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Abstract
As the number of graph-level embedding techniques increases at an unprecedented speed, 
questions arise about their behavior and performance when training data undergo perturba-
tions. This is the case when an external entity maliciously alters training data to invalidate 
the embedding. This paper explores the effects of such attacks on some graph datasets by 
applying different graph-level embedding techniques. The main attack strategy involves 
manipulating training data to produce an altered model. In this context, our goal is to go in-
depth about methods, resources, experimental settings, and performance results to observe 
and study all the aspects that derive from the attack stage.
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1 Introduction

Graphs are playing an important role in many real-world applications, and related data 
analysis techniques are showing their feasibility also on large-scale problems, including 
drug screening [1], cancer metabolism [2], protein analysis [3], resource deployment [4], 
cooperative control strategies [5], and knowledge graph completion [6].

Graph embedding is an emergent research area in machine learning (ML) that includes 
techniques and methods to find “latent vector representations” of graphs to capture their 
topology and preserve relevant network properties [7–9]. The resulting graph representations 
can be made rich by considering several information sources, such as vertex-vertex relation-
ships and vertex/edge attributes. Graph embedding techniques attract significant interest 
in the ML community since vector spaces are more amenable to data science than graphs. 
Indeed, while network relationships can only be processed by specific techniques from math-
ematics, statistics, and ML, vector spaces have a richer toolset from those disciplines. In addi-
tion, vector operations are often simpler and faster than the equivalent graph operations.

In everyday real-life applications, due to the increasing pervasiveness of ML, deep 
learning, and AI algorithms, the robustness and vulnerability of these algorithms have 
now become crucial and very important aspects of research. In the specific context of AI 
applied to networked data processing, application domains include cybersecurity, online 
financial trading, social media, big-data analytics, and bioinformatics.

Here, the question arises on how to handle situations in which input data is altered, due 
to acquisition noise or intentional modifications (the so-called adversarial attacks), lead-
ing to misleading conclusions or reduced algorithms performance. In these contexts, the 
real goal of an attack is to cause (intentionally or not) the malfunctioning and/or fraudu-
lent behavior of algorithms operating on data structured as graphs. This occurs as a result 
of perturbations of the graphs performed by the attacker, where the changes can be more 
or less significant and targeted based on knowledge of the intrinsic functioning of these 
algorithms (parameters, implementation logic, etc.). This is the assumption of Adversarial 
Machine Learning (AML) [10]. This new research area studies and proposes solutions to 
tackle the vulnerability of ML models when their performance in different tasks is compro-
mised through adversarial perturbations on their input. Indeed, neural networks and many 
other ML techniques suffer this problem when input modifications occur during training, 
testing, or deploying phases. Notable application domains of AML are Computer Vision 
[11, 12], Natural Language Processing (NLP) [13], and Cybersecurity [14].

Among the reviews on graph adversarial attacks, [15, 16] mainly focus on GNN-based 
methods, while [17] also covers attack and defense models for non-GNN methods. The 
Graph Adversarial Learning Literature repository, produced by Sun et  al. [17], has a 
curated selection of more than 110 adversarial attack and defense studies on graph-struc-
tured data, as well as links to downloadable programs. The Awesome Graph Adversarial 
Learning repository, built and maintained by Chen et al. [18], includes links to 271 rele-
vant publications published in the last five years. Literature on adversarial attacks is mainly 
focused on poisoning strategies, such as backdoor attacks [19], where the training stage of 
the target model is perturbed and its behavior is normal unless a specific trigger is present 
in the test samples, training to mislead graph prediction [20]. The general aim is to affect 
the performance of graph-level tasks, and none of these works shares our goal, which is to 
compare the robustness to adversarial attacks of different graph-level embedding methods.

In this work, we address a specific application domain for AML: the study of the vulner-
ability of ML models applied to the classification/prediction of biological networks. In our 
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assumption, an “adversarial attack” on a biological network concerns any type of perturba-
tion to the structure of the graph due both to the noise introduced by the experimental envi-
ronment from which the biological data are extracted and to the lack of information due to 
corrupted sources, or incomplete pre-processing of raw data. Therefore, in our mind, we 
consider less likely, but still possible, a scenario in which a “real” attacker can intentionally 
and fraudulently modify the biological networks processed by the ML models.

In this context, we aim to study and measure the robustness of some graph embedding 
methods, two based on neural networks and another based on statistics, when we alter the 
training stage of these models through adversarial perturbations to the input data. The 
altered models of graph-to-vector transformers (embedders) are evaluated with respect to 
their robustness by measuring classification performance on unperturbed test graphs. In 
this work, we keep on developing the research activities carried out in [21, 22], which, 
as far as we know, are the only literature contributions to the robustness analysis of graph 
embedding techniques.

The paper is structured as follows. Section 2 introduces definitions, types, and properties 
of graph embedding and adversarial attack taxonomies. Section 3 discusses our approach 
to adversarial attacks on graph-embedding methods and the related experimental study by 
delving into methods, resources, experimental settings, and performance results. Section 4 
reports concluding considerations and future directions for the work.

2  Background

2.1  Graph embedding definitions

The general term of graph embedding methods denotes a plethora of techniques and meth-
odologies to translate large and complex graphs into a reduced vector space, which is often 
called latent space. In other words, any procedure that constructs a vector representation of 
a graph in order to simplify and/or make a certain machine learning task more efficient is 
called graph embedding.

Definition 1 (Graph Embedding) A graph embedding is a mapping � from a collection 
of graph substructures (most commonly either all nodes, or all edges, or certain subgraphs, 
or even the whole graph) to ℝd.

Graph embedding techniques differ in which aspects of the graph we try to represent:

• Node-level embeddings describe the connectivity of the graph. Each node in the graph 
is associated with a vector representation. Node-level embeddings target node predic-
tion, reconstruction, and graph clustering.

• Edge-level embeddings describe traversals across the graph. Each edge in the graph is 
associated with a vector representation. Edge-level embeddings target edge prediction, 
reconstruction, and graph clustering.

• Graph-level embeddings encode the entire graph into a single vector. Each element in a 
set of graphs is associated with a vector representation. Graph-level embeddings target 
graph classification and graph matching.



262 M. Giordano et al.

1 3

In this work, we focus on graph-level embedding (see Fig. 1), more precisely in the realm 
of graph classification tasks in the biological networks domain. Graph-level embedding, 
also known as whole-graph embedding, can be formally defined as:

Definition 2 (Graph-level Embedding) Given a set of graphs G = {G1,… ,Gm}, a graph-
level embedding is a mapping function � ∶ G → ℝ

d where d ∈ ℕ, such that � preserves 
some proximity measure defined on G.

