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Abstract This paper is devoted to the search of robust solutions in finite graphs edsts depend on scenar-
ios. We first point out similarities between robust optimization and multiobjedptimization. Then, we present
axiomatic requirements for preference compatibility with the intuitive ideaobéistness in a multiple scenarios
decision context. This leads us to propose the Lorenz dominance ruleeagsdor robustness analysis. Then, after
presenting complexity results about the determination of Lorenz optimahew how the search can be embed-
ded in algorithms designed to enumeriteest solutions. Then, we apply it in order to enumerate Lorenz optimal
spanning trees and paths. We investigate possible refinements of ldmerizance and we propose an axiomatic
justification of OWA operators in this context. Finally, the results of numeggpkeriments on randomly generated
graphs are provided. They show the numerical efficiency of theesigd approach.

Key words robust optimization, multicriteria optimization, Lorenz optinkahest solutions, minimum spanning
tree, shortest path

1 Introduction

The applications of operations research techniques aridioie@iding methodologies in real decision
contexts have shown the importance of the problem strugjwstage in a decision process, see e.g.,
Roy (1996). The analyst has to elaborate a formal model dagtunost significant features of the
problem. In particular, he has to define precisely the segasdible solutions (the alternatives) but also to
collect or elicit the relevant preference information stcesvaluate and compare the potential solutions.
This evaluation task becomes more and more complex as betsizé of the solutions space and the
sophistication of preferences increase. Thus, in combiiztdecision problems, the set of feasible
solutions is only implicitly known which often leads the &ysd to consider very simple preferences
structures as those induced by a scalar-valued cost funétar example, in classical graph problems
like the shortest path probleror the minimal spanning tree problenpreferences over paths or trees
directly derive from the sum of the costs of their componégatss or edges). This makes it possible
to define efficient constructive algorithms (Bellman, 19B4uskal, 1956) to determine the min-cost
solution.



2 PERNY, SPANJAARD AND STORME

The assessment of such elementary costs during the stngcaiage is critical because it entirely
determines which solutions are preferred. However, wheimdareal-world problems, the adequacy of
a unique and single-valued cost function can be questidhedindeed often unrealistic to assume the
existence of a unique plausible view on the decision contexd several plausible scenarios should be
considered instead. This makes the determination of scakds functions uneasy. For this reason, an
alternative approach for the analyst consists in expjicitinsidering several views of the world (called
here scenarios) leading to several plausible cost funti®he initial optimization problem is then
reformulated as sobust optimization problemwhere the aim is to determine a solution which remains
good (in some sense) whatever scenario is considered.

Note that several ideas of robustness have been studiectisiateaiding (Roy, 2002). Initially,
the robustness concept was introduced in OR by Rosenhe&drettse context of dynamic planning.
Quickly robustness appeared very appealing a concept ity aifferent contexts, but taking into ac-
count specificities of the latter led to very different defons of robustness. For example, the term
“robust” has been used to qualify:

— aflexible strategy, preserving nice perspectives witheesio the various possible evolutions of the
decision context (Gupta and Rosenhead, 1968);

— a prudent solution, remaining satisfactory in all possibfances of a same problem (Kouvelis and
Yu, 1997; Vincke, 1999b);

— a stable conclusion, which remains valid for multiple retidi configurations of the parameters of a
decision model (Roy, 1998; Vincke, 1999a).

More specifically, concerning combinatorial problems,usthdiscrete optimization has been first
studied by Kouvelis and Yu. The underlying idea is that ofdance. The authors suggest modelling
uncertainty via a se$ of scenarios, defined implicitly or explicitly. They define@bust solutionas
the one which has the best performance in its worst case. pitoose also another formulation of
robustness based on the min-max regret criterion.

We can distinguish two main approaches to take into acctwrdibiguity about the costs in com-
binatorial problems:

— a set of possible costs is associated to each edge or arcgifaple. In this case the s8is defined
implicitly as the cartesian product of these sets of costs.

— a vector of possible costs is associated to each edge or dhe agfraph, one per scenario in a
predefined lis6 of scenarios, given explicitly.

