
Annals of Operations Research 139, 65–94, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Recent Advances for the Quadratic Assignment
Problem with Special Emphasis on Instances
that are Difficult for Meta-Heuristic Methods

ZVI DREZNER zdrezner@fullerton.edu
California State University-Fullerton

PETER M. HAHN ∗ hahn@seas.upenn.edu
The University of Pennsylvania

ÉRIC D. TAILLARD eric.taillard@eivd.ch
The University of Applied Sciences of Western Switzerland

Abstract. This paper reports heuristic and exact solution advances for the Quadratic Assignment Problem
(QAP). QAP instances most often discussed in the literature are relatively well solved by heuristic approaches.
Indeed, solutions at a fraction of one percent from the best known solution values are rapidly found by
most heuristic methods. Exact methods are not able to prove optimality for these instances as soon as the
problem size approaches 30 to 40. This article presents new QAP instances that are ill conditioned for many
metaheuristic-based methods. However, these new instances are shown to be solved relatively well by some
exact methods, since problem instances up to a size of 75 have been exactly solved.

Keywords: quadratic assignment problem, local search, branch & bound, benchmarks

1. Introduction

1.1. The quadratic assignment problem (QAP)

The QAP is a combinatorial optimization problem stated for the first time by Koopmans
and Beckmann in 1957. It can be described as follows: Given two n × n matrices (ai j)
and (bkl), find a permutation π minimizing:

min
π∈�(n)

f (π) =
n∑

i=1

n∑

j=1

ai j · bπi π j

We denote by �(n) the set of permutations of n elements. Sahni and Gonzalez
(1976) showed that the QAP is NP-hard and that there is no ε-approximation polynomial
algorithm for the QAP unless P = N P .

∗Corresponding author.

66 DREZNER, HAHN AND TAILLARD

One of the oldest applications of the QAP is the placement of electronic modules
(Steinberg 1961; Nugent, Vollman, and Ruml, 1968). In this case, ai j is the number of
connections between electronic module i and module j and bkl is the distance between
locations k and l on which modules can be placed. By solving a QAP, one tries to minimize
the total length of the electrical connections.

Another application is the assignment of specialized rooms in a building (Elshafei,
1977). In this case, ai j is the flow of people that must go from service i to service j and bi j

is the time for going from room i to room j. A more recent application is the assignment
of gates to airplanes in an airport; in this case, ai j is the number of passengers going
from airplane i to airplane j (a special “airplane” is the main entrance of the airport) and
bkl is the walking distance between gates k and l.

Finally, let us mention other applications in imagery (Taillard, 1995), turbine runner
balancing (Laporte and Mercure, 1988) and the fact that problems such as the traveling
salesman or the linear ordering can be formulated as special QAPs.

1.2. Literature review

The quadratic assignment problem was one of the first problems solved by metaheuristic
methods first conceived in the 1980’s. Burkard and Rendl (1984) proposed a simulated
annealing procedure that was able to find much better solutions than all the previously
designed heuristic methods. Six years later, Connolly (1990) proposed an improved
annealing scheme. His method is easy to set up, since the user has to select the number of
iterations; and all other parameters are automatically computed. The code for this method
is available on the Internet at http://ina.eivd.ch/collaborateurs/etd/
default.html. Thus, it was convenient for us to include Connolly’s method in our
computational results. At around the same time, Skorin-Kapov (1990) proposed a tabu
search. Then, Taillard (1991) proposed a more robust tabu search, with fewer parameters
and running n times faster than the previous implementation. Even though Taillard’s
method was proposed over 12 years ago, it remains one of the most efficient for some
problem instances. It is available on the web (see address above). Other tabu searches
have been proposed, such as the reactive tabu search of Battiti and Tecchiolli (1994a), the
star-shape diversification approach of Sondergeld and Voss (1996), and the concentric
tabu search of Drezner (2002). Recent improved tabu search algorithms are suggested in
Misevicius (2003a, 2005). Battiti and Tecchioli (1994b) compared tabu search techniques
with simulated annealing.

Genetic algorithms have also been proposed, for instance by Tate and Smith (1995),
but hybrid approaches, such as those of Fleurent and Ferland (1994), Ahuja, Orlin, and Ti-
wari (2000), Drezner (2003, 2005) are more efficient. Another heuristic, GRASP (greedy
randomized adaptive search procedure) was proposed by Li, Pardalos, and Resende
(1994). More recently, ant system approaches (Gambardella, Taillard, and Dorigo, 1999;
Stützle and Hoos, 1999; Taillard, 1998) have been proposed, as well as a scatter search
(Cung et al., 1997). Some of these methods have been compared in Taillard (1995) who

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 67

showed that the efficiency of these methods strongly depends on the problem instance
type to which they are applied.

While great progress has been made on generating good solutions to large and
difficult QAP instances, this has not been the case for finding exact solutions. The history
of solving QAP instances exactly centers on the now famous Nugent problems. In 1968,
Nugent, Vollmann and Ruml posed a set of problem instances of size 5, 6, 7, 8, 12, 15,
20 and 30, noted for their difficulty. In these instances, the distance matrix stems from an
n1 × n2 grid with Manhattan distances between grid points. Most of the resulting QAP
instances have multiple global optima (at least four if n1 �= n2 and at least eight if n1 =
n2). Even worse, these globally optimal solutions are at the maximally possible distance
from other globally optimal solutions. At the time of their paper, it was an achievement
to find the optimum solution to the size 8 Nugent instance. Enumerating all 8! (eight
factorial) possible assignments took 3374 seconds on a GE 265 computer. It was not until
Burkard solved the Nug8 in 0.426 seconds on a CDC Cyber76 machine (Burkard, 1975)
that notable progress was made toward exact solution methods. For this, Burkard used
Gilmore-Lawler (GL) lower bounds (Gilmore, 1962) in a branch and bound algorithm.

In the 1970’s and 80’s, one could only expect to solve difficult instances for n < 16.
In 1978 Burkard and Stratmann optimally solved the Nug12 in 29.325 seconds on a
CDC Cyber76 machine. They used a branch-and-bound perturbation algorithm; again
utilizing the popular GL lower bound. The GL was to remain the preferred lower bounding
technique until well into the 1990’s. In 1980, Burkard and Derigs reported that they were
the first to solve the Nug15 using a branch-and-bound code. They did this in 2947.32
seconds on a CDC Cyber76.

It was not until 1997 that Clausen and Perregaard were able to solve exactly the very
difficult Nug20 instance. For this, they used a parallel branch-and-bound algorithm on a
MEIKO computing surface with 16 Intel i860 processors. The wall time for solving the
Nug20 problem was 57,963 seconds and required the evaluation of 360,148,026 nodes.
On a single processor, the runtime would have been 811,440 seconds. Again, they relied
upon the GL bound that had been developed decades earlier. Much progress has been
made since then. Still, the exact solving of the most difficult of the Nugent instances, the
Nug30 requires resources not commonly found at today’s universities.

In the late 1990’s two developments resulted in a large improvement in the ability
to solve QAPs exactly. The first is a level-1 reformulation linearization technique (RLT)
bound of Hahn and Grant (1998) and Hahn, Grant, and Hall (1998) that derives from a
dual ascent procedure discovered much earlier (Hahn, 1968). Using this bound, Hahn,
Hightower, Johnson, Guignard-Spielberg and Roucairol (2001) reported the general so-
lution of the Nug25 in 1998. The second development is the quadratic programming
bound (QPB) of Anstreicher and Brixius (2001a). These two methods respectively made
it possible to solve exactly heretofore-unsolved problems of size 30, i.e., the Kra30a
(Hahn and Krarup, 2001) and the Nug30 (Anstreicher, et al., 2002)

Hahn, with ideas from Hightower and Johnson, solved the Kra30a in April 1999.
Anstreicher, Brixius, Goux and Linderoth solved the Nug30 in June 2000. Figure 1 shows
the progress made in solving the Nugent instances.

68 DREZNER, HAHN AND TAILLARD

0

5

10

15

20

25

30

35

1960 1970 1980 1990 2000 2010

Year Solved

N
u

g
en

t
In

st
an

ce
S

iz
e

Instance Solved

Figure 1. Nugent instances first solved.

This past year, Hightower and Hahn (Adams et al., 2003) developed a new lower
bound for the Quadratic Assignment Problem (QAP) based on a level-2 reformulation-
linearization technique (RLT). Their bound is based on a formulation of the QAP similar
to the one developed by Ramachandran and Pekny in 1996. The new technique has its
primary roots in the level-2 RLT concept of Sherali and Adams (1990 and 1994). The
method of calculation of this new level-2 RLT bound is a generalization of the dual ascent
procedure developed for the level-1 RLT bound calculation (Hahn and Grant, 1998).

