1 
for every t ≥ 2. For every other vote, define ρ(t) = m + 1 for every t ≥ 1. Finally, we set the 
budget B = m.

Note that p is the winner of the election for both voting rules: p has the fewest vetoes 
of all candidates and therefore wins under iterated veto after the first round. For veto with 
runoff, all candidates but p, w, and d2, i.e., the candidates with the lowest and second-
lowest number of vetoes, are eliminated after the first round, so that p is the unique winner 
with the fewest vetoes in the second round.

We claim that (X,S) is in One-In-Three-Positive-3SAT if and only if ((C,V),p,B,ρ) is in 
DeStruCtive-Shift-BriBery for either of veto with runoff and iterated veto, regardless of 
the winner model.

(⇒) Assume that (X,S) is in One-In-Three-Positive-3SAT. Then there is a subset X′ ⊆ X 
such that for each clause Si we have |X� ∩ Si| = 1 . Bribe the voters with votes of the form ⋯ 
p xi with xi ∈ X� so that the new vote has the form ⋯ xi p. It follows that p, w, d2, and each 
xi ∈ X� have the fewest vetoes (namely, 2m) and therefore proceed to the second round. 
In the second round, p receives 2m vetoes from the votes in line 1 and for each of the 3m 
clauses two vetoes from the voters in lines 2–4 for a total of 8m additional vetoes, whereas 
w only receives a total of 8m − 1 vetoes. It follows that p is not a winner of the election for 
either of the two voting rules.

(⇐) Let (X,S) be a yes-instance of DeStruCtive-Shift-BriBery for veto with runoff 
(respectively, iterated veto), i.e., it is possible to bribe voters so that p does not win the elec-
tion. Recall that it is only possible to bribe voters in line 1 without exceeding the budget. 
For the original election without bribed voters, in the first round, p receives m vetoes, i.e., 
the fewest vetoes of all candidates. Due to the votes in line 7, the only candidate capable of 
receiving fewer vetoes than p or the same number of vetoes as p in the second round is w.10 
However, this is only possible if p receives at least 9m − 1 additional vetoes since w has 
10m − 1 vetoes in the second round from the last two lines alone. Note that p receives 3m 
of these additional vetoes from line 1—after bribing voters so that p is in the last position, 
or eliminating the xi in the first round—leaving a gap of 6m − 1 vetoes. For each clause Sj 
such that no xi ∈ Sj is present in the second round, p receives six additional vetoes (lines 
2–4), whereas w receives in this case seven additional vetoes from the voters in line 5, i.e., 
this widens the gap between p and w instead of closing it. That means that for each clause 
Sj, there has to be at least one xi ∈ Sj present in the second round, i.e., for each clause Sj, a 
voter with a vote of the form ⋯ p xi with xi ∈ Sj needs to be bribed to cast a vote of the form 
⋯ xi p to bring the number of vetoes of xi down to 2m, the same as, e.g., d2. However, if 

10 Note that d1 and at least 2m candidates from X will definitely be eliminated in the first round. Due to the 
votes in line 7 the remaining candidates of X and d2 will gain too many vetoes to be able beat p.
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at least two literals, say xi and xk, in a clause Sj are present in the second round, p receives 
no additional veto from votes in lines 2–4, which does not help to close the gap between p 
and w. The only possibility remaining for p not to be a winner of the election after bribery 
is that the bribed voters correspond to the variables set to true in an assignment where in 
each clause there is exactly one literal true, i.e., we have a yes-instance of one-in-three-
poSitive-3Sat. □

7  Using the Nonmonotonicity property

Informally stated, a voting rule is said to be monotonic if winners can never be turned 
into nonwinners by improving their position in some votes, everything else remaining the 
same.11 Intuitively, this means that it is only beneficial to shift a candidate forward (closer 
to the top) and not backwards (closer to the bottom). In shift bribery under some mono-
tonic voting rule, it thus only makes sense for the briber to shift the designated candidate 
forward in the constructive case (respectively, backward in the destructive case). However, 
all voting rules considered here except iterated plurality and iterated veto are not mono-
tonic, and in nonmonotonic voting rules, shifting the designated candidate backward in the 
constructive case (respectively, forward in the destructive case) could also be beneficial for 
the briber.