Choosing an appropriate embedding dimension d is challenging but necessary, and 
above all crucial, to generate embeddings applicable to a multitude of tasks. A general rule 
of thumb is “small enough to be efficient and large enough to be effective”. The criticality 
concerning the final latent space dimension is that it should express all valuable informa-
tion needed to accomplish the machine learning task on graphs.

When talking about graph embedding techniques, it is important to be aware of another 
distinction:

• In transductive embedding, the vector representation for a new graph is produced by 
the embedding function (or model), requiring to process the new graph jointly with pre-
vious graphs. At each new graph embedding, the vectors for previous graphs change.

• In inductive embedding, the vector representation (embedding) for a new graph is produced 
by the embedding function (or model), requiring only the processing of the new graph. The 
embedding for older graphs does not change when we perform the embedding of a new graph.

The embedding process can be unsupervised or supervised. Thus, transductive supervised 
embedding methods cannot be used as models for prediction and classification tasks on 
unknown graphs.

2.2  Adversarial attack taxonomies

Several surveys in the literature [15–17] propose different taxonomies for graph/network 
attacks based on the goals, knowledge, and resources of the attackers. Adversarial sam-
ples of graph data can be produced either through node-level perturbations or by edge-level 

Fig. 1  Graph-level embedding
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perturbations. Node-level attacks may consist in adding/removing nodes and/or modifying tar-
get node features. Edge-level attacks may consist in adding/removing edges between nodes 
and/or modifying target edge features. In both cases, the number of modified nodes/edges is 
often referred to as the perturbation budget, which is used to evaluate the magnitude of the 
perturbation.

Evasion attacks refer to modifications to only the testing data on which a model is 
applied to accomplish the requested task (e.g., classification, regression, clustering, match-
ing, etc.). In evasion attacks, there is no need to know the model insights (architecture, 
parameters, and so on). Poisoning attacks aim to affect the model’s performance by adding 
adversarial samples into the training dataset. The majority of adversarial attacks in graph-
based machine learning is of this type. In addition, in the case the task of the trained model 
is performed in the transductive learning setting, any evasion attack results in a poisoned 
attack since the model is re-trained after testing.

Concerning the amount of knowledge the attacker has about the target models, the types of 
attacks are classified as: 1) white-box attack, in which the attacker can retrieve all the useful 
information about the target system to successfully complete the attack, such as the underlying 
model, its architecture and parameters, etc.; 2) gray-box attack, in which the attacker can only 
obtain limited information about the target system to perform the attack. This type of attack is 
more dangerous to the system than white-box attacks, as it only needs partial information to 
work; 3) black-box attack, in which the attacker has no information about the system. Gener-
ally, it is only allowed to do black-box queries on limited samples at most, and thus it cannot 
make poisoning attacks on the trained model. However, if a black-box attack works, it is more 
dangerous than the other two since the attacker succeeds with no information at all.

Regarding the goal, the attack can be targeted if the attacker pursues a specific goal, 
such as the prediction of wrong labels in a graph classification task accomplished by a 
trained model. On the other hand, the attack is untargeted when the attacker aims at a gen-
eral malfunctioning or degradation in performance of the model under attack.

3  Graph embedding adversarial attack

The present experimental analysis compares the behavior of three graph-level embedding 
methods under attack conditions for the graph classification task. This section is organized 
as follows. In Section 3.1, we describe the datasets considered in the experiments for the 
robustness evaluation of embedding models. In Section 3.2, we introduce the adopted attack 
strategies and their rationale. Then, in Section 3.3, we briefly describe the embedding meth-
ods considered in the experiments. In Section 3.4, we present the proposed experimental 
pipeline that trains the embedding models on attacked graphs and evaluates their perfor-
mance on test graphs. In the last Section 3.5, we discuss the experimental results.

3.1  Datasets

We consider three graph datasets having varying properties, as detailed in Table 1.
MUTAG  is a popular benchmark dataset composed of networks of 188 mutagenic aro-

matic and heteroaromatic nitro compounds [23]. The two classes indicate whether or not 
the compound has mutagenic effects on a bacterium. The nodes represent the atoms of the 
compound, while the edges represent the chemical bonds between them. The graphs con-
tain both vertex and edge labels.
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The PROTEINS dataset consists of 1113 graphs corresponding to protein molecules, 
subdivided into two classes according to whether or not they are enzymes [24]. The nodes 
represent Secondary Structure Elements of three different types (helix, sheet, or turn). 
Edges connect two nodes if they are neighbors in the amino-acid sequence or in the 3D 
space.

The Kidney dataset includes tissue-specific metabolic networks created for validat-
ing related research [25–27]. It contains networks representing 299 patients divided 
into three disease classes: 159 clear cell Renal Cell Carcinoma (KIRC), 90 Papillary 
Renal Cell Carcinoma (KIRP), and 50 Solid Tissue Normal samples.We obtained the 
networks by mapping gene expression data coming from the Genomic Data Commons 
(GDC, https:// portal. gdc. cancer. gov) portal (Projects TCGA-KIRC and TCGA-KIRP) 
on the biochemical reactions extracted from the kidney tissue metabolic model [28] 
(https:// metab olica tlas. org). Specifically, given the stoichiometric matrix of the meta-
bolic model, the graph nodes represent the metabolites, and the edges connect rea-
gent and product metabolites in the same reaction, weighted by the average of the 
expression values of the genes/enzymes catalyzing that reaction [25]. This results in 
graphs having the same topology (dictated by the metabolic model) but different edge 
weights (dictated by the gene expression values for each patient). The simplification 
procedure described in [26] is applied to reduce the complexity of the network, lead-
ing to reduce the number of nodes from 4022 to 1034. For our experimental study, we 
augmented the Kidney graphs with additional numerical labels storing the weighted 
degree of each node. Indeed, Kidney graphs have all the same structure (same set of 
vertices and edges), while they differ in the weights associated with edges among dif-
ferent graph samples. Since two of the embedding methods under study cannot pro-
cess edge weights, we decided to provide this information as node labels. With this 
choice, we could apply these embedding methods efficiently in this particular graph 
domain.