The QAPLIB library (Burkard et al., 1997) available on the web at http://www.
seas.upenn.edu/qaplib/ contains about 140 different problem instances that are
frequently used by researchers for comparing methods. The size of these instances ranges
from 12 to 256, but the size of only 4 instances is larger than 100. Most of these instances
are relatively well solved by heuristic methods (for instance, a 12 year old tabu search
(Taillard, 1991) coded in a few dozen lines): almost all metaheuristic-based methods
are able to find solutions at a fraction of one percent above the best known solutions.
Exact methods have difficulties in proving optimality of the best solutions known for the
problem instances contained in QAPLIB. Some instances of size lower than 30 are still
open and none of the instances of size 40 or higher are exactly solved (except those with
optimum known by construction).

One contribution of this study is to propose new problem instances whose charac-
teristics are complementary to QAPLIB ones, namely, they are relatively well solved by
exact methods but ill conditioned for some local search methods. These instances were
proposed recently, so that no references for them are available. Thus, they are explained
herein.

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 69

For researchers working on exact methods, these new instances are interesting, since
they have been found to be solvable for sizes larger than 70. The main difficulty in dealing
with such instances is the memory needed to store data structures. This kind of problem
does not often arise with QAPLIB instances, since instances of size 40 cannot yet be
solved exactly. In fact, a QAPLIB instance of size 25 (the Tai25a) was solved for the first
time only recently, as reported in the QAPLIB (see http://www.seas.upenn.edu/qaplib/).

For researchers working on heuristic methods, these new instances are interesting
for several reasons. First, most recent heuristic methods are built on neighborhood search
based on transpositions (pair exchanges). This neighborhood concept is not effective for
our new instances. Indeed, there are local optima with a value of the objective function
more than 400% above the optimum. Therefore, a new neighborhood concept must be
used. Second, the variance of the solutions produced by heuristic methods can be very
high. It is not judicious to proceed to statistical comparisons by considering only average
and standard deviation of the solution values produced by different methods, as is often
the case in the literature. Therefore, new comparison techniques have to be constructed,
and the present paper discusses a new way to compare iterative methods. Third, it is
necessary to find faster heuristic methods, since the size of some of these new instances
is quite large (up to 729).

The paper is organized as follows. In Section 2 we introduce two new classes
of QAP problems which are difficult for metaheuristics and relatively easy for exact
algorithms. In Section 3 two of the metaheuristics used for comparison are described. In
Section 4 various exact methods are described, and in Section 5 we detail the statistical
technique used for comparison among various heuristic methods. In Section 6 we present
computational experiments with the new problems, and we conclude in Section 7.

2. New difficult instances

2.1. The Drexx instances

The new Dre (xx denotes size) problem instances are based on a rectangular grid, where
all non-adjacent nodes have zero weight. This way, a pair exchange of the optimal per-
mutation will result in many adjacent pairs becoming non-adjacent. Thus, the value
of the objective function will increase quite steeply. The neighborhood of the opti-
mum consists of solutions with much higher values of the objective function. There-
fore, it is difficult to reach the optimum from a solution in the neighborhood of the
optimum, but not in the neighborhood itself. These problem instances are available in
http://business.fullerton.edu/zdrezner. The problems are generated
by the following principles.

1. All problems are symmetric.

2. A configuration of k by l squares is the base for the problem.

3. The number of facilities is n = k × l.

70 DREZNER, HAHN AND TAILLARD

4. Each square has between two and four “adjacent” squares.

5. A random permutation (the optimal solution) is generated and facilities are “as-
signed”to the appropriate square by the permutation.

6. Most pairs of facilities get a zero weight (i.e., flow between them). Weight of flow
is bi-directional. Only adjacent facilities get a randomly generated positive weight
between one and ten.

7. Distances are generated such that all adjacent cells get a distance of one, and all other
pairs of cells get a distance randomly generated between two and ten.

Note that:

1. The value of the objective function for the permutation is the sum of all the weights
because for the permutation all positive weights are multiplied by a distance of “1”.

2. The sum of the weights is also a lower bound because all distances are ≥1.

3. The permutation and three other mirror images for k �= l are the only optimal solutions.

There have been attempts to express the difficulty of QAP problem instances by
measures that are relatively easy to compute. The best known is the flow dominance
(i.e., the standard deviation of the flows, normalized by the average flow, or: 100 ×
max{std deviation(ai j)/average(ai j), std deviation(bi j)/average(bi j)}. Another measure
is the landscape ruggedness (Angel and Zissimopoulos, 2001), defined as the standard
deviation of the difference of two neighboring solutions. This standard deviation is also
normalized, so that the ruggedness is a number between 0 and 100. The neighborhood
considered for the QAP is the transposition of two elements. It is believed that the higher
the flow dominance and ruggedness, the harder the problem is for local searches. For
problem instance Dre90, the flow dominance is 554 (which is a very high value compared
to other QAPLIB instances) and ruggedness is 99.7 (which is also very high).

2.2. The Taixxeyy instances

Construction of another set of problems that are difficult for heuristic methods is based
on the observation that most available heuristic methods depend on a transposition neigh-
borhood (i.e., exchange of two facilities). First, we searched for a problem structure for
which local optima (for a transposition neighborhood) are relatively far apart. Second,
we wanted very good solutions to be available, without necessarily knowing the global
optimum, so that these problems would be attractive to researchers. Third, we wanted to
be able to generate large problem instances. Finally, we wanted the difficulty of the in-
stances to grow with size, especially for global search heuristic methods, such as genetic
(hybrid) algorithms.

To meet the last condition, we observed that genetic algorithms, as well as exact
methods, generally have difficulties in finding the optimum of problem instances for

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 71

which distances and flows are uniformly distributed (for example, the instance Tai25a, of
size n = 25, mentioned above). However, such instances are relatively well approached
by heuristic methods, i.e., solutions at a fraction of a percent above the best known
solution are very easily found. In our new instances, we made sure that distances and
flows would not be uniformly distributed.

We built our new instances recursively. For generating a QAP instance of size
st × st , we uniformly generated t matrices of size s × s of flows and distances. The t flow
matrices were placed in a block-diagonal matrix of size st × st , the elements outside
the blocks were set to 0 and the t distance matrices were used to create a block-diagonal
matrix, but with elements outside the blocks being set to infinity. These new st × st QAP
instances can be solved as follows: First, consider the t2 QAP instances of size s × s that
can be obtained by combining each s × s flow matrix and each s × s distance matrix.
These t2 instances are optimally solved, and the optimum solution values are stored in a
t × t matrix C. The optimal solution value of the st × st QAP instance can be obtained
by solving the linear assignment problem on the C matrix.

In order to somewhat hide the block-diagonal structure of the st × st instance, a
few elements outside the diagonal of the flow matrix are set to a small positive value
and the elements outside the diagonal of the distance matrix are set to relatively large
values, but not infinity. By doing that, the optimality property of the linear assignment
problem on the C matrix is lost. Naturally, the process can be iterated and u st × st
instances can be generated to create a new stu × stu instance. The Taixxeyy problem
instances (xx stands for the size of the instance and yy for the number of the instance)
were created this way. Twenty instances of sizes n = 27(= stu = 3 · 3 · 3), n =
45(= 5 · 3 · 3), n = 75(= 5 · 5 · 3), n = 125(= 5 · 5 · 5), n = 175(= 7 · 5 · 5), n =
343(= 7 · 7 · 7) and 10 instances of size n = 729(= 9 · 9 · 9) are available on the web
page: http://ina.eivd.ch/collaborateurs/etd/problemes.dir/
qap.dir/qap.html

Figure 2 illustrates the distance structures of these instances when translated to the
assignment of gates to airplanes. Let us suppose that an airport is composed of u = 3
terminals, each of them separated in t = 3 branches that have s = 3 gates each. In
this case, the distances between the gates belonging to the same branch are very low.
The distances between gates belonging to different branches of the same terminal are
relatively large and the distance to travel from one terminal to another is much larger. For
these instances, the flow matrix is strongly negatively correlated with the distance matrix,
meaning that there are tu groups of s airplanes for which a large number of passengers
have to transit into the group, while very few of them have to transit between different
groups.

Since these instances embed uniformly generated instances, they are asymptotically
difficult to solve exactly. For the case of a transposition neighborhood, one must move
through s very bad solutions to make even a small change in the structure of a solution
(exchanging two primitive blocks of size s) and st moves are required to exchange two
secondary blocks. As explained below, tabu search or simulated annealing methods based
on transposition neighborhood become inefficient with such a structure.

