
Vol.:(0123456789)

Annals of Mathematics and Artificial Intelligence (2023) 91:259–285
https://doi.org/10.1007/s10472-022-09811-4

1 3

Adversarial attacks on graph‑level embedding methods:
a case study

Maurizio Giordano1 · Lucia Maddalena1 · Mario Manzo2 ·
Mario Rosario Guarracino3

Accepted: 27 July 2022 / Published online: 6 October 2022
© The Author(s) 2022

Abstract
As the number of graph-level embedding techniques increases at an unprecedented speed,
questions arise about their behavior and performance when training data undergo perturba-
tions. This is the case when an external entity maliciously alters training data to invalidate
the embedding. This paper explores the effects of such attacks on some graph datasets by
applying different graph-level embedding techniques. The main attack strategy involves
manipulating training data to produce an altered model. In this context, our goal is to go in-
depth about methods, resources, experimental settings, and performance results to observe
and study all the aspects that derive from the attack stage.

Keywords Adversarial attacks · Adversarial machine learning · Graph embedding · Graph
neural networks · Graph classification

Mathematics subject classification (2010) 68T01 · 68T07 · 68R10

Mathematics subject classification (2020) 68T01 · 68T07 · 92B20 · 68R10

 * Maurizio Giordano
 maurizio.giordano@cnr.it

 Lucia Maddalena
 lucia.maddalena@cnr.it

 Mario Manzo
 mmanzo@unior.it

 Mario Rosario Guarracino
 mario.guarracino@unicas.it

1 High Performance Computing and Networking Institute (ICAR), National Research Council
(CNR), Via Pietro Castellino 111, Naples 80131, Italy

2 Information Technology Services, University of Naples “L’Orientale”, Via Nuova Marina 59,
Naples 80133, Italy

3 Department of Economics and Law, University of Cassino and Southern Lazio, Campus Folcara,
Cassino 03043, Italy

http://orcid.org/0000-0001-9917-7591
http://orcid.org/0000-0002-0567-4624
http://orcid.org/0000-0001-8727-9865
http://orcid.org/0000-0003-2870-8134
http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-022-09811-4&domain=pdf

260 M. Giordano et al.

1 3

1 Introduction

Graphs are playing an important role in many real-world applications, and related data
analysis techniques are showing their feasibility also on large-scale problems, including
drug screening [1], cancer metabolism [2], protein analysis [3], resource deployment [4],
cooperative control strategies [5], and knowledge graph completion [6].

Graph embedding is an emergent research area in machine learning (ML) that includes
techniques and methods to find “latent vector representations” of graphs to capture their
topology and preserve relevant network properties [7–9]. The resulting graph representations
can be made rich by considering several information sources, such as vertex-vertex relation-
ships and vertex/edge attributes. Graph embedding techniques attract significant interest
in the ML community since vector spaces are more amenable to data science than graphs.
Indeed, while network relationships can only be processed by specific techniques from math-
ematics, statistics, and ML, vector spaces have a richer toolset from those disciplines. In addi-
tion, vector operations are often simpler and faster than the equivalent graph operations.

In everyday real-life applications, due to the increasing pervasiveness of ML, deep
learning, and AI algorithms, the robustness and vulnerability of these algorithms have
now become crucial and very important aspects of research. In the specific context of AI
applied to networked data processing, application domains include cybersecurity, online
financial trading, social media, big-data analytics, and bioinformatics.

Here, the question arises on how to handle situations in which input data is altered, due
to acquisition noise or intentional modifications (the so-called adversarial attacks), lead-
ing to misleading conclusions or reduced algorithms performance. In these contexts, the
real goal of an attack is to cause (intentionally or not) the malfunctioning and/or fraudu-
lent behavior of algorithms operating on data structured as graphs. This occurs as a result
of perturbations of the graphs performed by the attacker, where the changes can be more
or less significant and targeted based on knowledge of the intrinsic functioning of these
algorithms (parameters, implementation logic, etc.). This is the assumption of Adversarial
Machine Learning (AML) [10]. This new research area studies and proposes solutions to
tackle the vulnerability of ML models when their performance in different tasks is compro-
mised through adversarial perturbations on their input. Indeed, neural networks and many
other ML techniques suffer this problem when input modifications occur during training,
testing, or deploying phases. Notable application domains of AML are Computer Vision
[11, 12], Natural Language Processing (NLP) [13], and Cybersecurity [14].

Among the reviews on graph adversarial attacks, [15, 16] mainly focus on GNN-based
methods, while [17] also covers attack and defense models for non-GNN methods. The
Graph Adversarial Learning Literature repository, produced by Sun et al. [17], has a
curated selection of more than 110 adversarial attack and defense studies on graph-struc-
tured data, as well as links to downloadable programs. The Awesome Graph Adversarial
Learning repository, built and maintained by Chen et al. [18], includes links to 271 rele-
vant publications published in the last five years. Literature on adversarial attacks is mainly
focused on poisoning strategies, such as backdoor attacks [19], where the training stage of
the target model is perturbed and its behavior is normal unless a specific trigger is present
in the test samples, training to mislead graph prediction [20]. The general aim is to affect
the performance of graph-level tasks, and none of these works shares our goal, which is to
compare the robustness to adversarial attacks of different graph-level embedding methods.

In this work, we address a specific application domain for AML: the study of the vulner-
ability of ML models applied to the classification/prediction of biological networks. In our

261Adversarial attacks on graph‑level embedding methods: a case…

1 3

assumption, an “adversarial attack” on a biological network concerns any type of perturba-
tion to the structure of the graph due both to the noise introduced by the experimental envi-
ronment from which the biological data are extracted and to the lack of information due to
corrupted sources, or incomplete pre-processing of raw data. Therefore, in our mind, we
consider less likely, but still possible, a scenario in which a “real” attacker can intentionally
and fraudulently modify the biological networks processed by the ML models.

In this context, we aim to study and measure the robustness of some graph embedding
methods, two based on neural networks and another based on statistics, when we alter the
training stage of these models through adversarial perturbations to the input data. The
altered models of graph-to-vector transformers (embedders) are evaluated with respect to
their robustness by measuring classification performance on unperturbed test graphs. In
this work, we keep on developing the research activities carried out in [21, 22], which,
as far as we know, are the only literature contributions to the robustness analysis of graph
embedding techniques.

The paper is structured as follows. Section 2 introduces definitions, types, and properties
of graph embedding and adversarial attack taxonomies. Section 3 discusses our approach
to adversarial attacks on graph-embedding methods and the related experimental study by
delving into methods, resources, experimental settings, and performance results. Section 4
reports concluding considerations and future directions for the work.

2 Background

2.1 Graph embedding definitions

The general term of graph embedding methods denotes a plethora of techniques and meth-
odologies to translate large and complex graphs into a reduced vector space, which is often
called latent space. In other words, any procedure that constructs a vector representation of
a graph in order to simplify and/or make a certain machine learning task more efficient is
called graph embedding.

Definition 1 (Graph Embedding) A graph embedding is a mapping � from a collection
of graph substructures (most commonly either all nodes, or all edges, or certain subgraphs,
or even the whole graph) to ℝd.

Graph embedding techniques differ in which aspects of the graph we try to represent:

• Node-level embeddings describe the connectivity of the graph. Each node in the graph
is associated with a vector representation. Node-level embeddings target node predic-
tion, reconstruction, and graph clustering.

• Edge-level embeddings describe traversals across the graph. Each edge in the graph is
associated with a vector representation. Edge-level embeddings target edge prediction,
reconstruction, and graph clustering.

• Graph-level embeddings encode the entire graph into a single vector. Each element in a
set of graphs is associated with a vector representation. Graph-level embeddings target
graph classification and graph matching.

262 M. Giordano et al.

1 3

In this work, we focus on graph-level embedding (see Fig. 1), more precisely in the realm
of graph classification tasks in the biological networks domain. Graph-level embedding,
also known as whole-graph embedding, can be formally defined as:

Definition 2 (Graph-level Embedding) Given a set of graphs G = {G1,… ,Gm}, a graph-
level embedding is a mapping function � ∶ G → ℝ

d where d ∈ ℕ, such that � preserves
some proximity measure defined on G.