The first approach has been mainly investigated in the caseandach edge or arc is valued by an
interval of possible costs arfdlis the cartesian product of these intervals, see for inst¥aman et al.
(2001), Karasan et al. (2003), Montemanni and Gambarg2084). The second approach has been
mainly investigated in the case where a finite set of sces#idefined, and treated in a multiobjective
setting as anin-maxor min-max regrebptimization problem (Warburton, 1985; Hamacher and Ruhe,
1994; Yu and Yang, 1998; Murthy and Her, 1992). Conversdyijrsand Kouvelis (2002) have shown
how these approaches can be used to identify the efficientico$ of multiple objective discrete op-
timization problems, thus strengthening the links betwedrust and multicriteria optimization. In all
these approaches, the robust solution is obtained by @itigha function quantifying the robustness of
solutions. This implicitly assumes that all pairs of saut are comparable in terms of robustness. In
this paper, we focus on the second approach but without sa&dlsassuming complete comparability
of solutions.

We consider a finite set of scenari®s- {sy,...,Sp}. Therefore, the initial optimization problem can
be recast in a multicriteria setting usimpgcost functions (one per scenario). Thus, the impact of each
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solutionx in terms of cost is completely described by a cost veter. .., x,) wherex; is an integer
representing the cost of solutierif scenarios; occurs. Hence, the comparison of solutions is reduced
to the comparison of such cost vectors. In this respect, tbklgm can be understood as a standard
multicriteria optimization problem (see also Hites et 2003) with three important specific features:

— all criteria share the same evaluation scale (the variaterierrepresent different possible views on
the consequences of solutions in terms of cost).

— the criteria play a symmetric role in such problems becajgeeferences in terms of cost do not
depend on the scenario considered 2) scenarios are seeunadly ptausible and there is no reason
to attach more importance to some of them.

— the overall objective is to determine a solution (calledbtrst”) which is fairly well evaluated on
every criterion.

Note that the first specific feature is of particular intetestause many aggregation operations (over
criterion values) which are meaningless in the generalloaseme meaningful here due to the commen-
surateness of criteria. In this paper we are going to exgieite specificities in order to propose mul-
ticriteria decision models refining Pareto-dominance &hicluding the idea of robustness informally
introduced above. These models will receive an axiomaticatdterization relying on inequality mea-
surement and decision theory. Then we will investigate #eeaf such models for robust optimization
in graphs. More precisely, we will provide algorithmic siduns to multicriteria discrete optimization
problems with commensurate objectives, focusing on aabproblems like the shortest path problem
and the minimal spanning tree problem.

The paper is organized as follows: in Section 2, after arrmé introduction to the robustness con-
cept via simple examples of the robust path problem and testspanning tree problem, we interpret
the notion of robustness in terms of equity and show theéstesf generalized Lorenz dominance as a
preliminary multicriteria comparison rule. In Section 3 establish complexity results concerning the
search of Lorenz optima; then, we propose a general apptmzsdt on an early scalarization of costs
vectors to find robust solutions. This approach is illugiadn robust paths and robust trees problems.
In Section 4, we investigate a possible refinement of theonaif robustness and provide an axiomatic
justification of the Ordered Weighted Average aggregatiamcfion to define a measure of the rela-
tive robustness of solutions. Finally, in Section 5, we jmevhe results of numerical experiments on
randomly generated instances.

2 From multicriteria analysis to robust optimization

In this section, we introduce a new concept to charactedbestness of a solution in combinatorial
problems. We first present the “robust” variations of twesslaal problems, namely thebust spanning
tree problem and theobust shortest patbroblem. We see them as special instances of multiobjective
problems. Then, we formalize an intuitive idea of robussn@g putting the emphasis on the notion of
equity of a solution with respect to the different scenarios