72 DREZNER, HAHN AND TAILLARD

Figure 2. Typical configuration of a large airport. The distance matrices of Taixxeyy instances are related to
such configurations, with different number of terminal, branches per terminal and gates per branch.

The flow dominance of Taixxeyy is relatively low, around 100. For instance, the
value for Tai343e01 is 104. The ruggedness is high, very close to the maximum value
(99.9 for Tai343e01). Therefore, it can be deduced that the flow dominance is not a good
measure for the difficulty of a problem instance.

3. Heuristic techniques considered

In this section, we briefly describe a number of heuristic methods designed for the
quadratic assignment problem. First, we present the main ideas of the simulated annealing
of Connolly (1990), then the “robust tabu search” of Taillard (1991) and the “reactive
tabu search” of Battitti and Tecchiolli (1994a). Then, we describe the hybrid-genetic
algorithms of Fleurent and Ferland (1994) and Drezner (2005). An implementation of
a generalization of hybrid-genetic algorithms, scatter search, developed by Cung et al.
(1998) is then presented. We end this brief description of heuristic methods with the Fast
Ant system (Taillard, 1998).

3.1. Simulated annealing

Simulated annealing is a meta-heuristic based on the definition of a neighborhood. For
the QAP, almost all implementations use a transposition neighborhood (i.e. exchanging
the assignment of 2 elements). In order to not be trapped in a local optimum, relative
to the neighborhood structure considered, the basic idea of simulated annealing is: at
each iteration, to randomly choose a neighboring solution and to accept the move to

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 73

this new solution if it is better than the current solution. If the neighboring solution is
poorer than the current solution by an amount �, the neighboring solution is accepted
with probability e−�/T , where T is a parameter, called the temperature. The temperature
is changed (typically decreased) every iteration. The set of temperatures is called the
cooling scheme. The contribution of Connolly (1990) is a proposed cooling scheme that
is automatically adapted to the problem instance and to the number of iterations specified
by the user.

3.2. Tabu searches

Tabu search is also a neighborhood-based method. To our knowledge, all tabu searches
for the QAP use the transposition neighborhood (or extensions of it, Drezner(2002)). The
basic idea of tabu search is at each iteration to choose the best neighbor, even if the best
neighbor is worse than the current solution. To avoid cycling by re-visiting the same subset
of solutions (e.g. to go back to the same local optimum just after having left it), a data
structure, called the tabu list is implemented. This list memorizes solutions (or attributes
of solutions) that are “forbidden” (may not be chosen) for a number of iterations. The
contributions of Taillard (1991) with his robust tabu search are: 1. an O(n2) procedure
to examine the whole neighborhood (the complexity of earlier implementations was
O(n3)), 2. a random, automatic policy for choosing the number of interdictions during
which attributes of solutions are forbidden and 3. a long term diversification mechanism.
The contribution of Battiti and Tecchiolli (1994) with the reactive tabu search is to
automatically adapt the number of iterations during which solutions are forbidden. This
number is increased if the same solution is visited twice and it is decreased when no
cycles occur. When the search stagnates, an escape mechanism that performs random
moves is activated.

3.3. Hybrid genetic algorithms

The idea of genetic algorithms is to maintain a population of solutions. Two solutions of
the population are selected for creating a new individual. The creation process consists of
mixing the components of both individuals with a crossover operator and then to slightly
and randomly modify the new solution with a mutation operator. The new mutated
solution is then incorporated into the population. Finally, to limit population size, some
solutions are periodically eliminated from the population. Tate and Smith (1995) have
proposed such an algorithm for the QAP, but its efficiency is rather low. The main idea of
Fleurent and Ferland (1994) is to use Tate and Smith’s crossover operator, but to replace
the mutation operator by a procedure that improves the solution with a local search. In
the numerical results that follow, we have considered a population of size P = 100 and
a mutation operator that performs 4n iterations of the robust tabu search.

The hybrid genetic algorithm described in Drezner (2003, 2005) is one of the most
powerful hybrid-genetic algorithms to-date. Comparisons between this hybrid genetic

74 DREZNER, HAHN AND TAILLARD

Figure 3. General scheme of the hybrid genetic algorithm.

algorithm and the genetic algorithm in Ahuja, Orlin, and Tewari (2000) demonstrated
the superiority of this hybrid genetic algorithm (Drezner, 2003, 2005).

A genetic algorithm produces offspring by mating parents and attempting to im-
prove the population make-up by replacing existing population members with superior
offspring. A hybrid genetic algorithm, sometimes called a memetic algorithm (Moscato,
2002), applies an improvement heuristic (a post merging procedure) to every offspring,
before considering its inclusion into the population. The specific hybrid genetic algorithm
tested in this paper is presented in Figure 3.

For the implementation of the hybrid genetic algorithm for the solution of the QAP,
each solution is defined by the list of facilities assigned to sites 1, . . ., n. The merging
procedure used is the “cohesive merging procedure” and the post-merging procedure
used is the concentric short tabu search. These are described in detail in Drezner (2003,
2005).

To implement the general scheme of Figure 3, we employ the compounded genetic
algorithm proposed in Drezner (2005). For Step 1 of Figure 3, we run the short search with
zero levels ten times with a population size of P = 100 and max{2000, 40n} generations.
We collect the best ten population members at the termination of each run and create a
starting population of P = 100. For Step 2, we use the short search with 6 levels and
max{1000, 20n} generations.

The computational complexity of one iteration is O(n3). The complexity of the
algorithm depends on the expected number of iterations and the number of generations.

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 75

Figure 4. Construction of a provisory solution.

3.4. Scatter search

Scatter search (Glover, 1977) can be viewed as a generalization of genetic algorithms. It
also uses a population of solutions. But, during the process, the population is controlled
with clustering techniques in order to maintain the solutions’ diversity while keeping
solutions of high quality. Indeed, one of the weaknesses of genetic algorithms is that
the population tends to contain solutions that are very similar to one another. In our
implementation of the Fleurent and Ferland genetic hybrid algorithm, at the end of the
process the population consisted only of replications of one solution. Scatter search also
produces new solutions by mixing the properties of solutions of the population. But, the
number of solutions that can participate in the creation of new solutions is not limited
to two, as is found in genetic algorithms. In the Cung et al. (1997) implementation, new
solutions are improved with robust tabu search.

3.5. Fast ant system (FANT)

The concept behind the ant system is to attribute an “interest” for each component of
a solution. One part of this interest can be computed a priori (e.g., for the traveling
salesman problem, the a priori interest to perform a travel between two cities is inversely
proportional to their distance) and another part is computed a posteriori, when the process
has produced and evaluated solutions. This a posteriori interest is called pheromone trace
level in ant system metaphor (Colorni, Dorigo, and Maniezzo, 1992). In ant systems,
solutions are built randomly, the probability of choosing a component being proportional
to its interest. For the QAP, several ant systems have been designed. Most of them do
not consider an a priori interest and the a posteriori interest is implemented as a matrix
T of size n × n, whose entry τi j is a statistic over the setting of πi = j in previously
constructed solutions π .

In FANT (Taillard, 1998), all entries of T are set to 1, initially. For generating a new
(provisory) solution µ, a constructive method that chooses the elements of µ successively,
in a random order and with a probability proportional to the values contained in the T
matrix, is used. More formally, the constructive method is presented in figure 4:

The provisory solution µ generated at the first step is generally not very good
because, in the first iteration, µ is just a random permutation. Therefore, the first steps of

76 DREZNER, HAHN AND TAILLARD

Figure 5. Update of trace matrix T .

a first improving neighbor procedure are applied to µ. This procedure can be executed
in O(n3); it does not necessarily return a local optimum, but it is fast and may produce
different solutions when starting with the same initial, not locally optimal solution. The
improved solution is called π .

The statistic stored in T is based on two parameters, r and r∗, that represent the
reinforcement of the matrix entries corresponding to the solution π and respectively π∗,
the best solution produced by the algorithm. During the entire process, r∗ is a constant
parameter set by the user while r may vary. Initially r = 1 and τi j = r , where 1 ≤ i and
j ≤ n, meaning that the memory does not initially contain any information. Usually, the
entries of matrix T are updated as indicated in figure 5:

Where π is the solution produced at the current iteration and π∗ is the best solution
produced so far. In two cases, this update is done in another way:

(1) If π∗ has been improved, then r is re-set to 1 and all the entries of T are set to 1. The
aim of this re-setting is to intensify the search around π∗ by giving less importance
to the past of the search.