While MUTAG is a small dataset of small graphs (few nodes and edges each), PRO-
TEINS is a much larger set of small graphs, and Kidney is a medium-sized dataset of 
large graphs. The first two datasets can be considered historical benchmarks since they 
have been widely adopted as benchmarks in several works on graph classification in the 
last decade. In contrast, the larger-scale Kidney dataset is here adopted as a more chal-
lenging benchmark.

Table 1  Main properties of the 
adopted datasets

Property MUTAG PROTEINS Kidney

# graphs 188 1113 299
# classes 2 2 3
# samples per class 125/63 663/450 159/90/50
Average # nodes 17.93 39.06 1034
Average # edges 19.79 72.82 3226.00
Average edge density 0.138 0.212 0.006
# distinct node labels 7 3 1034
Edge weights ✗ ✗ ✓
Minimum diameter 5 1 7
Maximum diameter 15 54 7
Average degree 2.19 3.73 6.24

https://portal.gdc.cancer.gov
https://metabolicatlas.org
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3.2  Attack strategies

The attack strategies we consider are edge-level perturbations of the input graphs consist-
ing in the removal of a chosen budget of their edges. Which edges are to be removed is 
decided according to four different criteria:

Random - It is the baseline removal strategy, where edges to be removed are randomly 
chosen.
Betweenness Centrality - It measures the centrality of an edge e defined [29] as the sum 
of the fraction of all-pairs shortest paths that pass through e

where V is the set of nodes, �(i, j) is the number of shortest-paths connecting vertices i 
and j, and �(i, j ∣ e) is the number of those paths passing through the edge e.
Eigenvector Centrality - Known also as eigen-centrality [30], it describes the impor-
tance of a node in a graph based on that of its adjacent nodes. Let A = (ai,j) be the 
adjacency matrix of a graph G. We can compute a weight xi for node i in terms of the 
weights xj for the other nodes j as

where � is a constant. Equation 2 can be rewritten as Ax = �x so that x is an eigenvec-
tor of the adjacency matrix A. The components of the eigenvector associated with the 
maximum eigenvalue measure the relative importance among the nodes, providing their 
ranking. To obtain the centrality of edges, rather than nodes, we use the eigenvector 
centrality computed on the line graph of G (i.e., the graph where nodes represent the 
edges of G and two vertices are adjacent if their corresponding edges in G are incident).
PageRank - The PageRank algorithm is a variant of the Eigenvector Centrality origi-
nally designed for ranking web content, using hyperlinks between pages as a measure of 
importance [31]. Let A = (ai,j) be the adjacency matrix of a directed graph. The PageR-
ank centrality xi of node i is given by:

where � and �i are user-defined constants and dk = max(ok, 1), with ok denoting the out-
degree of node k. Thus, PageRank is determined by an endogenous component, namely 
the so-called damping factor � , that considers the network topology, and an exogenous 
component � = (�i) , the so-called personalization vector, that is independent of the net-
work structure. As for the eigenvector centrality, we compute the PageRank centrality of 
edges using the line graphs of the original graphs. In the experiments, we used � = 0.85 
and a null � vector.

The motivation for removing edges based on their centrality measure is based on the assump-
tion that the most significant information in biological networks relies on some relevant links, 
where the relevance is measured in terms of the link centrality measure. For example, in the 
Kidney dataset (see Section 3.1), metabolites are linked if they appear in the same metabolic 

(1)cB(e) =
∑

i,j∈V

�(i, j ∣ e)

�(i, j)
,

(2)xi = �−1
∑

j

aijxj,

(3)xi = �
∑

k

ak,i

dk
xk + �i,
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reaction. Therefore, high centrality links identify metabolites that are involved in many metabolic 
reactions and thus represent significant information for the networks. Similarly, in the MUTAG 
and PROTEINS datasets, edges with high centrality identify significant backbone structures of 
chemical compounds and proteins, respectively (Fig. 2).

Our focus is to study the effects of targeted attacks on the graph embedding process. Indeed, 
the choice of an edge removal criterion based on edges relevance shows that we envision a data 
degradation or an attack causing a significant information loss in biological networks.

Figures 3 and 4 show pictures of a Kidney graph before and after edge removal, in particular, 
with the removal of edges with highest betweenness centrality score (see Fig. 3), or randomly 
chosen (see Fig. 4). It can be noted how the former edge selection strategy, when compared to the 
baseline edge removal, focuses more on the deletion of entire clusters of nodes characterized by 
a great number of high centrality connections (see the rightmost node cluster of Fig. 3a, which is 
disrupted in isolated nodes after edge removal in Fig. 3b).

The described adversarial attacks to the embedding models under study are poison-
ing attacks. Indeed, we limited graph perturbations only to the sets of graphs adopted 
to build the embedding models, which are then used to infer embeddings of testing 
graphs in an inductive learning environment, as detailed in Section 3.4.

3.3  Embedding methods

Two embedding methods considered in the experiments rely on neural networks 
models: Netpro2vec [32] and Graph2Vec [33]. These models learn a function that 
maps graphs into a numerical lower-dimensional space. This mapping is opti-
mized in a learning process that uses one by one a set of training graph samples. 
The third method, FEATHER [34], is a probabilistic embedding model. Probabilis-
tic models exploit the extraction of random walks in the graph to learn its global 
structure together with the local neighborhood connectivity. FEATHER behaves as 

Fig. 2  A graph from PROTEINS dataset before (a) and after (b) a 20% budget of edge removal based on 
betweenness centrality (red edges in the left picture indicate those removed in the right picture)
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an embedding function performing graph-level embedding on each graph separately. 
Details are described in the following subsections.

3.3.1  Inductive Netpro2vec

Netpro2vec [32] is an unsupervised graph-level embedding method that exploits node 
proximity information (under different metrics) to transform graphs into textual docu-
ments while preserving their significant structural properties. Netpro2vec relies on an 
NLP learning model, called SkipGram [35], to extract, from each document-based graph, 

Fig. 3  A graph from the Kidney dataset before (a) and after (b) a 30% budget of edge removal based on 
betweenness centrality (red edges in the left picture indicate those removed in the right picture)

Fig. 4  A graph from the Kidney dataset (same as Fig. 3) before (a) and after (b) a 30% budget of random 
edge removal (red edges in the left picture indicate those removed in the right picture)
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the meaningful features in terms of vectors, i.e., the embeddings. Such a new graph rep-
resentation can be used for several machine learning tasks, such as unsupervised cluster-
ing and supervised classification of graphs. The main advantage of Netpro2vec is that it 
provides efficient embeddings completely independent of the task and nature of the data.