2.1 Motivation

We present here two examples that are representative ohthigivie idea underlying the notion of
robustness.
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Example 1We now present an example from Vincke (1999b). Consider ¢heptete graph of Figure 1
(representing a transportation network or a communicatéwork for instance) and assume that we are
looking for a minimum spanning tree. Two scenarios (représg the uncertainty about the transporta-
tion cost or the routing delay for instance) are taken intmaat, leading to a vector-valued graph. The
first component of the vectors is associated to the first steaad the second component of the vectors
is associated to the second scenario. For the the first saetta spanning tre¢((a,b), (a,d), (b,c)}

is optimal; for the second scenario, the spanning {ieea), (d,b), (d,c)} is optimal. However, none
of these two solutions is convenient for the consideredlprblindeed, the first solution yields a cost
of 17 in the second scenario, compared to a cost of 9 in thenapsolution. Similarly, the second
solution yields a cost of 14 in the first scenario, compared tost of 8 in the optimal solution. The
tree{(a,d),(d,b), (b,c)}, which yields a cost of 9 in the first scenario and a cost of 1thinsecond
scenario, is near the optimal value in both scenarios. Iteaseen as th®bust spanning tree this
problem, i.e. it is a network configuration that hedges agjdime worst possible contingency in terms
of transportation costs (routing delays).

Fig. 1 The robust spanning tree problem.

Another problem of interest is the robust path problem tlzat be introduced by the following
example:

Example 2Consider a taxi who wants to rush a man from pe@id pointg in a city network the map
of which is represented by the graph of figure 2. We assumerdleelttimes are not perfectly known
because they depend on scenarios concerning the traffith€sake of simplicity, we consider here
only two scenarios;,s;. Hence, each arrow representing a path from a point to antgh@&lued by

a time vector of typgt(s:),t(sz)) wheret(s;j) represents the expected time if scenaioccurs. The
problem is then to determine the best path frato g. In such a problem, one might be interested in
finding a “robust” solution, i.e., a path which remains shbléawhatever scenario is considered. This
idea of robustness is consistent with the view of Kouvelid #n (1997) and Vincke (1999b) but differs
from the approach for interval-valued problems. The majffetnce is that, in our context, costs are
linked to scenarios, thus making some combinations imptessiFor example, considering Figure 1,
the effective cost of patfa, b, c) cannot be 7, becauge, b) and(b,c) cannot get simultaneously costs
like 5 and 2 (or 3 and 4) respectively. Considering the graptupged on Figure 2, the costs vectors of
solution-paths are listed in the right table.
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(4,6) Path  Vertices Costs
1 (ab,e0) (10,10)
2 (a/b,c,eQ) (23,7)
3 (ab,c f,0) (11,8)
4 (ab,d,c,eg) (11,12)
5 (ab,d,c,f,g) (9,13)
6 (ab,d,f,Q) (10,12)
7 (aceQ) (14,6)
8 (acf,0) 12,7)
(3,5) 9 (ad,c,eQ) (7,12)
. 10 (a,d,c, f,Q) (5,13)
Fig. 2 The robust shortest path problem. 11 (ad,f,g) (6,12)

Facing such problems, simple scalarizations of cost-veao not lead to convincing results. For
instance, using the average of the costs yields, amongspibath 10 which is the worst solution if sce-
narios, occurs. Performing a weighted sum of the costs does not fulv@roblem either. Indeed, by
geometrical arguments, it can easily be shown that solsitloand 3 cannot be obtained by minimizing
a weighted sum of costs (they do not belong to the boundatysofonvex hull of the points represent-
ing paths in the criteria space). Finally, focusing only ba worst cost over the scenarios (minimax
criterion) is not really satisfactory due to overpessimisivaluation. For example solution 3 cannot
be obtained by the minimax criterion despite its promisingts due to the presence of the -indeed
interesting- solution 1. Note that the dominance order ismore adequate since it yields too many
solutions (paths 10, 11, 1, 3, 8, 7). These observations #tmimadequacy of standard decision criteria
to account for the idea of robustness as introduced aboues, The aim of the paper is to propose an
axiomatic framework for robustness and a formal definitibmobust solutions, and to introduce new
algorithms to determine robust solutions in spanning teegbshortest paths problems.