(2) If the provisory solution µ generated at step 2b is equal to π∗, then r is incremented
by one unit and all the entries of T are set to r. This situation occurs when π∗ has not
been improved for a large number of iterations, meaning that the re-enforcement of
the entries corresponding to π∗ is too high. The aim of this strategy is to diversify
the search when the information contained in T is not much different from π∗.

In addition to the number of iterations to perform (= number of solutions built by artificial
ants), the method has only one parameter, r∗.

4. Exact methods

In this section we compare the three most promising exact solution techniques for the
QAP. The first is the branch-and-bound algorithm based upon the level-1 RLT bound

The RLT is a general theory for reformulating mixed 0-1 linear and polyno-
mial programs in higher-variable spaces in such a manner that tight polyhedral outer-
approximations of the convex hull of solutions are obtained. The RLT was first introduced
in Adams and Sherali (1986, 1990) and is best described in Sherali and Adams (1990).
The technique is ideally suited to calculating lower bounds for 0–1 quadratic programs
such as the QAP. Level-1 of the RLT provides the weakest linear programming approxi-
mation of the RLT hierarchy. Nevertheless, it provides one of the strongest lower bounds

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 77

that have been developed for QAP branch and bound enumeration purposes. The level-1
RLT multiplies every constraint by each binary variable x and enforces x2 = x . It also
enforces the assignment constraints. To complete the linearization, a linear variable is
substituted for each quadratic term in the objective function and in the constraints.

The second promising exact solution algorithm for the QAP is the branch-and-
bound algorithm of Anstreicher and Brixius (2001a). Their algorithm uses a convex
quadratic programming relaxation to obtain a bound at each node. Their bound (QPB)
is based on the projected eigenvalue bound of Hadley, Rendl, and Wolkowicz (1992)
and uses a semi-definite programming characterization of a basic eigenvalue bound
from Anstreicher and Wolkowicz (1998). In their branch and bound algorithm, the QPB
is computed approximately using the Frank-Wolfe algorithm (FW) (Anstreicher and
Brixius, 2001b). FW can be run for any number of iterations, producing a bound and a
matrix of dual variables. The branch and bound algorithm makes extensive use of the
dual matrix in the branching step.

The third promising branch and bound algorithm for the QAP is based on the level-
2 RLT lower bound calculation of Hightower and Hahn (Adams et al., 2003). Level-2
RLT is the second level in the RLT hierarchy. The method is similar to the level-1 RLT
case with two modifications. It multiplies every constraint by each individual variable
x and each product of variables xi x j in the reformulation and enforces x2 = x . It then
linearizes by substituting a variable for each quadratic and each cubic term. The result
is a bound that is at least as strong as the level-1 bound.

Anstreicher and Brixius reported groundbreaking computational results on the Nu-
gent QAPs. For instance, on the Nugent 25 instance they achieved branch-and-bound
enumeration evaluating 80, 430, 341 nodes in a wall time of 6.7 hours on a Master-
Worker (MW) distributed processing system developed as part of the MetaNEOS project
at Argonne National Labs. During this 6.7 hours, the number of active worker machines
averaged 94. The equivalent computation time on a single HP C3000 workstation would
be approximately 13 days. Whereas, the earlier level-1 RLT branch-and-bound enu-
meration required longer runtime (52 days on a single CPU Ultra 10 with a 360 MHz
processor), though it required examination of half as many (38, 726, 326) nodes.

Anstreicher and Brixius constructed Nugent 27 and 28 instances by removing the
end rows and columns of the flow matrix of the Nugent 30. They used a 3 by 9 grid for
the Nugent 27 distance matrix and a 4 by 7 grid for the Nugent 28 distance matrix. They
are the first to have solved exactly these two instances. The Nugent 27 was first solved
in a wall time of approximately 24 hours, during which the number of worker machines
averaged 136 and peaked at 238. The equivalent computation time on a single HP C3000
workstation would be approximately 126 days. It required the evaluation of 513,160,139
nodes. The Nugent 28 was first solved in 4 days, 8 hours wall time. The number of active
worker machines averaged approximately 200. The equivalent runtime on a single HP
C3000 workstation would be 435 days. Solving the Nugent 28 required the evaluation
of 2, 935, 394, 013 nodes.

For large QAP instances that are difficult for exact methods, such as the Nugent
instances, the level-2 RLT bound gives shorter run times than either the level-1 RLT

78 DREZNER, HAHN AND TAILLARD

Table 1
Comparison of Competing Branch-and-Bound Algorithms (times normalized to an

HP C3000 cpu).

Instance Measurement Level-1 RLT QPB Level-2 RLT

Nug 27 No. of Nodes 297,648,966 ∼402,000,000 46,315
Norm minutes 458,923 94,608 37,639

Nug 28 No. of Nodes N/A ∼2,230,000,000 202,295
Norm minutes N/A 462,528 198,674

Kra 30a No. of Nodes 29,764,589 N/A 17,193
Norm minutes 99,371 N/A 38,652

Kra 30b No. of Nodes 183,659,980 5,136,036,412 N/A
Norm minutes 367,200 1,403,352 N/A

Nug 30 No. of Nodes N/A 11,892,208,412 543,061
Norm minutes N/A 3,647,664 1,369,692

Ste 36a No. of Nodes 5,225,559 ∼1,790,000,000 N/A
Norm minutes 27,649 36,540 N/A

N/A = Not available.

bound or the QPB (see Hahn et al., 2002). For instance, the Nugent 25 was solved using
the level-2 bound in the equivalent of 9.8 days on an HP C3000 workstation and required
the evaluation of only 30,718 nodes. The reason for the shorter time is that this bound is
so much tighter. It takes longer to compute, but this doesn’t matter, since far fewer nodes
need to be evaluated. Interestingly, attempting first to fathom nodes with a level-1 RLT
bound and following that with level-2 RLT bound when necessary, results in even better
performance. With this strategy, the Nugent 25 is solved in 5.9 days on an HP C3000
workstation and requires the evaluation of only 16, 649 nodes.

Table 1 summarizes the performance of these three exact solution algorithms for
six difficult QAP instances, sizes 27 to 36. The times in Table 1 are normalized to the
speed of a single HP C3000 CPU. The QPB performance figures in Table 1 are taken
from (Anstreicher et al., 2002) and show improvements in the QPB branch and bound
results reported two paragraphs before this one. For the Nug27, the QPB outperforms the
Level-1 RLT by about 4.8-to-1, whereas for the Kra30b the Level-1 RLT outperforms the
QPB by about 2.6-to-1. For the Nug27, the Level-2 RLT outperforms the QPB by 2.5-to-1
and for the Nug28 it outperforms the QPB by 2.3-to-1. For the Nug30, Level-2 RLT is
faster than QPB by 2.66-to-1. Level-2 RLT shows additional promise, since the number
of nodes evaluated is very small. Innovative techniques for cutting down computational
effort could reduce runtimes even further.

5. Comparing non-deterministic heuristic algorithms

A general method for comparing non-deterministic iterative searches is presented. This
method follows the lines of Taillard (2001 and 2002).

Comparing two (or more) heuristic methods based on metaheuristic principles is a
difficult task that has not been solved satisfactorily. Heuristic solution methods are usually

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 79

iterative, meaning that the longer they run, the better are the solutions they produce. They
are also almost all non-deterministic, since they generally depend on a pseudo-random
number generator. This means that it is possible to obtain two different solutions when
running the same heuristic method twice.

It is clear that comparing iterative methods must be done considering both the
quality of the solution produced and the computational effort. The last is traditionally the
computing time on a given machine. Unfortunately, this measure is both imprecise and
volatile. Indeed, computing time depends on the programming style, on the compiler, on
the compiling options, etc. Moreover, the lifetime of computer equipment is very limited.
Sometimes, the computer is already obsolete when the articles describing a new method
are published.

If the combinatorial problem consists of optimizing a unique objective function,
it is easy to compare the quality of two solutions. However, the comparison of non-
deterministic methods is not so easy. The solution quality not only depends on the
computational effort but also on the pseudo-random number generator seed. Suppose
that heuristic method A is compared to heuristic method B and A and B were run n A

and nB times, respectively. During these runs, each improvement of solution quality
is recorded with the corresponding computational effort such that, for a given time t,
the quality of the n A + nB solutions produced by both methods is known. We wish to
determine whether A is better than B at time t.

The solution quality obtained by methods A and B, respectively, at time t are
random variables X A(t) and X B(t), respectively. The probability density functions of these
random variables are f A(t) and fB(t), respectively. We wish to compare the mathematical
expectations E(X A(t)) and E(X B(t)) in order to know which one is lower and decide
which method is better at time t . Unfortunately, f A(t) and fB(t) are unknown. Moreover,
the number of runs n A and nB are typically limited to a few dozen. Therefore, it is not
tractable to attempt the determination of the density functions f A(t) and fB(t) with the
data available. We cannot assume (as is often done in literature) that these curves are
normally distributed (for instance, these functions are bounded by the value of the global
optimum while normal distributions are unbounded). Therefore, a comparison of both
methods on the basis of average and standard deviation of solution values observed is
generally not appropriate.