It would therefore be interesting to find out whether the complexity of our problems 
changes when the nonmonotonicity of voting rules is specifically allowed, or even required, 
to be exploited in shift bribery actions. Indeed, with slight modifications to the proofs, we 
can show that Hare-ConStruCtive-Shift-BriBery and plurality-with-runoff-ConStruCtive-
Shift-BriBery are still NP-hard if the designated candidate can only be shifted backward. 
We conjecture that all other proofs (except the proofs for the monotonic voting rules iter-
ated plurality and iterated veto) can be adapted in such a way as well.

Note that in this section we can simply swap the definition of price functions for the 
constructive and destructive variants so that in all votes the designated candidate can only 
be moved forward in the constructive variant and can only be moved backward in the 
destructive variant.

We start with constructive shift bribery in Hare elections where the only allowed brib-
ery action is to shift the designated candidate backward.

Theorem  13 In both the unique-winner and the nonunique-winner model, Hare-Con-
StruCtive-Shift-BriBery is NP-hard even if the designated candidate can only be shifted 
backward.

Proof NP-hardness again follows by a reduction from X3C. Construct from a given X3C 
instance (X,S) an instance ((C,V),p,B,ρ) of Hare-ConStruCtive-Shift-BriBery with candi-
date set C = X ∪ S ∪ D ∪ {p,w} , where D = {d1,… , d3m} is a set of dummy candidates 
and p the designated candidate, and the following list V of votes:

11 This definition captures just one common notion of monotonicity, the one we will be using here; but note 
that there are also other notions of monotonicity for voting rules known in social choice theory (see, e.g., 
the papers by Felsenthal and Nurmi [46], Miller [47], and Brams and Fishburn [48]).
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line # vote for

1 1  Si xi,1 ����������������⃗X ⧵ {xi,1} w p ⋯ 1 ≤ i ≤ 3m 

2 1  Si xi,2 ����������������⃗X ⧵ {xi,2} w p ⋯ 1 ≤ i ≤ 3m 

3 1  Si xi,3 ����������������⃗X ⧵ {xi,3} w p ⋯ 1 ≤ i ≤ 3m 

4 4  xi �������������⃗X ⧵ {xi} w p ⋯ 1 ≤ i ≤ 3m 

5 6  w �⃗X p ⋯ 
6 1  p Si ⋯ 1 ≤ i ≤ 3m 
7 6  p ⋯ 
8 3  di Si p w⋯ 1 ≤ i ≤ 3m

For votes of the form p Si ⋯, we use the price function ρ(1) = 1, and ρ(t) = m + 1 for all 
t ≥ 2; and for every other vote, we use the price function ρ with ρ(t) = m + 1 for all t ≥ 1. 
Finally, set the budget B = m.

Without bribing the voters the election proceeds as follows:

Round p w x1 xi ∈ X  ⧵{x1}  Si ∈ S di ∈ D 

1 3m + 6 6 4 4 3 3
2 12m + 6 6 7 7 out out
3 12m + 6 out 13 7 out out
4 12m + 6 out 21m + 6 out out out

It follows that p is eliminated in the last round and does not win the election.
We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in Hare-ConStruCtive-

Shift-BriBery, regardless of the winner model, even if the designated candidate can only 
be shifted backward.