2.2 Formalization

Let G = (V,U) be a graph (oriented or not), whevds a set of vertices and CV xV is a set of “ele-
mentary components” linking vertices (arcs in shortedt pabblems, edges in spanning tree problems).
Considering a finite set of scenaris- {sy,...,sp}, each elementary componentire U is valued by
a vector(uy,...,up) in Zﬁ, where the!" component represents the cost of the elementary component
in scenarios. The feasible set of a multicriteria combinatorial problisndefined as a subsst C 2V
of the power set o). Hence, assuming costs are additive, we can associate @ectstx € Zﬁ to any
subseX € .# by setting:

X = Z(ui, i=1,...,p

ue

Hence, the comparison of any pdKX,Y) of subsets in# in terms of costs amounts to comparing
the vectors(xy,...,Xp) and (yy,...,Yp). In this framework, the classical dominance notions used in
multiobjective optimization apply:

Definition 1 The Weak-Pareto dominance relation (WP-dominance fortsloor cost-vectors oZﬁ is
defined, for all xy € ZP by:

Xzpy <= Mie{l...,phx <Vi)]
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The Pareto dominance relation (P-dominance for short) ost-e@ctors oiZﬁ is defined as the
asymmetric part ofp:

X>=pY < [xZpyandnoty zp X)]

Definition 2 Within a set A any element x is said to Belominatedvhen y>-p x for some y in A, and
P-efficientwhen there is no y in A such thatye x.

In order to decide whether a path is better than another, w¢twalefine a transitive preference relation
>~ on cost-vectors capturing both the aim of cost-minimizatmd the idea of robustness. For this
reason, the preference relation is expected to satisfyottening axioms:

P-Monotonicity. For allx,y € Z? , x =py = x - yandx=py = X >V,

where - is the strict preference relation defined as the asymmetiicqd ~—. This natural unanimity
principle says that, if patl has a lower cost than pathwhatever the scenario considered, thxeis
preferred toy, and this preference is strict as soorxgsy. In addition, the idea of robustness refers to
equity in cost distribution among scenarios which can beesged by the following axiom:

Transfer Principle. Letx € Z? such that; > x; for somei, j. Then for alle such that 0< & < X —X;,
X— €6 + g€ 7 x whereg (resp.g;) is the vector whosé" (resp.jt") component equals 1, all others
being null.

This axiom captures the idea of robustness as follows:f x; for some cost-vectox € Z_’i, slightly
improving (here decreasing) compongnto the detriment ok; while preserving the mean of the costs
would produce a better distribution of costs, and consetfjuarmore robust solution. Hence, path 1
should be as least as good as path 7 in Example 1 because dtareadmissible transfer of size 4
between vectors (14, 6) and (10, 10). Note that using a giridasfer of size greater than 8 would
increase inequality in terms of costs. This explains whytthesfers must have a size< x; — X;. Such
transfers are said to @@ missiblan the following. They are known a@igou-Dalton transferén Social
Choice Theory, where they are used to reduce inequalitydrirtbome distribution over a population
(see Sen, 1997 for a survey).

Since elementary permutations of the vedpar,...,Xp) that just interchange two coordinates can
be achieved using an admissible transfer, and since anyupeion of{1,..., p} is the product of such
elementary permutations, the Transfer Principle imphesfollowing axiom:

Symmetry. For allx € Zﬁ, for all permutationsgrof {1,...,p},

(Xn(l)w-wxn(p)) ~ (X]_,...7Xp),

where~ is the indifference relation defined as the symmetric pait oThis axiom is natural in our
context. Since no information about the likelihood of scesis available, they must be treated equiv-
alently.