Other hypothesis tests have to be used. The Mann-Whitney test allows a proper
comparison. Translated to the comparison of a non-deterministic heuristic method, the
null hypothesis is f A(t) = fB(t). If the probability that this hypothesis is true is lower
than a given confidence level α, considering the n A and nB solutions obtained, then the
null hypothesis is rejected and the alternative hypothesis is accepted, (i.e., the probability
that A produces a better solution than B is larger (or lower) than the probability that B
produces a better solution than A).

In short, the Mann-Whitney test is performed as follows: first, the n A +nB solutions
are ranked by decreasing quality and a rank between 1 and n A + nB is attributed to each
solution. If many solutions have the same value of the objective function, they all get
the same rank, i.e., the average of the rank they would have obtained if there were no

80 DREZNER, HAHN AND TAILLARD

equality. Then, a statistic SA(t) is computed. This statistic corresponds to the sum of the
ranks of solutions issued from method A. If SA(t) > Tα(n A, nB), then the null hypothesis
is rejected with a confidence level of α and it is accepted that A is worse than B. The
values of Tα(n A, nB) can be found in tables. There are also books that provide tables that
give α as a function of SA(t) and n A + nB . More details on the Mann-Whitney test can
be found in Conover (1999).

This test has to be repeated for different values of computational time t . A convenient
way to compare methods A and B is to graphically draw the probability that A is better
than B as a function of the computational effort. Naturally, such a comparison is possible
only if reliable computational times can be obtained. However, it could happen that one
method could be implemented in such a way that it runs faster. Therefore, we have to
be particularly careful when comparing computing times, for instance, by considering a
multiplicative safety factor φ in the measure of computing times.

The computing times are an essential criterion when comparing heuristic meth-
ods, but this criterion is unreliable. If one wants to be independent of the computer
used for presenting the comparisons, it is required to consider an absolute computa-
tional effort, such as the number of iterations. When one can derive the mathematical
complexity for a single iteration, a more reliable computational measure can always be
obtained.

6. Computational experiments with the new problems

In this section we report a few computational results obtained with our new problem
instances. The goal of this section is not to show that one method is superior to all
the others, but to illustrate the difficulty of the task of comparing iterative methods.
We report the results of comparisons between the robust tabu search (Taillard, 1991),
the compounded hybrid genetic (Drezner, 2005), the simulated annealing of Connolly
(1990), and the FANT described in Section 3.5. In Section 6.1 we compare the two
tabu searches. In Section 6.2 we compare the hybrid genetic algorithms and the scatter
search algorithm. In Section 6.3 we report computational experience with solving the
new problems by exact methods.

6.1. Computational experience with tabu search

In order to illustrate the difficulty of comparing different methods, let us start with the
comparison of two methods that are relatively similar, the robust tabu search of Taillard
(1991) and the reactive tabu search of Battiti and Tecchiolli (1994). Figure 6 illustrates the
difference of behavior of both tabu search methods on the new problem instance Tai27e01
(optimum value 2,558). This comparison is done along the lines suggested in Section 5.
When considering only the average solution values obtained over 20 independent runs
of both methods, it could be (erroneously) deduced that reactive tabu is much better
than robust tabu for computational effort lower than 2,000 iterations. Between 2,500 and

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 81

Figure 6. Comparison between robust tabu search and reactive tabu search on Tai27e01 instance.

25,000 iterations robust tabu is much better and, after 80,000 iterations, reactive tabu
might be slightly better.

The variance of the solution value (not shown in Figure 6 for clarity reasons) is
very high (except for large computational efforts, when almost all runs have found the
optimum). Therefore, a classical (parametric) statistical test for comparing the average
of both methods cannot show the superiority of a method, while the non-parametric test
we used is often able to show it. Therefore, we note that the second (confidence) diagram
contains a lot of information. Indeed, it answers the most basic and interesting question:
Is method A significantly better than method B after computational effort t?

When looking at this confidence diagram, reactive tabu is significantly superior
to robust tabu only for a very narrow interval around 1,500 iterations. Even if reactive

82 DREZNER, HAHN AND TAILLARD

tabu is on the average more than 100% above robust tabu for 4,000 iterations, this is not
significant. Figure 6 also reveals that an early termination of both methods can lead to very
bad solutions and that the diversification mechanism of robust tabu started earlier (after
2,200 iterations) than the escape mechanism of reactive tabu. The number of iterations
needed by tabu searches for producing solutions of acceptable quality strongly depends
on the diversification mechanism. The Taixxeyy instances are especially ill conditioned
for tabu searches. As shown further, the small Taixxeyy instances are better solved with
genetic hybrids or scatter search algorithms.

6.2. Computational experience with genetic hybrids and scatter search

Genetic hybrids and scatter search are methods that present similarities, such as the
use of a population of solutions and operators for combining solutions. In this section,
we compare implementations of 1. the genetic hybrid of Fleurent and Ferland (1994),
programmed in C/C++ and run on a Pentium III 500 MHz, 2. genetic hybrids of Drezner
(2003, 2005), programmed in FORTRAN and run on a 600 MHz Toshiba Portege 7200
laptop, and 3. the parallel scatter search of Cung et al. (1998), run on a single Pentium
III 800 MHz processor with time-sharing parallel processes (Cung and Donadio, 2002).
Due to the use of different machines, different programming languages and different
management systems, it is perilous to try to compare these methods using computational
times. Fortunately, all these methods are hybridized with tabu searches and most of the
computational effort is spent in tabu iterations. So, it is quite pertinent to measure the
computational effort in terms of number of tabu iterations, as suggested in Section 5.

6.2.1. Results for Drexx
In Figure 7, we compare the genetic hybrid short search with P = 100 GHS(100) with
the genetic hybrid (GH) of Fleurent and Ferland (1994) for problem instance Dre30. GH
also uses a population of 100 solutions. We see in this figure that, between a total of 300
and 7,000 tabu search iterations, GHS(100) is superior to GH. At 10,000 iterations, GH
starts to use efficiently the information contained in the population of solution and beats
GHS(100). The bold line in the Confidence diagram at about 10s indicates that GH would
remain significantly better than GHS(100) even if GH runs φ = 2 times slower. After
100,000 iterations, GH has converged and does not improve the best solution anymore.
Since GHS eliminates duplicated solutions in the population, the convergence is slower
but allows finding better solutions.

Figure 8 compares the genetic hybrid short search of Drezner (2003, 2005) with the
parallel version of the scatter search of Cung et al. (1997) for problem instance Dre30.
The numerical results of scatter search come from Cung and Donadio (2002). In this
figure, we see that scatter search requires a relatively long time before producing the first
solution. Then, it clearly beats GHS.

In Table 2, we report computational results obtained by the compounded hybrid
genetic algorithm for different Drexx instances. Each instance was solved 20 times. We

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 83

 0.01 0.1 1 10 100
CPU [s PIII 500MHz]

TS iterations

 500.0

 600.0

 700.0

 800.0

 900.0

1000.0

So
lu

tio
n

va
lu

e

C
on

fi
de

nc
e

 GH Fleurent & Ferland

 GHS(100)

100 1000 10000 100000

Figure 7. Comparison of the genetic hybrid short search GHS(100) (Drezner 2003, 2005c) with the genetic
hybrid GH of Fleurent and Ferland (1994), for problem instance Dre30.

 1 10 100CPU [s. PIII 500MHz]

10000 100000TS iterations
 500

 550

 600

 650

 700

 750

 800

So
lu

tio
n

va
lu

e

C
on

fi
de

nc
e

 Scatter Search

 GHS(100)

Figure 8. Comparison of Genetic hybrid short search, GHS (Drezner 2003, 2005) with parallel scatter search
(Cung and Donadio 2002) for problem instance Dre30.

84 DREZNER, HAHN AND TAILLARD

Table 2
Results for hybrid genetic on Drexx instances.

Minimum (20 runs) Average

Problem Opt. Value %/Opt. # Times Value %/Opt. Time (min.)