Choosing an appropriate embedding dimension d is challenging but necessary, and
above all crucial, to generate embeddings applicable to a multitude of tasks. A general rule
of thumb is “small enough to be efficient and large enough to be effective”. The criticality
concerning the final latent space dimension is that it should express all valuable informa-
tion needed to accomplish the machine learning task on graphs.

When talking about graph embedding techniques, it is important to be aware of another
distinction:

• In transductive embedding, the vector representation for a new graph is produced by
the embedding function (or model), requiring to process the new graph jointly with pre-
vious graphs. At each new graph embedding, the vectors for previous graphs change.

• In inductive embedding, the vector representation (embedding) for a new graph is produced
by the embedding function (or model), requiring only the processing of the new graph. The
embedding for older graphs does not change when we perform the embedding of a new graph.

The embedding process can be unsupervised or supervised. Thus, transductive supervised
embedding methods cannot be used as models for prediction and classification tasks on
unknown graphs.

2.2 Adversarial attack taxonomies

Several surveys in the literature [15–17] propose different taxonomies for graph/network
attacks based on the goals, knowledge, and resources of the attackers. Adversarial sam-
ples of graph data can be produced either through node-level perturbations or by edge-level

Fig. 1 Graph-level embedding

263Adversarial attacks on graph‑level embedding methods: a case…

1 3

perturbations. Node-level attacks may consist in adding/removing nodes and/or modifying tar-
get node features. Edge-level attacks may consist in adding/removing edges between nodes
and/or modifying target edge features. In both cases, the number of modified nodes/edges is
often referred to as the perturbation budget, which is used to evaluate the magnitude of the
perturbation.

Evasion attacks refer to modifications to only the testing data on which a model is
applied to accomplish the requested task (e.g., classification, regression, clustering, match-
ing, etc.). In evasion attacks, there is no need to know the model insights (architecture,
parameters, and so on). Poisoning attacks aim to affect the model’s performance by adding
adversarial samples into the training dataset. The majority of adversarial attacks in graph-
based machine learning is of this type. In addition, in the case the task of the trained model
is performed in the transductive learning setting, any evasion attack results in a poisoned
attack since the model is re-trained after testing.

Concerning the amount of knowledge the attacker has about the target models, the types of
attacks are classified as: 1) white-box attack, in which the attacker can retrieve all the useful
information about the target system to successfully complete the attack, such as the underlying
model, its architecture and parameters, etc.; 2) gray-box attack, in which the attacker can only
obtain limited information about the target system to perform the attack. This type of attack is
more dangerous to the system than white-box attacks, as it only needs partial information to
work; 3) black-box attack, in which the attacker has no information about the system. Gener-
ally, it is only allowed to do black-box queries on limited samples at most, and thus it cannot
make poisoning attacks on the trained model. However, if a black-box attack works, it is more
dangerous than the other two since the attacker succeeds with no information at all.

Regarding the goal, the attack can be targeted if the attacker pursues a specific goal,
such as the prediction of wrong labels in a graph classification task accomplished by a
trained model. On the other hand, the attack is untargeted when the attacker aims at a gen-
eral malfunctioning or degradation in performance of the model under attack.

3 Graph embedding adversarial attack

The present experimental analysis compares the behavior of three graph-level embedding
methods under attack conditions for the graph classification task. This section is organized
as follows. In Section 3.1, we describe the datasets considered in the experiments for the
robustness evaluation of embedding models. In Section 3.2, we introduce the adopted attack
strategies and their rationale. Then, in Section 3.3, we briefly describe the embedding meth-
ods considered in the experiments. In Section 3.4, we present the proposed experimental
pipeline that trains the embedding models on attacked graphs and evaluates their perfor-
mance on test graphs. In the last Section 3.5, we discuss the experimental results.

3.1 Datasets

We consider three graph datasets having varying properties, as detailed in Table 1.
MUTAG is a popular benchmark dataset composed of networks of 188 mutagenic aro-

matic and heteroaromatic nitro compounds [23]. The two classes indicate whether or not
the compound has mutagenic effects on a bacterium. The nodes represent the atoms of the
compound, while the edges represent the chemical bonds between them. The graphs con-
tain both vertex and edge labels.

264 M. Giordano et al.

1 3

The PROTEINS dataset consists of 1113 graphs corresponding to protein molecules,
subdivided into two classes according to whether or not they are enzymes [24]. The nodes
represent Secondary Structure Elements of three different types (helix, sheet, or turn).
Edges connect two nodes if they are neighbors in the amino-acid sequence or in the 3D
space.

The Kidney dataset includes tissue-specific metabolic networks created for validat-
ing related research [25–27]. It contains networks representing 299 patients divided
into three disease classes: 159 clear cell Renal Cell Carcinoma (KIRC), 90 Papillary
Renal Cell Carcinoma (KIRP), and 50 Solid Tissue Normal samples.We obtained the
networks by mapping gene expression data coming from the Genomic Data Commons
(GDC, https:// portal. gdc. cancer. gov) portal (Projects TCGA-KIRC and TCGA-KIRP)
on the biochemical reactions extracted from the kidney tissue metabolic model [28]
(https:// metab olica tlas. org). Specifically, given the stoichiometric matrix of the meta-
bolic model, the graph nodes represent the metabolites, and the edges connect rea-
gent and product metabolites in the same reaction, weighted by the average of the
expression values of the genes/enzymes catalyzing that reaction [25]. This results in
graphs having the same topology (dictated by the metabolic model) but different edge
weights (dictated by the gene expression values for each patient). The simplification
procedure described in [26] is applied to reduce the complexity of the network, lead-
ing to reduce the number of nodes from 4022 to 1034. For our experimental study, we
augmented the Kidney graphs with additional numerical labels storing the weighted
degree of each node. Indeed, Kidney graphs have all the same structure (same set of
vertices and edges), while they differ in the weights associated with edges among dif-
ferent graph samples. Since two of the embedding methods under study cannot pro-
cess edge weights, we decided to provide this information as node labels. With this
choice, we could apply these embedding methods efficiently in this particular graph
domain.

While MUTAG is a small dataset of small graphs (few nodes and edges each), PRO-
TEINS is a much larger set of small graphs, and Kidney is a medium-sized dataset of
large graphs. The first two datasets can be considered historical benchmarks since they
have been widely adopted as benchmarks in several works on graph classification in the
last decade. In contrast, the larger-scale Kidney dataset is here adopted as a more chal-
lenging benchmark.

Table 1 Main properties of the
adopted datasets

Property MUTAG PROTEINS Kidney

graphs 188 1113 299
classes 2 2 3
samples per class 125/63 663/450 159/90/50
Average # nodes 17.93 39.06 1034
Average # edges 19.79 72.82 3226.00
Average edge density 0.138 0.212 0.006
distinct node labels 7 3 1034
Edge weights ✗ ✗ ✓
Minimum diameter 5 1 7
Maximum diameter 15 54 7
Average degree 2.19 3.73 6.24

https://portal.gdc.cancer.gov
https://metabolicatlas.org

265Adversarial attacks on graph‑level embedding methods: a case…

1 3

3.2 Attack strategies

The attack strategies we consider are edge-level perturbations of the input graphs consist-
ing in the removal of a chosen budget of their edges. Which edges are to be removed is
decided according to four different criteria:

Random - It is the baseline removal strategy, where edges to be removed are randomly
chosen.
Betweenness Centrality - It measures the centrality of an edge e defined [29] as the sum
of the fraction of all-pairs shortest paths that pass through e

where V is the set of nodes, �(i, j) is the number of shortest-paths connecting vertices i
and j, and �(i, j ∣ e) is the number of those paths passing through the edge e.
Eigenvector Centrality - Known also as eigen-centrality [30], it describes the impor-
tance of a node in a graph based on that of its adjacent nodes. Let A = (ai,j) be the
adjacency matrix of a graph G. We can compute a weight xi for node i in terms of the
weights xj for the other nodes j as

where � is a constant. Equation 2 can be rewritten as Ax = �x so that x is an eigenvec-
tor of the adjacency matrix A. The components of the eigenvector associated with the
maximum eigenvalue measure the relative importance among the nodes, providing their
ranking. To obtain the centrality of edges, rather than nodes, we use the eigenvector
centrality computed on the line graph of G (i.e., the graph where nodes represent the
edges of G and two vertices are adjacent if their corresponding edges in G are incident).
PageRank - The PageRank algorithm is a variant of the Eigenvector Centrality origi-
nally designed for ranking web content, using hyperlinks between pages as a measure of
importance [31]. Let A = (ai,j) be the adjacency matrix of a directed graph. The PageR-
ank centrality xi of node i is given by:

where � and �i are user-defined constants and dk = max(ok, 1), with ok denoting the out-
degree of node k. Thus, PageRank is determined by an endogenous component, namely
the so-called damping factor � , that considers the network topology, and an exogenous
component � = (�i) , the so-called personalization vector, that is independent of the net-
work structure. As for the eigenvector centrality, we compute the PageRank centrality of
edges using the line graphs of the original graphs. In the experiments, we used � = 0.85
and a null � vector.

The motivation for removing edges based on their centrality measure is based on the assump-
tion that the most significant information in biological networks relies on some relevant links,
where the relevance is measured in terms of the link centrality measure. For example, in the
Kidney dataset (see Section 3.1), metabolites are linked if they appear in the same metabolic

(1)cB(e) =
∑

i,j∈V

�(i, j ∣ e)

�(i, j)
,

(2)xi = �−1
∑

j

aijxj,

(3)xi = �
∑

k

ak,i

dk
xk + �i,

266 M. Giordano et al.

1 3

reaction. Therefore, high centrality links identify metabolites that are involved in many metabolic
reactions and thus represent significant information for the networks. Similarly, in the MUTAG
and PROTEINS datasets, edges with high centrality identify significant backbone structures of
chemical compounds and proteins, respectively (Fig. 2).

Our focus is to study the effects of targeted attacks on the graph embedding process. Indeed,
the choice of an edge removal criterion based on edges relevance shows that we envision a data
degradation or an attack causing a significant information loss in biological networks.

Figures 3 and 4 show pictures of a Kidney graph before and after edge removal, in particular,
with the removal of edges with highest betweenness centrality score (see Fig. 3), or randomly
chosen (see Fig. 4). It can be noted how the former edge selection strategy, when compared to the
baseline edge removal, focuses more on the deletion of entire clusters of nodes characterized by
a great number of high centrality connections (see the rightmost node cluster of Fig. 3a, which is
disrupted in isolated nodes after edge removal in Fig. 3b).

The described adversarial attacks to the embedding models under study are poison-
ing attacks. Indeed, we limited graph perturbations only to the sets of graphs adopted
to build the embedding models, which are then used to infer embeddings of testing
graphs in an inductive learning environment, as detailed in Section 3.4.

3.3 Embedding methods

Two embedding methods considered in the experiments rely on neural networks
models: Netpro2vec [32] and Graph2Vec [33]. These models learn a function that
maps graphs into a numerical lower-dimensional space. This mapping is opti-
mized in a learning process that uses one by one a set of training graph samples.
The third method, FEATHER [34], is a probabilistic embedding model. Probabilis-
tic models exploit the extraction of random walks in the graph to learn its global
structure together with the local neighborhood connectivity. FEATHER behaves as

Fig. 2 A graph from PROTEINS dataset before (a) and after (b) a 20% budget of edge removal based on
betweenness centrality (red edges in the left picture indicate those removed in the right picture)

267Adversarial attacks on graph‑level embedding methods: a case…

1 3

an embedding function performing graph-level embedding on each graph separately.
Details are described in the following subsections.

3.3.1 Inductive Netpro2vec

Netpro2vec [32] is an unsupervised graph-level embedding method that exploits node
proximity information (under different metrics) to transform graphs into textual docu-
ments while preserving their significant structural properties. Netpro2vec relies on an
NLP learning model, called SkipGram [35], to extract, from each document-based graph,

Fig. 3 A graph from the Kidney dataset before (a) and after (b) a 30% budget of edge removal based on
betweenness centrality (red edges in the left picture indicate those removed in the right picture)

Fig. 4 A graph from the Kidney dataset (same as Fig. 3) before (a) and after (b) a 30% budget of random
edge removal (red edges in the left picture indicate those removed in the right picture)

268 M. Giordano et al.

1 3

the meaningful features in terms of vectors, i.e., the embeddings. Such a new graph rep-
resentation can be used for several machine learning tasks, such as unsupervised cluster-
ing and supervised classification of graphs. The main advantage of Netpro2vec is that it
provides efficient embeddings completely independent of the task and nature of the data.

The current Netpro2vec implementation cannot be directly used in our experimental study
since it provides a programming interface with the only support of transductive embedding.
Nonetheless, by exploiting the Doc2Vec [36] facility to infer vector representation of new
documents (in our case, graphs) based on a pre-trained embedding model, we developed a
new API for the method, that we call iNetpro2vec, to support also inductive embedding.

3.3.2 Graph2Vec

Graph2Vec [33] is a neural method for learning graph-level embeddings in an unsu-
pervised manner. First, the method relabels nodes through a recursive node relabe-
ling algorithm assigning to each node a label uniquely representing the node’s rooted
subgraph (neighborhood). After recursion, the final node labels form a vocabulary of
words, and graphs are represented as a set of words (a document) in this vocabulary.
Like Netpro2vec, Graph2Vec relies on the Doc2Vec learning model to learn the graph
embeddings. The initial labels of nodes are, by default, the node degrees, although
the user can specify them as an additional input. Graph2Vec is a popular method
among graph-level embedding techniques, and it has proved to have good performance
throughout many graph domains.

Graph2Vec graph-level embeddings are learned in a transductive manner. Since this
method shares with Netpro2vec the same NLP processing technique, also in this case,
it is possible to use the Doc2Vec facility to infer embeddings of new samples based on
a pre-trained neural model. Thus, in the current work, we developed a new API that we
call iGraph2Vec, to enable the method to operate in inductive learning mode.

3.3.3 FEATHER

FEATHER [34] is a method that uses an r-scale random walk weighted characteristic
function to describe the distribution of graph node features at multiple scales. Assuming
the neighborhood of a node u at scale r consists of nodes that can be reached by a random
walk in r steps from source node u, this characteristic function has probability weights
defined by the transition probabilities of random walks in r steps from source node u.
FEATHER is a probabilistic embedding method: by exploiting random walks, it learns
multi-scale node features of the graph that are aggregated by mean pooling to obtain a
numerical vector (embedding) representing the entire graph structure and its local neigh-
borhood connectivity. Therefore, the resulting embedder can be applied to each graph
sample separately.

3.4 Experimental pipeline

The experimental pipeline is summarized in the pseudo-code of Algorithm 1. The
graph dataset is loaded (line 1) and split ten times into a training set with ninety per-
cent of the samples and a test set used for evaluation (line 2). The dataset partitions

269Adversarial attacks on graph‑level embedding methods: a case…

1 3

are non-overlapping, thus ensuring that all graphs in the dataset are used for testing
exactly once. After dataset splitting, the training samples are attacked according to
the chosen adversarial attack strategy and parameter (budget of the attack) (line 3),
while the test samples are unaltered. The embedding method is initialized, and its
parameters are set (line 4). The embedding model is built (trained) on the altered
samples (line 5). The so-trained model is applied to produce embedding on both train-
ing (line 6) and testing (line 7) samples. Once the embedding vectors are obtained, an
SVM classifier with a linear kernel is applied to fit the training vectors and predict
the test vectors (line 8). Scores for all cross-validation folds are collected, and perfor-
mances are computed.