The current Netpro2vec implementation cannot be directly used in our experimental study 
since it provides a programming interface with the only support of transductive embedding. 
Nonetheless, by exploiting the Doc2Vec [36] facility to infer vector representation of new 
documents (in our case, graphs) based on a pre-trained embedding model, we developed a 
new API for the method, that we call iNetpro2vec, to support also inductive embedding.

3.3.2  Graph2Vec

Graph2Vec [33] is a neural method for learning graph-level embeddings in an unsu-
pervised manner. First, the method relabels nodes through a recursive node relabe-
ling algorithm assigning to each node a label uniquely representing the node’s rooted 
subgraph (neighborhood). After recursion, the final node labels form a vocabulary of 
words, and graphs are represented as a set of words (a document) in this vocabulary. 
Like Netpro2vec, Graph2Vec relies on the Doc2Vec learning model to learn the graph 
embeddings. The initial labels of nodes are, by default, the node degrees, although 
the user can specify them as an additional input. Graph2Vec is a popular method 
among graph-level embedding techniques, and it has proved to have good performance 
throughout many graph domains.

Graph2Vec graph-level embeddings are learned in a transductive manner. Since this 
method shares with Netpro2vec the same NLP processing technique, also in this case, 
it is possible to use the Doc2Vec facility to infer embeddings of new samples based on 
a pre-trained neural model. Thus, in the current work, we developed a new API that we 
call iGraph2Vec, to enable the method to operate in inductive learning mode.

3.3.3  FEATHER

FEATHER [34] is a method that uses an r-scale random walk weighted characteristic 
function to describe the distribution of graph node features at multiple scales. Assuming 
the neighborhood of a node u at scale r consists of nodes that can be reached by a random 
walk in r steps from source node u, this characteristic function has probability weights 
defined by the transition probabilities of random walks in r steps from source node u. 
FEATHER is a probabilistic embedding method: by exploiting random walks, it learns 
multi-scale node features of the graph that are aggregated by mean pooling to obtain a 
numerical vector (embedding) representing the entire graph structure and its local neigh-
borhood connectivity. Therefore, the resulting embedder can be applied to each graph 
sample separately.

3.4  Experimental pipeline

The experimental pipeline is summarized in the pseudo-code of Algorithm  1. The 
graph dataset is loaded (line 1) and split ten times into a training set with ninety per-
cent of the samples and a test set used for evaluation (line 2). The dataset partitions 
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are non-overlapping, thus ensuring that all graphs in the dataset are used for testing 
exactly once. After dataset splitting, the training samples are attacked according to 
the chosen adversarial attack strategy and parameter (budget of the attack) (line 3), 
while the test samples are unaltered. The embedding method is initialized, and its 
parameters are set (line 4). The embedding model is built (trained) on the altered 
samples (line 5). The so-trained model is applied to produce embedding on both train-
ing (line 6) and testing (line 7) samples. Once the embedding vectors are obtained, an 
SVM classifier with a linear kernel is applied to fit the training vectors and predict 
the test vectors (line 8). Scores for all cross-validation folds are collected, and perfor-
mances are computed.

3.5  Performance evaluation

The experimental results are all reported in Tables  3, 4, 5, 6, 7, 8, 9, 10 and 11 in the 
Appendix in terms of accuracy, precision, F-measure, recall, and Matthews Correla-
tion Coefficient (MCC) [37]. In Figs. 5, 6 and 7, we plotted the MCC scores obtained by 
the stratified 10-fold cross-validation on the embeddings produced by all methods when 
applied to each dataset and by varying the type of attack (random, betweenness, eigenvec-
tor, and PageRank centrality-based attack) and the budget of poisoning (percentage of edge 
removal).

In the MUTAG benchmark, all the methods show a performance degradation towards 
the null classification for attack budgets higher than 20%. This is due to the small size 
of the original graphs and the consequent scarcity of graph information survived to the 
edge removal attacks. The worst behavior is observed for FEATHER, while the best for 
iNetpro2vec, which partially succeeds in extracting distinctive information from the built 
vocabulary under moderate attacks.

In the case of PROTEINS, the performance of all the methods is low and similar, even 
with no attacks. iNetpro2vec is the only method showing less degradation of MCC scores 
when increasing the poisoning budget to the maximum. In our interpretation, this effect is 
partially due to the inherent robustness of the method. Indeed, if we look at the structure 
of a graph from the PROTEINS dataset (e.g., Fig. 2), we observe that edge removal attacks 
lead to the division of the protein graph into disjoint groups of atoms, leaving intra-group 
connectivity unaltered. In our understanding, iNetpro2vec relies more on intra-group than 

Algorithm 1  The experimental pipeline 
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inter-group connections to characterize the graph embedding. This is a plausible explana-
tion for the almost flat trend of MCCs in the plots.

In the case of the more challenging Kidney dataset, iNetpro2vec always performs 
better than FEATHER. This method clearly suffers in robustness under increasing edge 
removal attacks, and its performance under all the attack strategies soon degrades towards 
the null classification. iNetpro2vec also outperforms iGraph2Vec in the unattacked case 
and with attack budgets less than %20. In the other poisoning percentages, iGraph2Vec 
and iNetpro2vec show similar robustness when the attack increases and across the differ-
ent strategies. In particular, the two methods show good robustness within a range of 20% 
for random and betweenness strategies and within a larger range of budgets in the case of 
eigenvector and PageRank centrality-based edge removal.

Overall, iNetpro2vec appears more robust to edge removal attacks than the other meth-
ods. This is particularly evident in the PROTEIN benchmark, where the gap is larger as 
the attack budget increases. The same holds in the Kidney benchmark, although, for this 
domain of high-scale and weighted graphs, iGraph2Vec performs lightly worse with low-
budget attacks but similarly with larger budgets.

It should be observed that some of the compared methods seem to improve, rather than 
decrease, their performance under small budgets (generally 5%) of edge removal attacks. 
This is the case of FEATHER on the MUTAG and PROTEINS datasets and of iNetpro2vec 

Fig. 5  Plots of performance measures (MCC) on the MUTAG dataset for baseline (random) attacks (a), 
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank-based cen-
trality attacks (d)
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and Graph2Vec on the Kidney dataset. However, by applying the two sample T-test to 
quantify the difference between the population of MCC means in the case of unattacked 
graphs and of 5% budget of poisoning, and by examining the relative p-value, it comes out 
that the reported unexpected increase is not statistically significant and therefore cannot be 
considered a real improvement in performance.