Dre30 508 508 0 20 508.0 0 2.39
Dre42 764 764 0 18 774.2 1.34 9.13
Dre56 1086 1086 0 6 1275.2 17.46 30.18
Dre72 1452 1452 0 2 1848.1 27.28 93.19
Dre90 1838 2218 20.67 0 2460.7 33.88 192.63

recorded the minimum obtained, the number of times out of 20 that the minimum (or
optimum) is obtained, the average percentage over the best-known (or optimal) solution,
and the run time in minutes per run. Parameter settings are given in Section 3.3. Table 2
provides best and average solution values (absolute and relative to the optimum). Exam-
ining this table, we conclude that the difficulty of the instances rapidly grows with their
size. Solving Dre90 required over 3 hours of computer time for each replication. The
experimental time complexity of our method grows as O(n4).

The results in Table 2 are quite good. However, when compared with other instances
of the QAPLIB of similar sizes (see Drezner, 2005) it is clear that these instances are
much more difficult. The best solution found for Dre90 was more than 20% over the
optimum! For example, the six Sko100 problems were solved in Drezner (2005) in about
160 minutes, found the best-known solution 85% of the time (and found it at least 9
times out of 20 replications for all 6 problems). And, the average over the best-known
solution was 0.003% and never exceeded 0.007%. We conclude that the Drexx problems
are much more difficult for the hybrid genetic algorithm than are the Sko100 problems.

6.2.2. Results for Taixxeyy
GHS (Drezner, 2005) found the best solution known for all Tai27eyy and Tai45eyy prob-
lems in all 20 replications. The run times are about 1 and 5 minutes per run, respectively,
on the average with very small variation. For comparison, we tested this hybrid genetic
algorithm (the simple, not the compounded version) on the Nug30 problem and it solved
the Nug30 problem in about 18 seconds per replication and found the optimum in all
1,000 replications.

Run times for Tai75eyy are about 37 minutes per run. The genetic hybrid performed
relatively well on the Tai75eyy instances, finding the best known solution 18.85 times
out of 20 replications for each of the 20 instances (377 times out of a total of 400
replications). The percentage of the average result over the best known solution ranged
from 0, for the 11 problems that found the best known solution in all 20 replications,
to 0.339% for Tai75e02 (for which the best known solution was found only 14 times
out of 20 replications). The average percentage over the best-known solution for all 20
instances was 0.056%, which is much higher than is reported in Drezner (2005) for

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 85

Table 3
Results for hybrid genetic of Fleurent and Ferland on few Taixx instances.

Best value Average %over Std deviation Average nr Total tabu
Name known best (%) generations iterations

tai27e01 2558 0 0 218 23539
Tai45e01 6412 4.48 4.3 352 63335
Tai75e01 14488 10.1 2.9 704 211085
Tai125e01 35450 15.6 4.7 868 433953
Tai343e01 136288 18.0 2.2 1180 1619120

QAPLIB problems with a similar size. We conclude that the Taixxeyy are more difficult
for the hybrid genetic algorithm than similar size problems listed in the QAPLIB. The
computational times are relatively high (it took about 10 CPU days to gather all the
results).

Therefore, we ran the faster genetic hybrid of Fleurent and Ferland on larger
Taixxe01 problem instances. Table 3 provides the main computational results obtained.
We indicate in this table the value of the best solution value known (optimum for prob-
lem instances up to n = 75), the relative average solution value observed (expressed
in % above best value known), the relative standard deviation, the average number of
generations before convergence and total number of tabu search iterations performed up
to convergence. In this Table, we see that the quality of the solutions obtained decreases
with the size of the problem and the dispersion can be relatively high, even for small
instances.

In Figure 9, the principles outlined in Section 5 have been used to compare the
robust tabu search of Taillard (1991) with the genetic hybrid of Fleurent and Ferland
(1994) on our new problem instance Tai27e01. We see in this figure that the solution
values obtained at the beginning of the search are very bad for both methods. Robust
tabu search (Ro-TS) is trapped for many iterations in bad local optima while the genetic
hybrid finds the structure of good solutions earlier. A second diagram is depicted in this
figure, plotting the probability of Ro-TS to be better than the hybrid genetic method. The
horizontal lines in this diagram indicate the probabilities 0.05 and 0.95. We observe in
the second diagram that the genetic hybrid method is significantly better than Ro-TS as
soon as the computational effort reaches the equivalent of about 100 Ro-TS iterations.
The genetic hybrid would remain significantly better than robust tabu, even if it runs
φ = 2 times slower (indicated in bold in the confidence diagram).

6.2.3. Comparing several heuristic methods
For comparing two methods, this second diagram is much more valuable than a classical
table reporting average (and best, worst, standard deviation, etc.) of the solution values for
a given computational effort, and is more compact. By putting several of such diagrams
in the same figure, it is possible to compare many heuristic methods in one plot. This was
done in figures 10 and 11, respectively, in which we compare five different methods, each

86 DREZNER, HAHN AND TAILLARD

 0.01 0.1 1 10 100
CPU [s PIII 500MHz]

TS iterations

 2500

 5000

 7500

10000

So
lu

tio
n

va
lu

e

C
on

fi
de

nc
e

 GH Fleurent & Ferland

 Robust taboo search

100 1000 10000 100000

Figure 9. Comparison of robust tabu search with the genetic hybrid of Fleurent and Ferland on the new
problem instance Tai27e01.

of them run 20 times, for problem instances Dre30 and Tai27e01, respectively. These
methods are the simulated annealing of Connolly (1990), the tabu search of Taillard
(1991), FANT with parameter r∗ = 5, compounded hybrid genetic with parameter
P = 50 and genetic short search with P = 100. From these two figures, we conclude
that simulated annealing (SA) is significantly worse than the other methods (for these
two problem instances and for almost every computational effort). We also see in this
figure that there is no strict dominance of one method over the others. Depending on the
computational time available and instance type, either method could be recommended.

6.3. Exact methods

While the new Drexx and Taixxeyy instances were indeed difficult for heuristic solution
methods, it was not surprising to find them easy for exact methods. It was, however,
surprising that these instances solved most easily using the level-1 RLT lower bound
method of Hahn and Grant (1998). One would think that the level-2 RLT method would
be better, since it produces tighter lower bounds.

Both the level-1 and level-2 RLT approaches were tried. But, it was determined
early in the experimentation that the level-1 RLT gave sufficiently tight bounds at the

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 87

 0.01 0.1 1 10 100

Time [s. PIII 0.5GHz]

100 1000 10000 100000 1000000
TS iterations

CHG50 better than FANT

CHG50 better than TS

CHG50 better than SA

CGS100 better than FANT

CGS100 better than TS

CGS100 better than SA

FANT better than TS

CHG50 better than CGS100

FANT better than SA

TS better than SA

Figure 10. Probability diagrams (confidence: 5–95%) comparing five different methods all together on in-
stance Dre30.

88 DREZNER, HAHN AND TAILLARD

0.01 0.1 1 10 100

Time [s. PIII 0.5GHz]

100 1000 10000 100000
TS iterations

TS better than SA

FANT better than SA

FANT better than TS

CGS100 better than SA

CGS100 better than TS

CGS100 better than FANT

CHG50 better than SA

CHG50 better than TS

CHG50 better than FANT

CHG50 better than CGS100

Figure 11. Probability diagrams (confidence: 5–95%) comparing five different methods all together on in-
stance Tai27e01.

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 89

Table 4
Level-1 RLT Lower Bounds for Drexx Instances (time normalized to HP C3000 cpu-machines in Table 5).

100 Iterations 500 Iterations

Normalized Normalized
Instance Optimum Time (secs) Bound Time (secs) Bound

Dre18 332 4.5 331.1 22.3 331.5
Dre21 356 13.0 54.2 64.1 355.5
Dre24 396 19.0 393.4 89.7 394.9
Dre28 476 59.7 473.2 295.0 474.9
Dre30 508 72.2 503.7 356.5 506.1
Dre42 764 401.3 753.3 1,955.1 760.0
Dre56 1,086 386.9 1,055.1 1,885.3 1,069.7
Dre72 1,452 2,707.8 1,398.9 16,373.0 1,425.0

Table 5
Level-1 B & B Enumeration for Drexx Instances (time normalized to HP C3000 cpu—see speed factor.

Normalized Memory Speed
Instance No. of nodes time(secs) (Mbytes) Machine factor

Dre18 144 1.1 13 Sun Ultra 10 0.68
Dre21 409 3.9 20 Sun Ultra 10 0.68
Dre24 578 7.8 33 Sun Ultra 10 0.68
Dre28 909 31.7 69 Sun Ultra 10 0.68
Dre30 929 49.7 93 Sun Ultra 10 0.68
Dre42 2,165 496.9 417 HP J5000 1.40
Dre56 8,299 7,411.9 1,041 SGIO 2000 (UI) 0.55
Dre72 33,277 215,510.8 3,250 SGIO 2000 (UP) 0.63

root and was efficient for branch-and-bound enumeration. On the other hand, the level-2
RLT bounds, which were indeed tighter, took longer to calculate, so that the resulting
enumeration runtimes were much longer. For instance, the Tai27e03 enumeration took
667.2 seconds using the level-2 RLT; whereas using the level-1 RLT on this instance
took only 57.6 seconds. Thus, the results reported here are for only the level-1 RLT cal-
culations. The results of the experiments using exact methods are presented in Tables 4
through 7.