Note that the transfer principle possibly provides argutsén discriminate between vectors hav-
ing the same average-cost but does not apply in the compaoiseectors having different average-
costs. However, the possibility of discriminating is imped when combining the Transfer Principle
with P-monotonocity. For example, consider paths 7 and 8ainleT 1 whose cost vectors af#4,6)
and (12, 7) respectively. Although P-dominance cannot discriminaewveen these two vectors, the
discrimination is possible for any preference relatipsatisfying both the Transfer Principle and the P-
monotonocity axiom. Indeed, on the one hafi®, 7) >p (13,7) and thereforg¢12,7) - (13,7) thanks
to P-monotonicity; on the other han@,3,7) - (14,6) thanks to the Transfer Principle applied to the
transfer(14— 1,6+ 1) = (13,7). Hence, we get(12,7) > (14,6) by transitivity. In order to better
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characterize those vectors that can be compared using satdbirtation of the P-monotonicity and the
Transfer Principle we recall the definition of Lorenz vestand related concepts (for more details see
e.g. Marshall and Olkin, 1979; Shorrocks, 1983):

Definition 3 For all a € ZP, theGeneralized Lorenz Vectassociated to x is the vector:
L(X) = (X(l)ax(l) + X(2)7 caX@) +X(2) +... +X(p))

where X1y > X2) > ... > X(p) represents the components of x sorted by decreasing orde#Tcom-
ponent of I[x) is Ly(X) = 31 X

Definition 4 The Generalized Lorenz dominance relation (L-dominancstort) onZ" is defined by:
X,y € ZP, x Ly <= L(X) Zp L(y)

The notion of Lorenz dominance was initially introduced ¢onpare vectors with the same average cost
and its link to the Transfer Principle was established bydylaat al. (1934). The generalized version
of L-dominance considered here is classical (see e.g. Mbuaid Olkin, 1979) and allows any pair of
vectors inZﬁ to be compared. This notion has been used recently for dieaidng equitable solutions

in multicriteria optimization (Kostreva and Ogryczak, P9%ostreva et al., 2004).

Within a setX, any elemenx is said to bd_-dominatedvheny »-| x for somey in X, andL-efficient
when there is ngy in X such thaty > x. For illustration purposes, the L-dominance cone in the bi-
scenario case is depicted in Figure 3 (the subset of poimtsrhinated by vecto(7,5)). In order to
establish the link between Generalized Lorenz dominandepagferences satisfying combination of
P-Monotonocity and Transfer Principle we recall a resulthbng (1976):

Theorem 1 For any pair of distinct vectors.,y € Zﬁ, if X —p Yy, or if X is obtained from y by a Pigou-
Dalton transfer, then X, y. Conversely, if X, y, then there exists a sequence of admissible transfers
and/or Pareto-improvements to transform y into x.

This theorem establishes as the minimal transitive relation (with respect to setuis@n) satisfying
simultaneously P-Monotonicity and the Transfer Princigle a consequence, the subset of L-efficient
elements appears as a very natural solution to choice pnsblgth multiple scenarios, as far as ro-
bustness is concerned. For this reason, we investigateindkt section the generation of the set of
L-efficient paths in a graph.

3 Seeking robust path and trees
3.1 Complexity issues

3.1.1 Robust shortest path problemWe investigate here the computational complexity of thectea
of the set of L-efficient paths. Note first that the L-efficiemiutions are a subset of the P-efficient
solutions which might be very numerous. We wish to evaluaektent to which focusing on L-efficient
solutions (rather than P-efficient solutions) reduces the af the solutions space. In this respect, the
study of the pathological instance introduced in Hanse®@)%or the multi-objective shortest path
problem is interesting (one looks for the set of P-efficieathg from a source node to a destination
node, see Figure 4). In that bivalued graph, all the pathm frode 1 to node = 2g+ 1 have the same
average-cost (whose valug(B — 1) /2) but distinct costs on the first component (due to the umgsge
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L-dominated area 8

- ———= vector(7,5)

i
T
_ _ 3 4 5 6 7 8 9 10
Fig. 3 The L-dominance cone of vect(7,5).

of the binary representation of an integer). The resultiega$ cost-vectors i§(x,29 — 1 —x),x €
{0,...,29—1}}, which contains only P-efficient elements by constructidotice that the cardinality of
this set is exponential in the size of the graph. However,tduke Transfer Principle, there exists only
two L-efficient cost vectors (those minimizing the diffecerbetween their components).