3.5 Performance evaluation

The experimental results are all reported in Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 in the
Appendix in terms of accuracy, precision, F-measure, recall, and Matthews Correla-
tion Coefficient (MCC) [37]. In Figs. 5, 6 and 7, we plotted the MCC scores obtained by
the stratified 10-fold cross-validation on the embeddings produced by all methods when
applied to each dataset and by varying the type of attack (random, betweenness, eigenvec-
tor, and PageRank centrality-based attack) and the budget of poisoning (percentage of edge
removal).

In the MUTAG benchmark, all the methods show a performance degradation towards
the null classification for attack budgets higher than 20%. This is due to the small size
of the original graphs and the consequent scarcity of graph information survived to the
edge removal attacks. The worst behavior is observed for FEATHER, while the best for
iNetpro2vec, which partially succeeds in extracting distinctive information from the built
vocabulary under moderate attacks.

In the case of PROTEINS, the performance of all the methods is low and similar, even
with no attacks. iNetpro2vec is the only method showing less degradation of MCC scores
when increasing the poisoning budget to the maximum. In our interpretation, this effect is
partially due to the inherent robustness of the method. Indeed, if we look at the structure
of a graph from the PROTEINS dataset (e.g., Fig. 2), we observe that edge removal attacks
lead to the division of the protein graph into disjoint groups of atoms, leaving intra-group
connectivity unaltered. In our understanding, iNetpro2vec relies more on intra-group than

Algorithm 1 The experimental pipeline

270 M. Giordano et al.

1 3

inter-group connections to characterize the graph embedding. This is a plausible explana-
tion for the almost flat trend of MCCs in the plots.

In the case of the more challenging Kidney dataset, iNetpro2vec always performs
better than FEATHER. This method clearly suffers in robustness under increasing edge
removal attacks, and its performance under all the attack strategies soon degrades towards
the null classification. iNetpro2vec also outperforms iGraph2Vec in the unattacked case
and with attack budgets less than %20. In the other poisoning percentages, iGraph2Vec
and iNetpro2vec show similar robustness when the attack increases and across the differ-
ent strategies. In particular, the two methods show good robustness within a range of 20%
for random and betweenness strategies and within a larger range of budgets in the case of
eigenvector and PageRank centrality-based edge removal.

Overall, iNetpro2vec appears more robust to edge removal attacks than the other meth-
ods. This is particularly evident in the PROTEIN benchmark, where the gap is larger as
the attack budget increases. The same holds in the Kidney benchmark, although, for this
domain of high-scale and weighted graphs, iGraph2Vec performs lightly worse with low-
budget attacks but similarly with larger budgets.

It should be observed that some of the compared methods seem to improve, rather than
decrease, their performance under small budgets (generally 5%) of edge removal attacks.
This is the case of FEATHER on the MUTAG and PROTEINS datasets and of iNetpro2vec

Fig. 5 Plots of performance measures (MCC) on the MUTAG dataset for baseline (random) attacks (a),
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank-based cen-
trality attacks (d)

271Adversarial attacks on graph‑level embedding methods: a case…

1 3

and Graph2Vec on the Kidney dataset. However, by applying the two sample T-test to
quantify the difference between the population of MCC means in the case of unattacked
graphs and of 5% budget of poisoning, and by examining the relative p-value, it comes out
that the reported unexpected increase is not statistically significant and therefore cannot be
considered a real improvement in performance.

As a general comment on the attack strategies, the eigenvector and PageRank centrality-
based edge removal strategies have similar effects on the methods’ performance. This was
expected since, as already discussed in Section 3, the PageRank centrality is a variant of
the eigenvector one.

To conclude the performance evaluation of the compared methods, for all the embed-
ding methods we report the parameter settings in Table 12 and the execution times
recorded during the experiments in Table 2. We measured the average execution times of
the experimental pipeline when applied to each pair dataset/method on an iMac Retina 5K
with a 4GHz Intel Core i7 quad-core and 32GB of RAM 1600 MHz DDR3. We observe
that the FEATHER algorithm is much faster than the other two methods in the case of
small graphs (MUTAG and PROTEINS datasets). However, it is the slowest when deal-
ing with the much larger Kidney graphs, for which the two neural network-based methods
require approximately 2/3 of the time.

Fig. 6 Plots of performance measures (MCC) on the PROTEINS dataset for baseline (random) attacks (a),
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank-based cen-
trality attacks (d)

272 M. Giordano et al.

1 3

4 Conclusions and future work

As a general conclusion, from our experimental study, iNetpro2vec shows a very good
robustness of its embedding models across all the considered benchmarks and when
the model training set is poisoned even with targeted attacks involving more central
connections of nodes. It behaves similarly to iGraph2Vec in the Kidney benchmark,
consisting of large-scale weighted and highly connected graphs. In this domain, the
FEATHER method has no success. This is further proof that iNetpro2vec provides
efficient embeddings independently from the nature of data and for different tasks
(graph classification, graph similarity matching, and so on).

Fig. 7 Plots of performance measures (MCC) on the Kidney dataset for baseline (random) attacks (a),
betweenness centrality-based attacks (b), eigenvector centrality-based attacks (c), and PageRank centrality-
based attacks (d)

Table 2 Average time estimates for each experiment execution

Method iNetpro2vec iGraph2Vec FEATHER

MUTAG 40s 12s 1s
PROTEINS 3m 30s 17s
Kidney 25m 24m 38m

273Adversarial attacks on graph‑level embedding methods: a case…

1 3

Future works are in the following directions: definitely, look at datasets with dif-
ferent characteristics in terms of density, structure, and position of nodes and edges
as the attack strategies act above all on these aspects; furthermore, another important
issue concerns the application of additional attack strategies in order to evaluate the
behavior of graph embedding methods.

Appendix A: Performance measures of graph‑embedding methods

In this appendix, we include tables reporting measures of 10-fold classification accuracy
(acc), precision (prec), F-measure (f1), recall, and Matthews Correlation Coefficients
(MCC) obtained in all the experiments. One table is reported for each experiment bunch,
referring to the classification performance of one graph-embedding method (iNetpro2vec,
iGraph2Vec, or FEATHER) when applied to one dataset (MUTAG, PROTEINS, or Kid-
ney). In each table, we report the performance results when the dataset is unattacked
(first row) and in the case of different percentages of edge removal (budget). The rows are
grouped according to the criterion adopted for edge removal (random, betweenness, eigen-
vector, or pagerank) (Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11).

Table 3 Performances of iNetpro2Vec on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

unattacked 0 0.82±0.07 0.83±0.08 0.80±0.08 0.80±0.09 0.62±0.15
Random 5 0.71±0.10 0.71±0.10 0.69±0.10 0.72±0.11 0.43±0.22

10 0.74±0.12 0.74±0.12 0.72±0.12 0.74±0.12 0.48±0.23
20 0.65±0.09 0.58±0.15 0.57±0.12 0.58±0.11 0.17±0.25
30 0.62±0.09 0.37±0.08 0.42±0.06 0.49±0.06 −0.02±0.11
40 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.81±0.09 0.80±0.12 0.78±0.11 0.78±0.12 0.57±0.23
10 0.75±0.10 0.70±0.18 0.67±0.15 0.68±0.13 0.39±0.27
20 0.33±0.02 0.17±0.01 0.25±0.01 0.49±0.02 −0.03±0.09
30 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.66±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Eigenvector 5 0.82±0.10 0.81±0.13 0.79±0.13 0.79±0.14 0.60±0.26
10 0.80±0.07 0.78±0.08 0.78±0.08 0.79±0.09 0.57±0.17
20 0.46±0.07 0.68±0.04 0.43±0.08 0.59±0.05 0.25±0.09
30 0.39±0.10 0.36±0.22 0.30±0.05 0.51±0.03 0.04±0.10
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.73±0.11 0.72±0.12 0.71±0.12 0.75±0.13 0.47±0.24
10 0.46±0.16 0.23±0.08 0.31±0.07 0.50±0.00 0.00±0.00
20 0.34±0.02 0.17±0.01 0.25±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