Table 4 lists the lower bound calculations on the original problems for a selected set
of the Drexx instances. Table 5 lists the exact solution (branch-and-bound enumeration)
runtimes and number of nodes evaluated for the same set of Drexx instances, as in Table 4.
Table 6 lists the lower bound calculations and the exact solution runtimes and number
of nodes evaluated for all 20 of the Tai27exx instances. All runs reported in Table 6
were made on a Sun Ultra 10 with a single 366 MHz processor. Table 7 lists the lower
bound calculations and the exact solution runtimes and number of nodes evaluated for
the Tai45e01 and Tai75e01 instances. In this table, the runtimes are normalized to the

90 DREZNER, HAHN AND TAILLARD

Table 6
Lower bounds and B&B runtimes for Tai27exx instances.

Lower bound at root

Tai27 100 Iterations 500 or less iterations Level 1 B&B enumeration∗∗

Runtime Runtime No. of Runtime No. of
Instance Optimum (secs)∗ Bound (secs)∗ Bond nodes (secs)∗ optima

e01 2,558 26.0 2,554 Solved at root 1 40.1 n/a
e02 2,850 22.3 2,795 104.3 2,836 240 22.5 2
e03 3,258 23.8 3,257 46.2 3,258 207 57.6 2
e04 2,822 23.0 2,737 109.7 2,795 103 24.9 1
e05 3,074 23.5 3,044 45.8 3,074 553 94.1 4
e06 2,814 23.2 2,814 Solved at root 1 47.1 n/a
e07 3,428 23.3 3,354 110.2 3,422 78 13.4 1
e08 2,430 22.6 2,429 43.6 2,429 242 50.7 2
e09 2,902 22.3 2,796 104.9 2,838 53 25.5 1
e10 2,994 22.5 2,994 Solved at root 1 25.9 n/a
e11 2,906 22.3 2,895 Solved at root 1 28.8 n/a
e12 3,070 22.6 3,070 Solved at root 1 71.9 n/a
e13 2,966 22.3 2,825 105.0 2,872 333 63.2 2
e14 3,568 22.5 3,491 105.3 3,539 168 20.3 1
e15 2,628 22.2 2,603 104.5 2,608 323 51.9 2
e16 3,124 Solved at root Solved at root 1 20.0 n/a
e17 3,840 22.3 3,514 105.2 3,600 718 115.2 1
e18 2,758 22.3 2,752 104.0 2,755 78 11.0 1
e19 2,514 22.3 2,495 Solved at root 1 49.9 n/a
e20 2,638 22.4 2,623 Solved at root 1 65.1 n/a

∗Runtime on a Sun Ultra 10 (multiply runtime by 0.68 to get time on HP C3000.
∗∗Requires 45 MB of RAM.
n/a = not available.

Table 7
Level-1 RLT runtimes for large Taillard instances (times normalized to HP C3000 cpu).

Lower bound at root

100 Iterations 500 Iterations B & B Enumeration

Time Time No. of Time Memory
Instance Optimum (secs) Bound (secs) Bound nodes (secs) (Mbytes)

Tai45e01 6,412 205.5 6,383 solved at root 1 361.5 498
Tai75e01 14,488 1,375.2 13,654 6,776 14,096 58,631 348,186 3,950

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 91

speed of a single HP C3000 processor. We are now solving Dre90 and it is expected to
take about 75 days to solve on a single 733 MHz cpu of a Dell 7150 server.

7. Discussion

We presented herein a summary of the progress made in both heuristic and exact solutions
for the QAP. To put this in perspective, we digressed to describe the historical context
and the many contributions that led to the recent advances in QAP research. Much of
the discussion was centered on problem instances found in the web-based repository for
QAP data and results QAPLIB. However, early in the writing of this paper, it was deemed
important to introduce and address a class of QAP problem instances that might arise
in practice. These are instances specifically designed to be difficult for metaheuristic
solution methods.

Accordingly, two types of quadratic assignment problems were generated that are
difficult for common heuristic techniques. We, of course, tested these on the best meta-
heuristic methods available in order to prove and gauge their difficulty. To complete our
work, we further tested these instances on some exact solution methods, expecting that
they would remain difficult as well in that domain. But, it turned out that both types of
instances are relatively easy for a modern exact algorithm. One of these exact algorithms
solved many of these so-called “difficult” problems (with up to 75 facilities) in reasonable
computer time.

We also proposed a statistical analysis to compare non-deterministic heuristic meth-
ods and prove statistically that one method is better than the other. This technique is uni-
versal and may prove very useful for comparisons of heuristic techniques for the solution
of other problems as well.

Acknowledgments

Part of this research was conducted while the first author was visiting the Graduate School
of Management, University of California at Irvine.

The work by the second author was supported in part by an international travel
grant INT-9900376 from the National Science Foundation.

We thank Van Dat Cung and Sébastien Donadio for providing numerical results to
us for scatter search.

References

Adams, W. et al. (2003). “A Lower Bound for the Quadratic Assignment Problem Based on a Level-2
Reformulation-Linearization Technique.” OPIM Department Report No. 03-05-06, The Wharton School,
University of Pennsylvania.

92 DREZNER, HAHN AND TAILLARD

Adams, W. and H. Sherali. (1986). “A Tight Linearization and an Algorithm for Zero-One Quadratic Pro-
gramming Problems.” Management Science, 32(10), 1274–1290.

Adams, W. and H. Sherali. (1990). “Linearization Strategies for a Class of Zero-One Mixed Integer Pro-
gramming Problems.” Operations Research 38, 217–226.

Ahuja, R.K., J.B. Orlin, and A. Tiwari. (2000). “A Descent Genetic Algorithm for the Quadratic Assignment
Problem.” Computers and Operations Research 27, 917–934.

Angel, E. and V. Zissimopoulos. (2001). “On the Landscape Ruggedness of the Quadratic Assignment
Problem.” Theoretical Computer Science 263, 159–172.

Anstreicher, K. and N.W. Brixius. (2001a). “A New Bound for the Quadratic Assignment Problem Based
on Convex Quadratic Programming.” Mathematical Programming 89, 341–357.

Anstreicher, K. and N.W. Brixius. (2001b). “Solving Quadratic Assignment Problems Using Convex
Quadratic Programming Relaxations.” Optimization Methods and Software 16, 49–68.

Anstreicher, K. et al. (2002). “Solving Large Quadratic Assignment Problems on Computational Grids.”
Mathematical Programming 91, 563–588.

Anstreicher, K. and H. Wolkowicz. (1998). “On Legrangian Relaxation of Quadratic Matrix Constraints.”
Research Report CORR 98-24. Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada.

Battiti, R. and G. Tecchiolli. (1994a). “The Reactive Tabu Search.” ORSA Journal on Computing 6, 126–
140.

Battiti, R. and G. Tecchiolli. (1994b). “Simulated Annealing and Tabu Search in the Long Run: A Comparison
on QAP Tasks.” Computers and Mathematics with Applications 28, 1–8.

Burkard, R. (1975). “Numerische Erfahungen Mit Summen-Und Bottleneck-Zuordnungsproblemen.” In L.
Collatz and H. Werner (eds.), Numerische Methoden Bei Graphentheoretischen und Kombinatorischen
Problemen. Basel: Birkhauser Verlag.

Burkard, R. et al. (1997). “QAPLIB—A Quadratic Assignment Problem Library.” Journal of Global Opti-
mization 10, 391–403, electronic update: http://www.seas.upenn.edu/qaplib/ (revised 02.04.2003).

Burkard, R. and U. Derigs. (1980). “Assignment and Matching Problems.” Solution Methods with FORTRAN
Programs. New York: Springer-Verlag.

Burkard, R. and F. Rendl. (1984). “A Thermodynamically Motivated Simulation Procedure for Combinatorial
Optimization Problems.” European Journal of Operational Research 17, 169–174.

Burkard, R. and K.H. Stratmann. (1978). “Numerical Investigations on Quadratic Assignment Problems.”
Naval Research Logistical Quarterly 25, 129–148.

Clausen, J. and M. Perregaard. (1997). “Solving Large Quadratic Assignment Problems in Parallel.” Com-
putational Optimization and Applications 8, 111–128.