(0,29 3) (0,21 (0,291

Fig. 4 Aninstance by Hansen where all paths are P-efficient.

Unfortunately, it is possible to adapt the previous instéeswas to get a pathological instance for our
problem. Starting from the graph of Hansen, we add an aredalusuch a way that the set of points
associated to the paths of the graph shifts above the bigdaie (so that the symmetry axiom cannot
apply), and we slightly modify the cost-vectors of the am®ider to change the angle between the
alignment of the points and the bisecting line (so that theemeell-balanced is a point, the more costly
is its value, and therefore the transfer principle cannphgpThe resulting instance is given on Figure 5
(where every arc without cost-vectors is actually val(@®)). Let us show that all the paths from node
0 to noden = 2q+ 1 have distinct Lorenz vectors and are L-efficient. The sebst vectors associated
with the paths of the graph ig2x,3 x 29 —x), x € {0,...,29—1}}. Note that the second component is
always greater than the first componentxa {0,...,29— 1}. Consequently, the corresponding set of
Lorenz vectors writeg(3 x 29 —x,3x 29+x), x € {0,...,29—1}}. All Lorenz vectors have the same
average-cost and distinct values on the first componenteter, the size of that set is exponential in
the size of the graph.

Due to the potentially exponential number of L-efficienthzatwe get the following proposition:
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(0,29 3) (0,21) (0,291

Fig. 5 An instance where all paths are L-efficient.

Proposition 1 The problem of finding L-efficient paths in a graph is, in warase, intractable, i.e.
requires for some problems a number of operations which grexponentially with the size of the
problem.

In other respects, one may be interested in the complexideoifding whether there exists a path
whose cost distribution L-dominates a given cost-vecthe fllowing result establishes that this deci-
sion problem cannot be solved in polynomial time unBssNP:

Proposition 2 Deciding whether there exists a path whose cost distributi@lominates a given cost-
vector is an NP-complete decision problem.

Proof We reduce the partition problem to our problem.
instance:Finite setA = {ay,...,aq} and a sizes(a) € Z. for eacha € A.
question:ls there a subsét’ C A such thaty ,cp S(8) = S aca_a S(@)?

That problem is proved NP-complete (see e.g. Garey and doh&879). One constructs -in polyno-
mial time- a graph as indicated on Figure 6 (where every atbowi cost-vectors is actually valued
(0,0)). Deciding whether there exists a path from node 1 to nogde2q+ 1 such that its vector-cost

L-dominates the vectqrz%s(a), Z%S(a)) amounts to solve the partition problem. |

Fig. 6 Reduction from partition problem to robust shortest path.

3.1.2 Robust spanning tree problem\We investigate here the computational complexity of thedea
of the set of L-efficient spanning trees. Similarly to thedstof the multiobjective shortest path problem,
Emelichev and Perepelitsa (1988) and Hamacher and Ruhd)(h@9e constructed instances of the
multi-objective spanning tree problem for which th& 2 spanning trees of a complete graph with
vertices are distinct ang p-efficient. The authors consider complete graphs witrertices and a set
E = {e1,...,em} of edges valued by2—1 2™ —21-1) (i = 1,...,m). Consequently, the average-cost of
an edge is P~ for all g € E and therefore the average-cost of a trefnis 1)2™* for any spanning
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tree. Once more, by the uniqueness of the binary repregamiait an integer, all the spanning trees
have distinct costs on the first component. Thus,ith& spanning trees of the graph (Cayley, 1889)
are P-efficient and are associated with distinct cost-vectdowever, as in the robust shortest path
problem, there exists only two L-efficient cost vectors éoninimizing the difference between their
components).