As a general comment on the attack strategies, the eigenvector and PageRank centrality-
based edge removal strategies have similar effects on the methods’ performance. This was 
expected since, as already discussed in Section 3, the PageRank centrality is a variant of 
the eigenvector one.

To conclude the performance evaluation of the compared methods, for all the embed-
ding methods we report the parameter settings in Table  12 and the execution times 
recorded during the experiments in Table 2. We measured the average execution times of 
the experimental pipeline when applied to each pair dataset/method on an iMac Retina 5K 
with a 4GHz Intel Core i7 quad-core and 32GB of RAM 1600 MHz DDR3. We observe 
that the FEATHER algorithm is much faster than the other two methods in the case of 
small graphs (MUTAG and PROTEINS datasets). However, it is the slowest when deal-
ing with the much larger Kidney graphs, for which the two neural network-based methods 
require approximately 2/3 of the time.

Fig. 6  Plots of performance measures (MCC) on the PROTEINS dataset for baseline (random) attacks (a), 
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank-based cen-
trality attacks (d)
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4  Conclusions and future work

As a general conclusion, from our experimental study, iNetpro2vec shows a very good 
robustness of its embedding models across all the considered benchmarks and when 
the model training set is poisoned even with targeted attacks involving more central 
connections of nodes. It behaves similarly to iGraph2Vec in the Kidney benchmark, 
consisting of large-scale weighted and highly connected graphs. In this domain, the 
FEATHER method has no success. This is further proof that iNetpro2vec provides 
efficient embeddings independently from the nature of data and for different tasks 
(graph classification, graph similarity matching, and so on).

Fig. 7  Plots of performance measures (MCC) on the Kidney dataset for baseline (random) attacks (a), 
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank centrality-
based attacks (d)

Table 2  Average time estimates for each experiment execution

Method iNetpro2vec iGraph2Vec FEATHER

MUTAG 40s 12s 1s
PROTEINS 3m 30s 17s
Kidney 25m 24m 38m
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Future works are in the following directions: definitely, look at datasets with dif-
ferent characteristics in terms of density, structure, and position of nodes and edges 
as the attack strategies act above all on these aspects; furthermore, another important 
issue concerns the application of additional attack strategies in order to evaluate the 
behavior of graph embedding methods.

Appendix A: Performance measures of graph‑embedding methods

In this appendix, we include tables reporting measures of 10-fold classification accuracy 
(acc), precision (prec), F-measure (f1), recall, and Matthews Correlation Coefficients 
(MCC) obtained in all the experiments. One table is reported for each experiment bunch, 
referring to the classification performance of one graph-embedding method (iNetpro2vec, 
iGraph2Vec, or FEATHER) when applied to one dataset (MUTAG, PROTEINS, or Kid-
ney). In each table, we report the performance results when the dataset is unattacked 
(first row) and in the case of different percentages of edge removal (budget). The rows are 
grouped according to the criterion adopted for edge removal (random, betweenness, eigen-
vector, or pagerank) (Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11).

Table 3  Performances of iNetpro2Vec on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

unattacked 0 0.82±0.07 0.83±0.08 0.80±0.08 0.80±0.09 0.62±0.15
Random 5 0.71±0.10 0.71±0.10 0.69±0.10 0.72±0.11 0.43±0.22

10 0.74±0.12 0.74±0.12 0.72±0.12 0.74±0.12 0.48±0.23
20 0.65±0.09 0.58±0.15 0.57±0.12 0.58±0.11 0.17±0.25
30 0.62±0.09 0.37±0.08 0.42±0.06 0.49±0.06 −0.02±0.11
40 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.81±0.09 0.80±0.12 0.78±0.11 0.78±0.12 0.57±0.23
10 0.75±0.10 0.70±0.18 0.67±0.15 0.68±0.13 0.39±0.27
20 0.33±0.02 0.17±0.01 0.25±0.01 0.49±0.02 −0.03±0.09
30 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Eigenvector 5 0.82±0.10 0.81±0.13 0.79±0.13 0.79±0.14 0.60±0.26
10 0.80±0.07 0.78±0.08 0.78±0.08 0.79±0.09 0.57±0.17
20 0.46±0.07 0.68±0.04 0.43±0.08 0.59±0.05 0.25±0.09
30 0.39±0.10 0.36±0.22 0.30±0.05 0.51±0.03 0.04±0.10
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.73±0.11 0.72±0.12 0.71±0.12 0.75±0.13 0.47±0.24
10 0.46±0.16 0.23±0.08 0.31±0.07 0.50±0.00 0.00±0.00
20 0.34±0.02 0.17±0.01 0.25±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
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Table 4  Performances of iGraph2Vec on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.82±0.06 0.82±0.06 0.79±0.09 0.80±0.09 0.61±0.14
Random 5 0.80±0.08 0.80±0.10 0.76±0.11 0.76±0.11 0.55±0.20

10 0.77±0.05 0.82±0.08 0.68±0.07 0.67±0.05 0.46±0.12
20 0.73±0.03 0.83±0.08 0.58±0.06 0.60±0.04 0.36±0.10
30 0.68±0.03 0.44±0.21 0.43±0.06 0.52±0.03 0.07±0.13
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.76±0.08 0.74±0.09 0.73±0.09 0.74±0.10 0.47±0.18
10 0.72±0.06 0.71±0.21 0.56±0.11 0.59±0.07 0.30±0.19
20 0.72±0.06 0.71±0.11 0.64±0.07 0.64±0.06 0.33±0.15
30 0.68±0.06 0.64±0.20 0.52±0.10 0.55±0.07 0.16±0.24
40 0.50±0.14 0.51±0.19 0.46±0.15 0.56±0.09 0.13±0.18
50 0.37±0.11 0.19±0.05 0.27±0.05 0.50±0.00 0.00±0.00