274 M. Giordano et al.

1 3

Table 4 Performances of iGraph2Vec on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.82±0.06 0.82±0.06 0.79±0.09 0.80±0.09 0.61±0.14
Random 5 0.80±0.08 0.80±0.10 0.76±0.11 0.76±0.11 0.55±0.20

10 0.77±0.05 0.82±0.08 0.68±0.07 0.67±0.05 0.46±0.12
20 0.73±0.03 0.83±0.08 0.58±0.06 0.60±0.04 0.36±0.10
30 0.68±0.03 0.44±0.21 0.43±0.06 0.52±0.03 0.07±0.13
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.76±0.08 0.74±0.09 0.73±0.09 0.74±0.10 0.47±0.18
10 0.72±0.06 0.71±0.21 0.56±0.11 0.59±0.07 0.30±0.19
20 0.72±0.06 0.71±0.11 0.64±0.07 0.64±0.06 0.33±0.15
30 0.68±0.06 0.64±0.20 0.52±0.10 0.55±0.07 0.16±0.24
40 0.50±0.14 0.51±0.19 0.46±0.15 0.56±0.09 0.13±0.18
50 0.37±0.11 0.19±0.05 0.27±0.05 0.50±0.00 0.00±0.00

Eigenvector 5 0.81±0.07 0.81±0.10 0.77±0.08 0.77±0.08 0.58±0.16
10 0.69±0.06 0.52±0.24 0.48±0.12 0.54±0.08 0.12±0.23
20 0.67±0.02 0.38±0.15 0.41±0.04 0.51±0.02 0.03±0.09
30 0.67±0.03 0.38±0.16 0.41±0.05 0.51±0.03 0.03±0.10
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.79±0.07 0.77±0.08 0.76±0.10 0.77±0.09 0.54±0.17
10 0.78±0.09 0.76±0.12 0.71±0.14 0.71±0.13 0.47±0.24
20 0.68±0.04 0.65±0.20 0.52±0.07 0.55±0.04 0.18±0.17
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.66±0.03 0.37±0.10 0.42±0.06 0.50±0.04 0.00±0.11
50 0.66±0.02 0.36±0.07 0.41±0.03 0.50±0.01 −0.01±0.06

275Adversarial attacks on graph‑level embedding methods: a case…

1 3

Table 5 Performances of FEATHER on MUTAG dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.73±0.08 0.69±0.12 0.67±0.11 0.66±0.10 0.35±0.21
Random 5 0.76±0.07 0.73±0.21 0.64±0.14 0.65±0.10 0.39±0.23

10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Betweeness 5 0.77±0.06 0.78±0.16 0.68±0.12 0.68±0.09 0.45±0.20
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Eigenvector 5 0.76±0.07 0.73±0.17 0.66±0.12 0.66±0.10 0.40±0.22
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

Pagerank 5 0.71±0.06 0.57±0.24 0.52±0.14 0.57±0.09 0.20±0.22
10 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
20 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
30 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
40 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00
50 0.67±0.02 0.33±0.01 0.40±0.01 0.50±0.00 0.00±0.00

276 M. Giordano et al.

1 3

Table 6 Performances of iNetpro2Vec on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 recall MCC

Unattacked 0 0.71±0.05 0.70±0.06 0.69±0.06 0.69±0.06 0.39±0.11
Random 5 0.70±0.05 0.69±0.05 0.68±0.05 0.68±0.05 0.36±0.10

10 0.71±0.05 0.71±0.05 0.69±0.05 0.69±0.05 0.39±0.10
20 0.70±0.05 0.70±0.06 0.67±0.05 0.67±0.05 0.37±0.10
30 0.68±0.03 0.69±0.05 0.62±0.04 0.63±0.03 0.31±0.08
40 0.66±0.02 0.71±0.05 0.55±0.04 0.58±0.03 0.26±0.07
50 0.62±0.02 0.69±0.16 0.44±0.04 0.53±0.02 0.15±0.09

Betweeness 5 0.71±0.03 0.70±0.03 0.68±0.03 0.68±0.03 0.38±0.06
10 0.71±0.04 0.70±0.04 0.68±0.04 0.68±0.04 0.38±0.09
20 0.70±0.03 0.70±0.04 0.66±0.04 0.66±0.04 0.35±0.07
30 0.69±0.02 0.70±0.03 0.63±0.03 0.63±0.02 0.33±0.05
40 0.64±0.04 0.70±0.09 0.53±0.04 0.57±0.03 0.24±0.11
50 0.63±0.02 0.73±0.07 0.48±0.03 0.55±0.02 0.21±0.06

Eigenvector 5 0.68±0.04 0.67±0.04 0.67±0.04 0.67±0.04 0.33±0.08
10 0.69±0.04 0.69±0.05 0.67±0.04 0.67±0.04 0.35±0.09
20 0.69±0.04 0.69±0.06 0.64±0.05 0.64±0.04 0.33±0.10
30 0.68±0.04 0.69±0.05 0.62±0.04 0.63±0.04 0.32±0.09
40 0.68±0.03 0.70±0.05 0.60±0.03 0.62±0.03 0.30±0.07
50 0.66±0.03 0.69±0.06 0.57±0.04 0.59±0.03 0.26±0.09

Pagerank 5 0.70±0.04 0.69±0.04 0.69±0.04 0.69±0.04 0.39±0.08
10 0.70±0.03 0.69±0.04 0.68±0.03 0.68±0.03 0.37±0.07
20 0.65±0.02 0.65±0.04 0.57±0.02 0.59±0.02 0.23±0.05
30 0.63±0.03 0.65±0.07 0.51±0.04 0.56±0.03 0.18±0.08
40 0.62±0.02 0.66±0.08 0.46±0.04 0.53±0.02 0.14±0.07
50 0.60±0.01 0.54±0.21 0.39±0.02 0.51±0.01 0.03±0.09

277Adversarial attacks on graph‑level embedding methods: a case…

1 3

Table 7 Performances of iGraph2Vec on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.72±0.04 0.71±0.04 0.69±0.04 0.69±0.04 0.40±0.08
Random 5 0.69±0.03 0.70±0.05 0.62±0.04 0.63±0.04 0.33±0.08

10 0.64±0.02 0.71±0.08 0.50±0.03 0.56±0.02 0.22±0.08
20 0.64±0.02 0.76±0.07 0.50±0.04 0.56±0.02 0.25±0.07
30 0.62±0.03 0.66±0.23 0.44±0.06 0.54±0.03 0.16±0.14
40 0.62±0.01 0.72±0.15 0.44±0.03 0.53±0.02 0.17±0.07
50 0.60±0.01 0.57±0.24 0.39±0.02 0.51±0.01 0.06±0.07

Betweeness 5 0.68±0.04 0.71±0.06 0.62±0.05 0.63±0.04 0.33±0.10
10 0.66±0.02 0.72±0.04 0.55±0.04 0.59±0.03 0.28±0.05
20 0.63±0.01 0.74±0.08 0.47±0.02 0.54±0.01 0.20±0.05
30 0.62±0.01 0.78±0.06 0.44±0.03 0.53±0.01 0.19±0.05
40 0.61±0.01 0.69±0.20 0.41±0.03 0.52±0.01 0.13±0.07
50 0.61±0.01 0.66±0.20 0.41±0.03 0.52±0.01 0.11±0.07

Eigenvector 5 0.69±0.01 0.71±0.02 0.63±0.02 0.64±0.02 0.34±0.04
10 0.64±0.02 0.69±0.08 0.51±0.04 0.56±0.03 0.21±0.08
20 0.61±0.01 0.67±0.08 0.46±0.03 0.53±0.01 0.14±0.06
30 0.63±0.03 0.66±0.14 0.48±0.06 0.55±0.04 0.17±0.13
40 0.63±0.02 0.69±0.14 0.47±0.05 0.55±0.03 0.18±0.12
50 0.62±0.02 0.65±0.15 0.45±0.05 0.53±0.03 0.14±0.10