(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover 
S

′ ⊆ S of size m. We now show that it is possible for p to become a unique Hare winner of 
an election obtained by shifting p in the votes without exceeding the budget B. For every 
Si ∈ S

� , we bribe the voter with the vote of the form p Si ⋯ by shifting p once, so her new 
vote is of the form Si p ⋯; each such bribe action costs us only 1 from our budget, so the 
budget will not be exceeded. Now the election proceeds as follows:

Round p w xi ∈ X  Si ∈ S
�    Si ∈ S ⧵ S �   di ∈ D 

1 2m + 6 6 4 4 3 3
2 8m + 6 6 6 7 out out
3 26m + 12 out out 7 out out

We see that p is the only candidate still standing in the fourth round and thus the only 
Hare winner of the election with bribed voters.

(⇐) Suppose that (X,S) is a no-instance of X3C. Then no subset S ′ ⊆ S with |S ′| ≤ m 
covers X. We now show that p will be eliminated in all elections obtained by bribing voters 
without exceeding budget B. Note that we can only bribe at most m voters with votes of the 
form p Si ⋯ without exceeding the budget. Let S ′ ⊆ S be such that for every Si ∈ S

� we 
have bribed the voter whose vote is p Si ⋯. We can assume that |S ′| > 0.
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Every candidate in S ′ will gain an additional point and therefore survives the first 
round. All candidates from D and S ⧵ S ′ will be eliminated, since p only loses at most m 
points.

In the second round, the remaining candidates from S will gain three additional points 
from the elimination of candidates in D (see line 8) and score seven points in this round 
(and in all subsequent rounds with p still standing). If a candidate Si ∈ S was eliminated 
in the previous round, every xj ∈ Si gains one additional point in this round (see lines 1–3). 
Partition X into sets X0, X1, X2, and X3 so that xi ∈ Xk ⇔ |{Sj ∈ S

�∣xi ∈ Sj}| = k for k ∈ 
{0,1,2,3}. Intuitively, the sets Xk count how many times a candidate xj was covered by S ′ , 
so xj is contained in Xk if and only if xj is present in k elements of S ′ . Note that X0, X1, X2, 
and X3 are disjoint and |X0| > 0 (recall that there is no exact covering of X), but one or two 
of X1, X2, and X3 may be empty. Then xi ∈ Xj scores 4 + (3 − j) ∈{4,5,6,7} points depend-
ing on how many times xi is covered by S ′ . Therefore, every xi ∈ X0 scores more points 
than w who has six points. So, there are candidates from X that survive this round and other 
candidates from X (i.e., candidates from X1, X2, or X3), who are eliminated.

In the third round, the candidate xℓ ∈ X with the smallest subscript who is still stand-
ing gains at least four points from the eliminated candidates (from the votes in the fourth 
line), so that she scores at least nine points now (since no candidates from X3 are left in 
the election). All other candidates still score the same number of points as in the previous 
round. Therefore, p scores 4|S ⧵ S �| + 6 points, w scores six points (if w was not already 
eliminated along with the candidates from X1), every Si ∈ S

� scores seven points, and every 
still standing candidate from X except xℓ scores at most seven points. Since w can only gain 
additional points when all candidates from X are eliminated (see line 4) and only xℓ gains 
points from the elimination of w or candidates from X ⧵{xℓ} in the subsequent rounds, all 
candidates X ⧵ ({xℓ}∪ X0) and w are eliminated. Then all still standing candidates from 
X0 ⧵{xℓ} and candidates from S′ , who score seven points each, are eliminated, which leaves 
p and xℓ in the last round. In this round, p scores 12m + 6 points and xℓ scores 21m + 6 
points, so p is eliminated from the election and does not win. □

Next, we show the corresponding result for plurality with runoff.

Theorem 14 In both the unique-winner and the nonunique-winner model, plurality-with-
runoff-ConStruCtive-Shift-BriBery is NP-hard even if the designated candidate can only 
be shifted backward.