Eigenvector 5 0.81±0.07 0.81±0.10 0.77±0.08 0.77±0.08 0.58±0.16
10 0.69±0.06 0.52±0.24 0.48±0.12 0.54±0.08 0.12±0.23
20 0.67±0.02 0.38±0.15 0.41±0.04 0.51±0.02 0.03±0.09
30 0.67±0.03 0.38±0.16 0.41±0.05 0.51±0.03 0.03±0.10
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.79±0.07 0.77±0.08 0.76±0.10 0.77±0.09 0.54±0.17
10 0.78±0.09 0.76±0.12 0.71±0.14 0.71±0.13 0.47±0.24
20 0.68±0.04 0.65±0.20 0.52±0.07 0.55±0.04 0.18±0.17
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.66±0.03 0.37±0.10 0.42±0.06 0.50±0.04 0.00±0.11
50 0.66±0.02 0.36±0.07 0.41±0.03 0.50±0.01 −0.01±0.06
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Table 5  Performances of FEATHER on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.73±0.08 0.69±0.12 0.67±0.11 0.66±0.10 0.35±0.21
Random 5 0.76±0.07 0.73±0.21 0.64±0.14 0.65±0.10 0.39±0.23

10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.77±0.06 0.78±0.16 0.68±0.12 0.68±0.09 0.45±0.20
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Eigenvector 5 0.76±0.07 0.73±0.17 0.66±0.12 0.66±0.10 0.40±0.22
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.71±0.06 0.57±0.24 0.52±0.14 0.57±0.09 0.20±0.22
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
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Table 6  Performances of iNetpro2Vec on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 recall MCC

Unattacked 0 0.71±0.05 0.70±0.06 0.69±0.06 0.69±0.06 0.39±0.11
Random 5 0.70±0.05 0.69±0.05 0.68±0.05 0.68±0.05 0.36±0.10

10 0.71±0.05 0.71±0.05 0.69±0.05 0.69±0.05 0.39±0.10
20 0.70±0.05 0.70±0.06 0.67±0.05 0.67±0.05 0.37±0.10
30 0.68±0.03 0.69±0.05 0.62±0.04 0.63±0.03 0.31±0.08
40 0.66±0.02 0.71±0.05 0.55±0.04 0.58±0.03 0.26±0.07
50 0.62±0.02 0.69±0.16 0.44±0.04 0.53±0.02 0.15±0.09

Betweeness 5 0.71±0.03 0.70±0.03 0.68±0.03 0.68±0.03 0.38±0.06
10 0.71±0.04 0.70±0.04 0.68±0.04 0.68±0.04 0.38±0.09
20 0.70±0.03 0.70±0.04 0.66±0.04 0.66±0.04 0.35±0.07
30 0.69±0.02 0.70±0.03 0.63±0.03 0.63±0.02 0.33±0.05
40 0.64±0.04 0.70±0.09 0.53±0.04 0.57±0.03 0.24±0.11
50 0.63±0.02 0.73±0.07 0.48±0.03 0.55±0.02 0.21±0.06

Eigenvector 5 0.68±0.04 0.67±0.04 0.67±0.04 0.67±0.04 0.33±0.08
10 0.69±0.04 0.69±0.05 0.67±0.04 0.67±0.04 0.35±0.09
20 0.69±0.04 0.69±0.06 0.64±0.05 0.64±0.04 0.33±0.10
30 0.68±0.04 0.69±0.05 0.62±0.04 0.63±0.04 0.32±0.09
40 0.68±0.03 0.70±0.05 0.60±0.03 0.62±0.03 0.30±0.07
50 0.66±0.03 0.69±0.06 0.57±0.04 0.59±0.03 0.26±0.09

Pagerank 5 0.70±0.04 0.69±0.04 0.69±0.04 0.69±0.04 0.39±0.08
10 0.70±0.03 0.69±0.04 0.68±0.03 0.68±0.03 0.37±0.07
20 0.65±0.02 0.65±0.04 0.57±0.02 0.59±0.02 0.23±0.05
30 0.63±0.03 0.65±0.07 0.51±0.04 0.56±0.03 0.18±0.08
40 0.62±0.02 0.66±0.08 0.46±0.04 0.53±0.02 0.14±0.07
50 0.60±0.01 0.54±0.21 0.39±0.02 0.51±0.01 0.03±0.09



277Adversarial attacks on graph‑level embedding methods: a case…

1 3

Table 7  Performances of iGraph2Vec on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.72±0.04 0.71±0.04 0.69±0.04 0.69±0.04 0.40±0.08
Random 5 0.69±0.03 0.70±0.05 0.62±0.04 0.63±0.04 0.33±0.08

10 0.64±0.02 0.71±0.08 0.50±0.03 0.56±0.02 0.22±0.08
20 0.64±0.02 0.76±0.07 0.50±0.04 0.56±0.02 0.25±0.07
30 0.62±0.03 0.66±0.23 0.44±0.06 0.54±0.03 0.16±0.14
40 0.62±0.01 0.72±0.15 0.44±0.03 0.53±0.02 0.17±0.07
50 0.60±0.01 0.57±0.24 0.39±0.02 0.51±0.01 0.06±0.07

Betweeness 5 0.68±0.04 0.71±0.06 0.62±0.05 0.63±0.04 0.33±0.10
10 0.66±0.02 0.72±0.04 0.55±0.04 0.59±0.03 0.28±0.05
20 0.63±0.01 0.74±0.08 0.47±0.02 0.54±0.01 0.20±0.05
30 0.62±0.01 0.78±0.06 0.44±0.03 0.53±0.01 0.19±0.05
40 0.61±0.01 0.69±0.20 0.41±0.03 0.52±0.01 0.13±0.07
50 0.61±0.01 0.66±0.20 0.41±0.03 0.52±0.01 0.11±0.07

Eigenvector 5 0.69±0.01 0.71±0.02 0.63±0.02 0.64±0.02 0.34±0.04
10 0.64±0.02 0.69±0.08 0.51±0.04 0.56±0.03 0.21±0.08
20 0.61±0.01 0.67±0.08 0.46±0.03 0.53±0.01 0.14±0.06
30 0.63±0.03 0.66±0.14 0.48±0.06 0.55±0.04 0.17±0.13
40 0.63±0.02 0.69±0.14 0.47±0.05 0.55±0.03 0.18±0.12
50 0.62±0.02 0.65±0.15 0.45±0.05 0.53±0.03 0.14±0.10

Pagerank 5 0.65±0.04 0.65±0.05 0.65±0.05 0.65±0.05 0.30±0.10
10 0.66±0.04 0.64±0.04 0.63±0.05 0.63±0.04 0.27±0.09
20 0.64±0.02 0.71±0.05 0.51±0.03 0.56±0.02 0.23±0.06
30 0.66±0.01 0.73±0.05 0.55±0.03 0.59±0.02 0.28±0.05
40 0.64±0.02 0.69±0.07 0.54±0.04 0.57±0.03 0.23±0.08
50 0.63±0.02 0.73±0.07 0.48±0.03 0.55±0.02 0.21±0.07
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Table 8  Performances of FEATHER on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.69±0.04 0.71±0.06 0.62±0.05 0.63±0.04 0.33±0.09
Random 5 0.69±0.04 0.72±0.07 0.62±0.06 0.63±0.05 0.34±0.12