Pagerank 5 0.65±0.04 0.65±0.05 0.65±0.05 0.65±0.05 0.30±0.10
10 0.66±0.04 0.64±0.04 0.63±0.05 0.63±0.04 0.27±0.09
20 0.64±0.02 0.71±0.05 0.51±0.03 0.56±0.02 0.23±0.06
30 0.66±0.01 0.73±0.05 0.55±0.03 0.59±0.02 0.28±0.05
40 0.64±0.02 0.69±0.07 0.54±0.04 0.57±0.03 0.23±0.08
50 0.63±0.02 0.73±0.07 0.48±0.03 0.55±0.02 0.21±0.07

278 M. Giordano et al.

1 3

Table 8 Performances of FEATHER on PROTEINS dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.69±0.04 0.71±0.06 0.62±0.05 0.63±0.04 0.33±0.09
Random 5 0.69±0.04 0.72±0.07 0.62±0.06 0.63±0.05 0.34±0.12

10 0.70±0.05 0.71±0.08 0.65±0.05 0.65±0.05 0.36±0.12
20 0.69±0.04 0.70±0.07 0.65±0.04 0.65±0.04 0.34±0.10
30 0.69±0.04 0.70±0.07 0.63±0.05 0.64±0.04 0.33±0.11
40 0.67±0.03 0.72±0.07 0.58±0.04 0.60±0.03 0.30±0.09
50 0.60±0.00 0.30±0.00 0.37±0.00 0.50±0.00 0.00±0.00

Betweeness 5 0.68±0.03 0.72±0.06 0.59±0.04 0.61±0.04 0.32±0.09
10 0.67±0.03 0.71±0.06 0.59±0.04 0.61±0.03 0.31±0.09
20 0.67±0.03 0.73±0.06 0.58±0.05 0.61±0.03 0.31±0.09
30 0.64±0.02 0.74±0.07 0.51±0.04 0.56±0.02 0.24±0.07
40 0.61±0.01 0.64±0.23 0.40±0.02 0.51±0.01 0.10±0.08
50 0.60±0.00 0.35±0.15 0.38±0.01 0.50±0.00 0.01±0.04

Eigenvector 5 0.69±0.04 0.71±0.07 0.63±0.06 0.64±0.05 0.34±0.12
10 0.68±0.04 0.73±0.07 0.60±0.04 0.62±0.04 0.33±0.10
20 0.56±0.04 0.54±0.04 0.54±0.04 0.54±0.04 0.08±0.09
30 0.56±0.04 0.53±0.05 0.52±0.04 0.53±0.04 0.06±0.09
40 0.60±0.03 0.59±0.04 0.58±0.04 0.59±0.04 0.17±0.07
50 0.64±0.03 0.63±0.04 0.60±0.05 0.61±0.04 0.23±0.08

Pagerank 5 0.69±0.04 0.70±0.06 0.63±0.06 0.64±0.05 0.34±0.11
10 0.69±0.05 0.69±0.07 0.65±0.05 0.65±0.04 0.34±0.12
20 0.67±0.04 0.69±0.08 0.62±0.05 0.62±0.04 0.31±0.11
30 0.66±0.03 0.69±0.07 0.58±0.03 0.60±0.03 0.27±0.09
40 0.66±0.02 0.72±0.06 0.55±0.03 0.58±0.02 0.27±0.07
50 0.61±0.01 0.62±0.22 0.40±0.03 0.51±0.01 0.09±0.06

279Adversarial attacks on graph‑level embedding methods: a case…

1 3

Table 9 Performances of iNetpro2Vec on Kidney dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.87±0.05 0.90±0.04 0.88±0.05 0.87±0.06 0.79±0.09
Random 5 0.85±0.04 0.88±0.03 0.86±0.04 0.87±0.05 0.76±0.06

10 0.82±0.08 0.85±0.06 0.84±0.07 0.85±0.07 0.71±0.12
20 0.67±0.12 0.81±0.05 0.71±0.11 0.74±0.09 0.56±0.12
30 0.60±0.12 0.68±0.09 0.61±0.10 0.66±0.08 0.46±0.13
40 0.49±0.12 0.59±0.18 0.47±0.14 0.53±0.09 0.32±0.15
50 0.61±0.08 0.59±0.15 0.50±0.09 0.53±0.07 0.37±0.09

Betweeness 5 0.85±0.04 0.87±0.03 0.86±0.05 0.86±0.06 0.75±0.08
10 0.87±0.04 0.90±0.03 0.88±0.04 0.89±0.05 0.80±0.06
20 0.81±0.06 0.87±0.04 0.81±0.07 0.79±0.08 0.70±0.10
30 0.72±0.09 0.81±0.05 0.75±0.08 0.78±0.08 0.61±0.12
40 0.67±0.07 0.74±0.08 0.70±0.07 0.72±0.07 0.51±0.12
50 0.54±0.05 0.37±0.11 0.33±0.06 0.38±0.04 0.13±0.14

Eigenvector 5 0.88±0.05 0.90±0.04 0.89±0.05 0.89±0.06 0.81±0.08
10 0.88±0.06 0.91±0.05 0.89±0.05 0.89±0.06 0.81±0.09
20 0.86±0.06 0.89±0.05 0.87±0.06 0.87±0.06 0.77±0.09
30 0.86±0.06 0.89±0.05 0.87±0.05 0.88±0.06 0.79±0.09
40 0.86±0.06 0.90±0.04 0.86±0.07 0.86±0.07 0.78±0.09
50 0.86±0.07 0.89±0.06 0.86±0.07 0.86±0.08 0.77±0.12

Pagerank 5 0.87±0.08 0.90±0.06 0.88±0.07 0.89±0.07 0.80±0.12
10 0.79±0.08 0.81±0.08 0.80±0.07 0.82±0.06 0.67±0.12
20 0.80±0.09 0.83±0.07 0.82±0.09 0.83±0.09 0.69±0.14
30 0.78±0.08 0.82±0.05 0.80±0.07 0.80±0.08 0.64±0.13
40 0.80±0.09 0.84±0.07 0.81±0.08 0.81±0.09 0.68±0.14
50 0.79±0.10 0.84±0.07 0.80±0.10 0.79±0.10 0.66±0.16

280 M. Giordano et al.

1 3

Table 10 Performances of iGraph2Vec on Kidney dataset under the different attacks

Attack Budget acc prec f1 recall MCC

Unattacked 0 0.77±0.10 0.79±0.10 0.79±0.10 0.81±0.08 0.65±0.15
Random 5 0.79±0.07 0.81±0.06 0.81±0.06 0.83±0.06 0.67±0.10

10 0.81±0.06 0.83±0.06 0.82±0.07 0.84±0.07 0.69±0.10
20 0.80±0.05 0.82±0.05 0.81±0.06 0.81±0.06 0.68±0.08
30 0.74±0.10 0.80±0.07 0.74±0.10 0.75±0.08 0.60±0.12
40 0.67±0.12 0.78±0.08 0.66±0.13 0.67±0.11 0.52±0.16
50 0.62±0.09 0.71±0.10 0.57±0.07 0.57±0.06 0.40±0.12

Betweeness 5 0.77±0.08 0.80±0.08 0.79±0.07 0.80±0.06 0.64±0.12
10 0.78±0.07 0.81±0.08 0.77±0.08 0.77±0.08 0.65±0.11
20 0.69±0.07 0.78±0.07 0.65±0.08 0.62±0.07 0.46±0.13
30 0.53±0.07 0.37±0.10 0.37±0.06 0.41±0.07 0.16±0.14
40 0.45±0.09 0.29±0.05 0.31±0.06 0.34±0.06 0.03±0.14
50 0.49±0.08 0.30±0.06 0.33±0.07 0.37±0.07 0.07±0.16