Proof To prove NP-hardness, we reduce X3C to ConStruCtive-Shift-BriBery for plu-
rality with runoff. Let (X,S) be a given X3C instance, where X = {x1,…, x3m} and 
S = {S1,…, S3m} . Also, we require that m > 3. We construct the ConStruCtive-Shift-BriB-
ery instance ((C,V),p,B,ρ) as follows. Let C = {p} ∪ X ∪ S ∪ D ∪ Y  with sets of dummy 
candidates D = {di,j∣1 ≤ i ≤ 3m and 1 ≤ j ≤ 2m2 − 5m − 4} and Y = {yi∣1 ≤ i ≤ 3m + 1} and 
designated candidate p. The list V of votes is constructed as follows:

line # vote for

1 1  p Si ⋯ 1 ≤ i ≤ 3m 
2 2  Si xi,1 w ����������������⃗X ⧵ {xi,1}⋯ 1 ≤ i ≤ 3m 

3 2  Si xi,2 w ����������������⃗X ⧵ {xi,2}⋯ 1 ≤ i ≤ 3m 
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line # vote for

4 2  Si xi,3 w ����������������⃗X ⧵ {xi,3} ⋯ 1 ≤ i ≤ 3m 

5 3m  w p ⋯
6 1  yi p 1 ≤ i ≤ 3m + 1
7 m − 3  Si w p 1 ≤ i ≤ 3m
8 m − 4  Si p w 1 ≤ i ≤ 3m
9 2m  xi w p 1 ≤ i ≤ 3m
10 1  di,j xi w p ⋯ 1 ≤ i ≤ 3m, 1 ≤ 

j ≤ 2m2 − 5m 
− 4 

For votes of the form p Si ⋯, we use the price function ρ(1) = 1, and ρ(t) = m + 1 for all 
t ≥ 2; and for every other vote, we use the price function ρ(t) = m + 1 for t ≥ 1. Finally, set 
the budget B = m.

Without bribing, only p and w reach the second and final round with 3m points each. 
Clearly, w alone wins the election with only p and w present.

We claim that (X,S) is in X3C if and only if ((C,V),p,B,ρ) is in ConStruCtive-Shift-
BriBery for plurality with runoff, regardless of the winner model.

(⇒) Suppose that (X,S) is a yes-instance of X3C. Then there exists an exact cover 
S

′ ⊆ S of size m. We now show that it is possible for p to become a unique plurality-
with-runoff winner of an election obtained by shifting p in the votes without exceeding the 
budget. For every Si ∈ S

� , we bribe the voter with the vote of the form p Si ⋯ once, so her 
new vote is of the form Si p ⋯.

In the first round, w scores 3m points; p, every xi ∈ X, and every Si ∈ S
� score 2m points 

each; every Si ∈ S ⧵ S � scores 2m − 1 points; and every candidate from D and Y scores 
only one point. Since w is the only plurality winner, all second-place candidates (namely, 
p, every xi ∈ X, and every Si ∈ S

� ) proceed to the second round.
In the second round, every Si ∈ S

� still scores the same number of points as in the 
first round, w gains 2m(m − 3) additional points, p gains (3m + 1) + 2m(m − 4) additional 
points, and every xi ∈ X gains (2m2 − 5m − 4) + 4 additional points. Therefore, p alone 
wins the election with 2m2 − 3m + 1 points, ahead of w and every xi ∈ X with 2m2 − 3m 
points each, and every Si ∈ S

� with 2m points each.
(⇐) Suppose that ((C,V),p,B,ρ) is a yes-instance of Plurality-with-runoff-ConStruCtive-

Shift-BriBery. Notice that if no voters are bribed, p and w are leading in the election with 
3m points each, so they both proceed to the final round. It is easy to see that w wins against 
p in a one-on-one election. To prevent w and p from being the only candidates in the sec-
ond round, m voters with votes of the form p Si ⋯ have to be bribed. Let S ′ ⊆ S be such 
that Si ∈ S

� if the voter with vote p Si ⋯ has been bribed. Then w, p, every xi ∈ X, and 
every Si ∈ S

� survive the first round. Since every other candidate is deleted in the first 
round, p now scores 2m2 − 5m + 1 additional points and beats w by a margin of one point. 
Moreover, p beats every Si ∈ S