10 0.70±0.05 0.71±0.08 0.65±0.05 0.65±0.05 0.36±0.12
20 0.69±0.04 0.70±0.07 0.65±0.04 0.65±0.04 0.34±0.10
30 0.69±0.04 0.70±0.07 0.63±0.05 0.64±0.04 0.33±0.11
40 0.67±0.03 0.72±0.07 0.58±0.04 0.60±0.03 0.30±0.09
50 0.60±0.00 0.30±0.00 0.37±0.00 0.50±0.00 0.00±0.00

Betweeness 5 0.68±0.03 0.72±0.06 0.59±0.04 0.61±0.04 0.32±0.09
10 0.67±0.03 0.71±0.06 0.59±0.04 0.61±0.03 0.31±0.09
20 0.67±0.03 0.73±0.06 0.58±0.05 0.61±0.03 0.31±0.09
30 0.64±0.02 0.74±0.07 0.51±0.04 0.56±0.02 0.24±0.07
40 0.61±0.01 0.64±0.23 0.40±0.02 0.51±0.01 0.10±0.08
50 0.60±0.00 0.35±0.15 0.38±0.01 0.50±0.00 0.01±0.04

Eigenvector 5 0.69±0.04 0.71±0.07 0.63±0.06 0.64±0.05 0.34±0.12
10 0.68±0.04 0.73±0.07 0.60±0.04 0.62±0.04 0.33±0.10
20 0.56±0.04 0.54±0.04 0.54±0.04 0.54±0.04 0.08±0.09
30 0.56±0.04 0.53±0.05 0.52±0.04 0.53±0.04 0.06±0.09
40 0.60±0.03 0.59±0.04 0.58±0.04 0.59±0.04 0.17±0.07
50 0.64±0.03 0.63±0.04 0.60±0.05 0.61±0.04 0.23±0.08

Pagerank 5 0.69±0.04 0.70±0.06 0.63±0.06 0.64±0.05 0.34±0.11
10 0.69±0.05 0.69±0.07 0.65±0.05 0.65±0.04 0.34±0.12
20 0.67±0.04 0.69±0.08 0.62±0.05 0.62±0.04 0.31±0.11
30 0.66±0.03 0.69±0.07 0.58±0.03 0.60±0.03 0.27±0.09
40 0.66±0.02 0.72±0.06 0.55±0.03 0.58±0.02 0.27±0.07
50 0.61±0.01 0.62±0.22 0.40±0.03 0.51±0.01 0.09±0.06
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Table 9  Performances of iNetpro2Vec on Kidney dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.87±0.05 0.90±0.04 0.88±0.05 0.87±0.06 0.79±0.09
Random 5 0.85±0.04 0.88±0.03 0.86±0.04 0.87±0.05 0.76±0.06

10 0.82±0.08 0.85±0.06 0.84±0.07 0.85±0.07 0.71±0.12
20 0.67±0.12 0.81±0.05 0.71±0.11 0.74±0.09 0.56±0.12
30 0.60±0.12 0.68±0.09 0.61±0.10 0.66±0.08 0.46±0.13
40 0.49±0.12 0.59±0.18 0.47±0.14 0.53±0.09 0.32±0.15
50 0.61±0.08 0.59±0.15 0.50±0.09 0.53±0.07 0.37±0.09

Betweeness 5 0.85±0.04 0.87±0.03 0.86±0.05 0.86±0.06 0.75±0.08
10 0.87±0.04 0.90±0.03 0.88±0.04 0.89±0.05 0.80±0.06
20 0.81±0.06 0.87±0.04 0.81±0.07 0.79±0.08 0.70±0.10
30 0.72±0.09 0.81±0.05 0.75±0.08 0.78±0.08 0.61±0.12
40 0.67±0.07 0.74±0.08 0.70±0.07 0.72±0.07 0.51±0.12
50 0.54±0.05 0.37±0.11 0.33±0.06 0.38±0.04 0.13±0.14

Eigenvector 5 0.88±0.05 0.90±0.04 0.89±0.05 0.89±0.06 0.81±0.08
10 0.88±0.06 0.91±0.05 0.89±0.05 0.89±0.06 0.81±0.09
20 0.86±0.06 0.89±0.05 0.87±0.06 0.87±0.06 0.77±0.09
30 0.86±0.06 0.89±0.05 0.87±0.05 0.88±0.06 0.79±0.09
40 0.86±0.06 0.90±0.04 0.86±0.07 0.86±0.07 0.78±0.09
50 0.86±0.07 0.89±0.06 0.86±0.07 0.86±0.08 0.77±0.12

Pagerank 5 0.87±0.08 0.90±0.06 0.88±0.07 0.89±0.07 0.80±0.12
10 0.79±0.08 0.81±0.08 0.80±0.07 0.82±0.06 0.67±0.12
20 0.80±0.09 0.83±0.07 0.82±0.09 0.83±0.09 0.69±0.14
30 0.78±0.08 0.82±0.05 0.80±0.07 0.80±0.08 0.64±0.13
40 0.80±0.09 0.84±0.07 0.81±0.08 0.81±0.09 0.68±0.14
50 0.79±0.10 0.84±0.07 0.80±0.10 0.79±0.10 0.66±0.16
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Table 10  Performances of iGraph2Vec on Kidney dataset under the different attacks

Attack Budget acc prec f1 recall MCC

Unattacked 0 0.77±0.10 0.79±0.10 0.79±0.10 0.81±0.08 0.65±0.15
Random 5 0.79±0.07 0.81±0.06 0.81±0.06 0.83±0.06 0.67±0.10

10 0.81±0.06 0.83±0.06 0.82±0.07 0.84±0.07 0.69±0.10
20 0.80±0.05 0.82±0.05 0.81±0.06 0.81±0.06 0.68±0.08
30 0.74±0.10 0.80±0.07 0.74±0.10 0.75±0.08 0.60±0.12
40 0.67±0.12 0.78±0.08 0.66±0.13 0.67±0.11 0.52±0.16
50 0.62±0.09 0.71±0.10 0.57±0.07 0.57±0.06 0.40±0.12