Eigenvector 5 0.81±0.08 0.81±0.09 0.82±0.08 0.84±0.07 0.70±0.13
10 0.82±0.07 0.83±0.08 0.83±0.07 0.84±0.07 0.71±0.12
20 0.80±0.09 0.83±0.09 0.82±0.09 0.82±0.08 0.68±0.14
30 0.78±0.08 0.82±0.07 0.80±0.08 0.79±0.08 0.64±0.13
40 0.81±0.07 0.85±0.06 0.81±0.08 0.79±0.09 0.68±0.12
50 0.79±0.08 0.84±0.09 0.77±0.09 0.74±0.10 0.64±0.14

Pagerank 5 0.79±0.09 0.80±0.10 0.80±0.09 0.81±0.08 0.66±0.14
10 0.79±0.09 0.79±0.10 0.80±0.09 0.82±0.08 0.66±0.14
20 0.80±0.08 0.82±0.06 0.81±0.08 0.81±0.09 0.66±0.13
30 0.76±0.09 0.79±0.08 0.76±0.09 0.75±0.09 0.59±0.16
40 0.75±0.07 0.80±0.06 0.74±0.09 0.73±0.10 0.58±0.14
50 0.75±0.09 0.81±0.07 0.74±0.11 0.73±0.12 0.59±0.17

281Adversarial attacks on graph‑level embedding methods: a case…

1 3

Table 11 Performances of FEATHER on Kidney dataset under the different attacks

Attack Budget acc prec f1 Recall MCC

Unattacked 0 0.74±0.06 0.76±0.10 0.72±0.08 0.72±0.08 0.56±0.10
Random 5 0.61±0.12 0.67±0.14 0.59±0.12 0.62±0.11 0.40±0.16

10 0.47±0.09 0.46±0.13 0.38±0.06 0.48±0.05 0.21±0.06
20 0.19±0.03 0.23±0.23 0.14±0.06 0.36±0.04 0.05±0.10
30 0.18±0.02 0.16±0.15 0.12±0.04 0.35±0.02 0.03±0.09
40 0.27±0.11 0.24±0.17 0.21±0.11 0.40±0.07 0.06±0.13
50 0.17±0.00 0.06±0.00 0.10±0.00 0.33±0.00 0.00±0.00

Betweeness 5 0.56±0.09 0.43±0.16 0.41±0.09 0.43±0.08 0.19±0.18
10 0.46±0.15 0.41±0.17 0.32±0.14 0.42±0.09 0.20±0.17
20 0.55±0.11 0.51±0.12 0.45±0.10 0.49±0.07 0.28±0.11
30 0.31±0.07 0.15±0.07 0.17±0.03 0.31±0.03 −0.06±0.10
40 0.32±0.04 0.22±0.15 0.19±0.04 0.34±0.03 0.04±0.12
50 0.36±0.06 0.29±0.13 0.27±0.07 0.39±0.04 0.12±0.09

Eigenvector 5 0.53±0.01 0.18±0.00 0.23±0.00 0.33±0.00 0.00±0.00
10 0.26±0.16 0.13±0.14 0.16±0.12 0.35±0.04 0.02±0.09
20 0.43±0.14 0.18±0.08 0.22±0.08 0.35±0.07 0.00±0.10
30 0.27±0.14 0.17±0.10 0.16±0.06 0.31±0.05 −0.02±0.10
40 0.22±0.05 0.19±0.12 0.16±0.05 0.32±0.07 0.01±0.10
50 0.37±0.10 0.19±0.12 0.20±0.06 0.34±0.04 0.03±0.10

Pagerank 5 0.46±0.14 0.16±0.04 0.21±0.05 0.34±0.01 −0.01±0.02
10 0.29±0.02 0.12±0.06 0.16±0.02 0.34±0.02 0.02±0.05
20 0.30±0.01 0.12±0.04 0.18±0.05 0.35±0.06 0.03±0.06
30 0.29±0.07 0.26±0.08 0.25±0.05 0.42±0.06 0.14±0.09
40 0.19±0.05 0.07±0.02 0.11±0.02 0.33±0.00 0.00±0.00
50 0.23±0.13 0.09±0.07 0.12±0.06 0.33±0.01 −0.01±0.03

282 M. Giordano et al.

1 3

Appedix B: Parameter settings of graph‑embedding methods

Table 12 reports the parameter settings for the software implementations of Netpro2vec,1
Graph2Vec,2 and FEATHER2 adopted in the experiments. These parameters have been
experimentally chosen to optimize MCC performance.

Table 12 Parameter settings for the embedding methods used in the experiments for each dataset. In the
case of FEATHER, the embedding size is not an input parameter, and it is set to 500

iNetpro2vec iGraph2Vec FEATHER

MUTAG dimensions=512, dimensions=256, order=5,
epochs=400, epochs=200, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd], wl-iterations=3, pooling=mean
cut_off=[0.1], learning-rate=0.025,
extractor=[1], agg_by=[1], down-sampling=0.0001
learning-rate=0.025,
down-sampling=0.0001

PROTEINS dimensions=256, dimensions=256, order=5,
epochs=200, epochs=25, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd,tm1], wl-iterations=3, pooling=mean
cut_off=[0,0], learning-rate=0.025,
extractor=[2,2], down-sampling=0.0001
agg_by=[1,0],
learning-rate=0.025,
down-sampling=0.0001

Kidney dimensions=256, dimensions=256, order=5,
epochs=200, epochs=200, eval_points=25,
min-count=2, min-count=3, theta_max=2.5,
prob_type=[ndd,tm1], wl-iterations=3, pooling=mean
cut_off=[0,0], learning-rate=0.025,
extractor=[1,1], down-sampling=0.0001
agg_by=[1,0],
learning-rate=0.025,
down-sampling=0.0001

2 available at https:// karat eclub. readt hedocs. io

1 available at https:// github. com/ cds- group/ Netpr o2vec

https://karateclub.readthedocs.io
https://github.com/cds-group/Netpro2vec

283Adversarial attacks on graph‑level embedding methods: a case…

1 3

Acknowledgements Mario Manzo thanks Prof. Alfredo Petrosino for the guidance and supervision during
the years of working together.

Funding This work has been partially funded by the BiBiNet project (H35F21000430002) within POR-
Lazio FESR 2014-2020. It was carried out also within the activities of the authors as members of the ICAR-
CNR INdAM Research Unit and partially supported by the INdAM research project “Computational Intel-
ligence methods for Digital Health”. The work of Mario R. Guarracino was conducted within the framework
of the Basic Research Program at the National Research University Higher School of Economics (HSE).

Data availability Data and algorithms used in the current work are all available as open source.

Code availability The software used in the current experimental study is publicly available for reproduc-
ibility of results.

Declarations

Ethics approval and consent to participate Datasets used in the current work are all from secondary sources,
where primary ethics approval had been obtained for data acquisition.

Consent for publication Not applicable.