� since the candidates from S ′ did not gain any additional 
points in this round. Regarding the candidates from X, every xi ∈ X gains 2m2 − 5m − 4 
points and two additional points for every Sj ∈ S ⧵ S � with xi ∈ Sj that was eliminated in 
the first round. Since there are exactly three Sj ∈ S with xi ∈ Sj, every xi ∈ X can gain six 
points if all those candidates were eliminated in the last round, which would let xi overtake 
p by one point. In order for p to beat all xi ∈ X, at least one Sj ∈ S with xi ∈ Sj needs to be 
in S ′ and is therefore still standing in the second round. Since |S �| = m and there are 3m 
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candidates in X, p can beat every xi ∈ X (and subsequently win the election) only if S ′ is an 
exact cover of X. □

8  Conclusions and open questions

We have shown that shift bribery is NP-complete for each of the iterative voting systems 
of Hare, Coombs, Baldwin, Nanson, iterated plurality, plurality with runoff, iterated veto, 
and veto with runoff, each for both the constructive and the destructive case and in both 
the unique-winner and the nonunique-winner model. This contrasts previous results due to 
Elkind et al. [1, 20, 21] and Schlotter et al. [21] showing that shift bribery can be solved 
efficiently by exact algorithms for many natural voting rules that do not proceed iteratively. 
Indeed, the iterative nature of the voting rules we have studied seems to be responsible for 
the NP-hardness of shift bribery. It would be interesting to investigate the approximability 
of shift bribery for iterative voting rules, for comparison with the known approximation 
results of shift bribery for noniterative voting rules shown in the papers mentioned above.

While these are interesting theoretical results complementing earlier work both on shift 
bribery and on these voting systems, NP-hardness of course has its limitations in terms of 
providing protection against shift bribery attacks in practice (see, e.g., [49, 50]). There-
fore, it would be interesting to also study shift bribery for these voting systems in terms 
of approximation and parameterized complexity and to do a typical-case analysis. Based 
on our results in this article, Zhou and Guo [51] already obtained first results regarding 
the parameterized complexity of iterative voting systems with respect to a fixed number 
of shifts, votes, or candidates. Further, they have shown that the hardness of shift bribery 
for the Hare, Coombs, Baldwin, and Nanson rules also holds for unit price cost functions. 
It would be particularly interesting to determine the role of the cost function for the hard-
ness of shift bribery. Furthermore, it would be interesting future work to study in detail the 
effect that specific tie-breaking models (such as the “parallel universes” model [52] and 
other models) may have on the complexity of shift bribery problems for iterative voting 
rules.

Elkind et al. [53] have proposed algorithms for swap and shift bribery regarding noniter-
ative voting rules like plurality, Borda, and Condorcet-consistent rules when the electorate 
is domain-restricted, namely either single-peaked or single-crossing. An interesting task 
for future research would be to extend this study to iterative voting rules and to find out 
whether such domain restrictions can make these problems easier to solve.

A feature shared by most of the iterative voting rules we have studied is that many of 
them are not monotonic. This has the somewhat counterintuitive effect that shifting the 
designated candidate forward in some votes can actually hurt this candidate’s chances to 
win, and shifting the designated candidate backward can increase these chances. We have 
discussed this feature in Section 7, showing that constructive shift bribery remains NP-hard 
even if we are allowed to only shift the designated candidate backward in some votes for 
two iterative voting systems: Hare voting and plurality with runoff. We leave the analogous 
question open for the remaining iterative voting systems studied here (except, of course, 
for the monotonic rules iterated plurality and iterated veto), and conjecture that they share 
this property. Even more interestingly, we pose as an open question whether there is a 
nonmonotonic voting system—a natural one or an artificially constructed one—for which 
unrestricted shift bribery is NP-hard but becomes efficiently solvable when restricted to 
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shift bribery actions specifically exploiting their nonmonotonicity (i.e., allowing to shift 
the designated candidate only backward in the constructive case, or forward in the destruc-
tive case).
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