Betweeness 5 0.77±0.08 0.80±0.08 0.79±0.07 0.80±0.06 0.64±0.12
10 0.78±0.07 0.81±0.08 0.77±0.08 0.77±0.08 0.65±0.11
20 0.69±0.07 0.78±0.07 0.65±0.08 0.62±0.07 0.46±0.13
30 0.53±0.07 0.37±0.10 0.37±0.06 0.41±0.07 0.16±0.14
40 0.45±0.09 0.29±0.05 0.31±0.06 0.34±0.06 0.03±0.14
50 0.49±0.08 0.30±0.06 0.33±0.07 0.37±0.07 0.07±0.16

Eigenvector 5 0.81±0.08 0.81±0.09 0.82±0.08 0.84±0.07 0.70±0.13
10 0.82±0.07 0.83±0.08 0.83±0.07 0.84±0.07 0.71±0.12
20 0.80±0.09 0.83±0.09 0.82±0.09 0.82±0.08 0.68±0.14
30 0.78±0.08 0.82±0.07 0.80±0.08 0.79±0.08 0.64±0.13
40 0.81±0.07 0.85±0.06 0.81±0.08 0.79±0.09 0.68±0.12
50 0.79±0.08 0.84±0.09 0.77±0.09 0.74±0.10 0.64±0.14

Pagerank 5 0.79±0.09 0.80±0.10 0.80±0.09 0.81±0.08 0.66±0.14
10 0.79±0.09 0.79±0.10 0.80±0.09 0.82±0.08 0.66±0.14
20 0.80±0.08 0.82±0.06 0.81±0.08 0.81±0.09 0.66±0.13
30 0.76±0.09 0.79±0.08 0.76±0.09 0.75±0.09 0.59±0.16
40 0.75±0.07 0.80±0.06 0.74±0.09 0.73±0.10 0.58±0.14
50 0.75±0.09 0.81±0.07 0.74±0.11 0.73±0.12 0.59±0.17
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Table 11  Performances of FEATHER on Kidney dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.74±0.06 0.76±0.10 0.72±0.08 0.72±0.08 0.56±0.10
Random 5 0.61±0.12 0.67±0.14 0.59±0.12 0.62±0.11 0.40±0.16

10 0.47±0.09 0.46±0.13 0.38±0.06 0.48±0.05 0.21±0.06
20 0.19±0.03 0.23±0.23 0.14±0.06 0.36±0.04 0.05±0.10
30 0.18±0.02 0.16±0.15 0.12±0.04 0.35±0.02 0.03±0.09
40 0.27±0.11 0.24±0.17 0.21±0.11 0.40±0.07 0.06±0.13
50 0.17±0.00 0.06±0.00 0.10±0.00 0.33±0.00 0.00±0.00

Betweeness 5 0.56±0.09 0.43±0.16 0.41±0.09 0.43±0.08 0.19±0.18
10 0.46±0.15 0.41±0.17 0.32±0.14 0.42±0.09 0.20±0.17
20 0.55±0.11 0.51±0.12 0.45±0.10 0.49±0.07 0.28±0.11
30 0.31±0.07 0.15±0.07 0.17±0.03 0.31±0.03 −0.06±0.10
40 0.32±0.04 0.22±0.15 0.19±0.04 0.34±0.03 0.04±0.12
50 0.36±0.06 0.29±0.13 0.27±0.07 0.39±0.04 0.12±0.09

Eigenvector 5 0.53±0.01 0.18±0.00 0.23±0.00 0.33±0.00 0.00±0.00
10 0.26±0.16 0.13±0.14 0.16±0.12 0.35±0.04 0.02±0.09
20 0.43±0.14 0.18±0.08 0.22±0.08 0.35±0.07 0.00±0.10
30 0.27±0.14 0.17±0.10 0.16±0.06 0.31±0.05 −0.02±0.10
40 0.22±0.05 0.19±0.12 0.16±0.05 0.32±0.07 0.01±0.10
50 0.37±0.10 0.19±0.12 0.20±0.06 0.34±0.04 0.03±0.10

Pagerank 5 0.46±0.14 0.16±0.04 0.21±0.05 0.34±0.01 −0.01±0.02
10 0.29±0.02 0.12±0.06 0.16±0.02 0.34±0.02 0.02±0.05
20 0.30±0.01 0.12±0.04 0.18±0.05 0.35±0.06 0.03±0.06
30 0.29±0.07 0.26±0.08 0.25±0.05 0.42±0.06 0.14±0.09
40 0.19±0.05 0.07±0.02 0.11±0.02 0.33±0.00 0.00±0.00
50 0.23±0.13 0.09±0.07 0.12±0.06 0.33±0.01 −0.01±0.03
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Appedix B: Parameter settings of graph‑embedding methods

Table 12 reports the parameter settings for the software implementations of Netpro2vec,1 
Graph2Vec,2 and  FEATHER2 adopted in the experiments. These parameters have been 
experimentally chosen to optimize MCC performance.

Table 12  Parameter settings for the embedding methods used in the experiments for each dataset. In the 
case of FEATHER, the embedding size is not an input parameter, and it is set to 500

iNetpro2vec iGraph2Vec FEATHER

MUTAG dimensions=512, dimensions=256, order=5,
epochs=400, epochs=200, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd], wl-iterations=3, pooling=mean
cut_off=[0.1], learning-rate=0.025,
extractor=[1], agg_by=[1], down-sampling=0.0001
learning-rate=0.025,
down-sampling=0.0001

PROTEINS dimensions=256, dimensions=256, order=5,
epochs=200, epochs=25, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd,tm1], wl-iterations=3, pooling=mean
cut_off=[0,0], learning-rate=0.025,
extractor=[2,2], down-sampling=0.0001
agg_by=[1,0],
learning-rate=0.025,
down-sampling=0.0001

Kidney dimensions=256, dimensions=256, order=5,
epochs=200, epochs=200, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd,tm1], wl-iterations=3, pooling=mean
cut_off=[0,0], learning-rate=0.025,
extractor=[1,1], down-sampling=0.0001
agg_by=[1,0],
learning-rate=0.025,
down-sampling=0.0001

2 available at https:// karat eclub. readt hedocs. io

1 available at https:// github. com/ cds- group/ Netpr o2vec

https://karateclub.readthedocs.io
https://github.com/cds-group/Netpro2vec
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