Conflicts of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Vlietstra, W.J., Vos, R., Sijbers, A.M., van Mulligen, E.M., Kors, J.A.: Using predicate and provenance
information from a knowledge graph for drug efficacy screening. J. Biomed. Semantics 9(1), 1–10
(2018)

 2. Manipur, I., Granata, I., Maddalena, L., Guarracino, M.R.: Clustering analysis of tumor metabolic net-
works. BMC Bioinformatics 21(10), 349 (2020). https:// doi. org/ 10. 1186/ s12859- 020- 03564-9

 3. Thorne, T., Stumpf, M.P.: Graph spectral analysis of protein interaction network evolution. J. R. Soc.
Interface. 9(75), 2653–2666 (2012)

 4. Ding, S., Chen, C., Zhang, Q., Xin, B., Pardalos, P.M.: Metaheuristics for Resource Deployment Under
Uncertainty in Complex Systems. CRC Press, (2021)

 5. Chen, C., Wu, X., Chen, J., et al.: Dynamic grouping of heterogeneous agents for exploration and
strike missions. Front. Inform. Technol. Electron. Eng. 23, 86–100 (2022). https:// doi. org/ 10. 1631/
FITEE. 20003 52

 6. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge
graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

 7. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: Problems, techniques,
and applications. IEEE Trans. Knowl. Data Eng. 30(09), 1616–1637 (2018). https:// doi. org/ 10. 1109/
TKDE. 2018. 28074 52

 8. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey. Knowl.-
Based Syst. 151, 78–94 (2018). https:// doi. org/ 10. 1016/j. knosys. 2018. 03. 022

 9. Maddalena, L., Manipur, I., Manzo, M., Guarracino, M.R.: On whole-graph embedding techniques.
In: Mondaini, R.P. (ed.) Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems, and
Cells: Selected Works from the 20th BIOMAT Consortium Lectures, Rio de Janeiro, Brazil, 2020, pp.
115–131. Springer, (2021). https:// doi. org/ 10. 1007/ 978-3- 030- 73241-7_8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12859-020-03564-9
https://doi.org/10.1631/FITEE.2000352
https://doi.org/10.1631/FITEE.2000352
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1007/978-3-030-73241-7_8

284 M. Giordano et al.

1 3

 10. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial machine learning. In:
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence. AISec ’11, pp. 43–58.
Association for Computing Machinery, (2011). https:// doi. org/ 10. 1145/ 20466 84. 20466 92

 11. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: A survey.
IEEE Access 6, 14410–14430 (2018). https:// doi. org/ 10. 1109/ ACCESS. 2018. 28073 85

 12. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack and defense tech-
nologies. Appl. Sci.9(5) (2019). https:// doi. org/ 10. 3390/ app90 50909

 13. Gao, J., Lanchantin, J., Soffa, M.L., Qi, Y.: Black-box generation of adversarial text sequences to evade
deep learning classifiers. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 50–56 (2018).
https:// doi. org/ 10. 1109/ SPW. 2018. 00016

 14. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end attack against state of
the art api call based malware classifiers. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S.
(eds.) Research in Attacks, Intrusions, and Defenses, pp. 490–510. Springer, (2018)

 15. Jin, W., Li, Y., Xu, H., Wang, Y., Ji, S., Aggarwal, C., Tang, J.: Adversarial attacks and defenses on
graphs. SIGKDD Explor. Newsl. 22(2), 19–34 (2021). https:// doi. org/ 10. 1145/ 34475 56. 34475 66

 16. Chen, L., Li, J., Peng, J., Xie, T., Cao, Z., Xu, K., He, X., Zheng, Z.: A survey of adversarial learning
on graphs. (2020). arXiv: 2003. 05730. Accessed 29 Sept 2022

 17. Sun, L., Wang, J., Yu, P.S., Li, B.: Adversarial attack and defense on graph data: A survey.
(2020). arXiv: 1812. 10528. Accessed 29 Sept 2022

 18. Chen, L., Wang, S., Yan, X.: Centroid-based clustering for graph datasets. In: Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012), pp. 2144–2147 (2012)

 19. Xi, Z., Pang, R., Ji, S., Wang, T.: Graph backdoor. In: 30th USENIX Security Symposium (USENIX
Security 21) (2021)

 20. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. In: Proceedings
of the 26th ACM Symposium on Access Control Models and Technologies, pp. 15–26 (2021)

 21. Manzo, M., Giordano, M., Maddalena, L., Guarracino, M.R.: Performance evaluation of adversarial
attacks on whole-graph embedding models. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S.K. (eds.)
Learning and Intelligent Optimization. LNCS. Springer, (2021)

 22. Maddalena, L., Giordano, M., Manzo, M., Guarracino, M.R.: Whole-graph embedding and adver-
sarial attacks for life sciences. In: Mondaini, R.P. (ed.) Trends in Biomathematics: Chaos and Con-
trol in Epidemics, Ecosystems, and Cells: Selected Works from the 21st BIOMAT Consortium Lec-
tures, 2021. Springer, (2022)

 23. Debnath, A., Lopez de Compadre, R., Debnath, G., Shusterman, A., Hansch, C.: Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecu-
lar orbital energies and hydrophobicity. J. Med. Chem. (34) (1991). https:// doi. org/ 10. 1021/ jm001
06a046

 24. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International Con-
ference on Data Mining (ICDM’05), p. 8 (2005). https:// doi. org/ 10. 1109/ ICDM. 2005. 132

 25. Granata, I., Guarracino, M.R., Kalyagin, V.A., Maddalena, L., Manipur, I., Pardalos, P.M.: Super-
vised classification of metabolic networks. In: 2018 IEEE Int. Conf. on Bioinformatics and Bio-
medicine (BIBM), pp. 2688–2693. IEEE (2018)

 26. Granata, I., Guarracino, M.R., Kalyagin, V.A., Maddalena, L., Manipur, I., Pardalos, P.M.: Model
simplification for supervised classification of metabolic networks. Ann. Math. Artif. Intell. 88(1),
91–104 (2020)

 27. Manipur, I., Granata, I., Maddalena, L., Guarracino, M.R.: Clustering analysis of tumor metabolic
networks. BMC Bioinformatics (2020). https:// doi. org/ 10. 1186/ s12859- 020- 03564-9

 28. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson,
Å, Kampf, C., Sjöstedt, E., Asplund, A., et al.: Tissue-based map of the human proteome. Science
347(6220) (2015)

 29. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation.
Social Networks 30(2), 136–145 (2008). https:// doi. org/ 10. 1016/j. socnet. 2007. 11. 001

 30. Bonacich, P.: Power and centrality: A family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987).
Accessed 2022 June 01

 31. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to
the web. Technical Report 1999-66, Stanford InfoLab. Previous number = SIDL-WP-1999-0120.
(1999). http:// ilpubs. stanf ord. edu: 8090/ 422/

 32. Manipur, I., Manzo, M., Granata, I., Giordano, M., Maddalena, L., Guarracino, M.: Netpro2vec: a
graph embedding framework for biomedical applications. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 1–1 (2021). https:// doi. org/ 10. 1109/ TCBB. 2021. 30780 89

https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.3390/app9050909
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1145/3447556.3447566
http://arxiv.org/abs/2003.05730
http://arxiv.org/abs/1812.10528
https://doi.org/10.1021/jm00106a046
https://doi.org/10.1021/jm00106a046
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1186/s12859-020-03564-9
https://doi.org/10.1016/j.socnet.2007.11.001
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1109/TCBB.2021.3078089

285Adversarial attacks on graph‑level embedding methods: a case…

1 3

 33. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec:
Learning distributed representations of graphs. (2017). arXiv: 1707. 05005

 34. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: Birds of a feather, from statistical
descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. CIKM ’20, pp. 1325–1334. Association for Computing
Machinery, (2020). https:// doi. org/ 10. 1145/ 33405 31. 34118 66

 35. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine transla-
tion. (2013). arXiv: 1309. 4168. Accessed 29 Sept 2022

 36. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Xing, E.P., Jebara,
T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 32, pp. 1188–1196. PMLR, (2014). https:// proce edings. mlr. press/
v32/ le14. html. Accessed 29 Sept 2022

 37. Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405(2), 442–451 (1975).
https:// doi. org/ 10. 1016/ 0005- 2795(75) 90109-9

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1707.05005
https://doi.org/10.1145/3340531.3411866
http://arxiv.org/abs/1309.4168
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1016/0005-2795(75)90109-9

	Adversarial attacks on graph-level embedding methods: a case study
	Abstract
	1 Introduction
	2 Background
	2.1 Graph embedding definitions
	2.2 Adversarial attack taxonomies

	3 Graph embedding adversarial attack
	3.1 Datasets
	3.2 Attack strategies
	3.3 Embedding methods
	3.3.1 Inductive Netpro2vec
	3.3.2 Graph2Vec
	3.3.3 FEATHER

	3.4 Experimental pipeline
	3.5 Performance evaluation

	4 Conclusions and future work
	Appendix A: Performance measures of graph-embedding methods
	Appedix B: Parameter settings of graph-embedding methods
	Acknowledgements
	References