Colorni, A., M. Dorigo and V. Maniezzo. (1992). “Distributed Optimization by Ant Colonies.” In F.J. Varela
and P. Bourgine (eds.) Proceedings of ECAL’91—European Conference on Artificial Life, MIT Press,
Cambridge MA, 134–142.

Connolly, D.T. (1990). “An Improved Annealing Scheme for the QAP.” European Journal of Operational
Research 46, 93–100.

Conover, W.J. (1999). Practical Nonparametric Statistics (3rd Ed.). New York: Wiley Publishing Company.
Cung, Van Dat et al. (1997). “A Scatter Search Based Approach for the Quadratic Assignment Problem.”

In Proceedings of the IEEE International Conference on Evolutionary Computation and Evolutionary
Programming (ICEC’97), Indianapolis, pp. 165–170.

Cung, Van Dat and S. Donadio. (2002). “Résultat du Scatter Search en Version Séquentielle et en Ver-
sion Parallèle sur les Problèmes Dre30 et Tai27e01.” Technical Report of OPALE Laboratory, France:
Université de Versailles.

Dorigo, M. and L.M. Gambardella. (1997). “Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem.” IEEE Transanctions on Evolutionary Computation 1, 53–66.

Drezner, Z. (2002). “Heuristic Algorithms for the Solution of the Quadratic Assignment Problem.” Journal
of Applied Mathematics and Decision Sciences 6, 163–173.

RECENT ADVANCES FOR THE QUADRATIC ASSIGNMENT PROBLEM WITH SPECIAL EMPHASIS 93

Drezner, Z. (2003). “A New Genetic Algorithm for the Quadratic Assignment Problem.” INFORMS Journal
on Computing 15, 320–330.

Drezner, Z. (2005). “Compounded Genetic Algorithms for the Quadratic Assignment Problem.” Operations
Research Letters (in press).

Elshafei, A. (1977). “Hospital lay-out as a Quadratic Assignment Problem.” Operational Research Quarterly
28, 167–179.

Fleurent, C. and J. Ferland. (1994). “Genetic Hybrids for the Quadratic Assignment Problem.” DIMACS
Series in Math. Theoretical Computer Science 16, 190–206.

Gambardella, L.M., E. Taillard and M. Dorigo. (1999). “Ant Colonies for the Quadratic Assignment Prob-
lem.” Journal of the Operational Research Society 50, 167–176.

Gilmore, P. (1962). “Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem.” Journal
of the Society of Industrial and Applied Mathematics 10, 305–313.

Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints.” Decision Sciences 8,
156–166.

Hadley, S.W., F. Rendl, and H. Wolkowicz. (1992). “A New Lower Bound Via Projection for the Quadratic
Assignment Problem.” Mathematics of Operations Research 17, 727–739.

Hahn, P.M. (1968). “Minimization of Cost in Assignment of Codes to Data Transmission.” Ph.D. Dissertation,
University of Pennsylvania, (1968). Available at: http://www.seas.upenn.edu/∼hahn/

Hahn, P.M. and T.L. Grant. (1998). “Lower Bounds for the Quadratic Assignment Problem Based Upon a
Dual Formulation.” Operations Research 46, 912–922.

Hahn, P.M., T.L. Grant and N. Hall. (1998). “A Branch-and-Bound Algorithm for the Quadratic Assignment
Problem Based on the Hungarian Method.” European Journal of Operational Research 108, 629–640.

Hahn, P.M. et al. (2001). “Tree Elaboration Strategies in Branch-and-Bound Algorithms for Solving the
Quadratic Assignment Problem.” Yugoslav Journal of Operations Research 11, 41–60.

Hahn, P.M. and J. Krarup. (2001). “A Hospital Facility Problem Finally Solved.” The Journal of Intelligent
Manufacturing 12, 487–496.

Hansen, P. and N. Mladenovic. (2001). “Variable Neighborhood Search: Principles and Applications.” Eu-
ropean Journal of Operational Research 130, 449–467.

Koopmans, T. and M.J. Beckmann. (1957). “Assignment Problems and the Location of Economics Activi-
ties.” Econometric 25, 53–76.

Laporte, G. and H. Mercure. (1988). “Balancing Hydraulic Turbine Runners: A Quadratic Assignment
Problem.” European Journal of Operational Research 35, 378–381.

Li, Y., P.M. Pardalos, and M.G.C. Resende. (1994). “A Randomized Adaptive Search Procedure for the
Quadratic Assignment Problem. In P. Pardalos and H. Wolcowicz (eds.), Quadratic Assignment and
Related Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16, 237–
261.

Misevicius, A. (2003a). “A Modified Tabu Search Algorithm for the Quadratic Assignment Problem.” (under
review).

Misevicius, A. (2005). “A Tabu Search Algorithm for the Quadratic Assignment Problem.” Computational
Optimization and Applications, 30, 95–111.

Mladenovic, N. and Pierre H. (1997). “Variable Neighborhood Search.” Computers and Operations Research
24, 1097–1100.

Moscato, P. (2002). “Memetic Algorithms.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of
Applied Optimization. Oxford, U.K. Oxford University Press.

Nugent, C., T. Vollman and J. Ruml. (1968). “An Experimental Comparison of Techniques for the Assignment
of Facilities to Locations.” Operations Research 16, 150–173.

Ramachandran, B. and J.F. Pekny. (1996). “Dynamic Factorization Methods for Using Formulations Derived
from Higher Order Lifting Techniques in the Solution of the Quadratic Assignment Problem.” State of the
Art in Global Optimization: Computational Methods and Applications. Dordrecht, Netherlands: Kluwer
Academic Publishers, pp. 75–92.

94 DREZNER, HAHN AND TAILLARD

Sahni, S. and T.F. Gonzalez. (1976). “P-Complete Approximation Problems.” Journal of the ACM 23, 555–
565.

Sherali, H.D. and W.P. Adams. (1990). “A Hierarchy of Relaxations Between the Continuous and Convex
Hull Representations for Zero-One Programming Problems.” SIAM Journal on Discrete Mathematics 3,
411–430.

Sherali, H.D. and W.P. Adams. (1994). “A Hierarchy of Relaxations and Convex Hull Characterizations for
Mixed-Integer Zero-One Programming Problems.” Discrete Applied Mathematics 52, 83–106.

Skorin-Kapov, J. (1990). “Tabu Search Applied to the Quadratic Assignment Problem.” ORSA Journal on
Computing 2, 33–45.

Sondergeld, L. and S. Voß. (1996). “A Star-Shaped Diversification Approach in Tabu Search.” In I. H.
Osman and J. P. Kelly (eds.) Meta-Heuristics: Theory and Applications. Dordrecht, Netherlands: Kluwer
Academic Publishers, pp. 489–502.

Steinberg, Leon. (1961). “The Backboard Wiring Problem: A Placement Algorithm.” SIAM Review 3, 37–50.
Stützle, T. and H.H. Hoos. (1999). “The MAX-MIN Ant System and Local Search for Combinatorial

Optimization Problems: Towards Adaptive Tools for Global Optimization.” In S. Voss, S. Martello,
I.H. Osman, C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 313–329.

Taillard, E.D. (1991). “Robust Taboo Search for the Quadratic Assignment Problem.” Parallel Computing
17, 443–455.

Taillard, E.D. (1995). “Comparison of Iterative Searches for the Quadratic Assignment Problem.” Location
Science 3, 87–105.

Taillard, E.D. (1998). “FANT: Fast Ant system.” Technical Report IDSIA-46-98, Lugano, Switzerland: Dalle
Molle Institute for Artificial Intelligence.

Taillard, E.D. (2001). “Comparison of Non-Deterministic Iterative Methods.” In Proceedings of MIC’2001–
4th Metaheuristic International Conference, Porto, Portugal, pp. 272–276.

Taillard, E.D. (2002). “Principes D’implémentation des Métaheuristiques.” In M. Pirlot and J. Teghem (eds.),
Métaheuristiques et Outils Nouveaux en Recherche Opérationnelle: Méthodes. Paris,France: Hermès,
pp. 55–77.

Taillard, E.D. et al. (1998). “Programmation à mémoire adaptative.” Calculateurs Parallèles, Réseaux et
Systèmes Répartis 10, 117–140.

Taillard, E.D. et al. (2001). “Adaptive Memory Programming: A Unified View of Meta-Heuristics.” European
Journal of Operational Research 135, 1–16.

Tate, David E. and Alice E. Smith. (1995). “A Genetic Approach to the Quadratic Assignment Problem.”
Computers and Operations Research 22, 73–83.