This instance can be easily transformed to get a pathologistance for our robust spanning tree
problem, by slightly modifying the cost-vectors of the eslgé/e consider complete graphs with
vertices and a seéE = {ey,...,en} of edges valued by2'~* +2™ 2™ _ 21y (i = 1,...,m). The set of
cost vectors associated with the spanning trees of the gsapbubset of (Ticx 21 + (n—1)2™ (n—
1)2M— Jiex2) : X C {1,...,m} and |X| = n— 1}. Note that the first component is always greater than
the second component. Consequently, the correspondingf $etrenz vectors writeq (3icx 2-14
(n—1)2™ 2(n—1)2" - 5;cx 271) : X C {1,...,m} and |X| = n— 1}. All Lorenz vectors have the same
average-cost (whose value ign3- 1)2™1) and distinct values on the first component. Moreover, the
size of the set of spanning trees is exponential in the sizieeofraph.

In other respects, once again, one may be interested in thplegity of deciding whether there
exists a spanning tree whose cost distribution L-dominatgs/en cost-vector. The following result
establishes that this decision problem cannot be solvedlimpmial time unles® = NP:

Proposition 3 Deciding whether there exists a spanning tree whose cosildison L-dominates a
given cost-vector is an NP-complete decision problem.

Proof Similarly to the robust shortest path problem, we reduceptmétion problem to our problem.
One constructs -in polynomial time- a grid graph as indidate Figure 7. Deciding whether there exists
a spanning tree such that its vector-cost L-dominates tttew@z%s(a)7 Z%S(a)) amounts to solve the
partition problem. |

4
(0,s(a1)) = (0.s(a2))
Fig. 7 Reduction from partition problem to robust spanning tree.

3.2 A general algorithmic approach

We show here howk best solutions algorithms can be used for robust discreienation. Ranking
algorithms have been already used in various contexts itigritdria combinatorial optimization:

— Enumeration of P-efficient solutions in the bicriteria stest path problen{Climaco and Martins,
1982). The idea of the method is to start with a lexicograghicoptimal path (which is Pareto-
optimal) and then construct the second best path for theofijsttive, the third, etc. until the nadir
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value on the first criterion is reached (the nadir point israbgerized by the componentwise maxi-
mum of all P-efficient solutions).

Search for an optimal solution of the max-ordering multieria spanning tree problerfHamacher
and Ruhe, 1994). In these problems, one looks for a solutimimizing the worst possible cost
among criteria (i.e., a solutiad minimizing max—y . pX). The idea of the method is to enumerate
the k best solutions with respect to a weighted sum of the critdifee authors give a stopping
condition in the enumeration of thHebest solutions so that the optimal solution is included & th
generated subset of solutions. Ehrgott and Skriver (208@)gsed recently a refinement in the
bicriteria case. They suggest resorting to a two-phaseadeffhe first phase allows to determine
an adequate weighting vector for the ranking algorithm usdke second phase.

Similarly to this latter approach, our algorithm is basedlominsertion of a stopping condition in

the enumeration of thiebest solutions. More precisely, it relies on the followiegult:

Proposition 4 A cost-vectorxy, ..., Xp) L-dominates any cost-vectéy, ...,yp) such that
p
29> PXy (1)
=

Proof By contradiction, assume that:

p
Yi) > PXay (i)
i; (i 1)

and
k

k
Ik < psuchthat$ yi < S x4y (i)
2 Yo < 2 X

Sincey K, xi) < kx), (i) implies that:

=

Yii) < k.X(l) (III)

Furthermore, we have:
P

Yiy < (P—K)yg  (iv)
i=kF1
However, we know thay;) > X1 by (i). Consequently, byii), 3j € {1,...,k} such that,;) < xj) <
X1y and thereforgy ) < X1 (sinceyy < y;))- Then, we deduce froriv):

p
Z Yi)y < (P=K)xa) (V)
=k+1

Finally, we get by(iii ) and(v):
p

y' <p.X1
i; (i) )

which yields a contradiction withi). [ |
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In the bi-scenario case, this result can be representedhigedly (see Figure 8). In Figure 8, the
hatching area corresponds to the set of vectors which hastalcbst greater than27 = 14. This
approximated cone is as better as the considered costrigeatell-balanced (near the bisecting line).

Thus, Proposition 4 suggests enumerating<thest solutions with respect to the sum of the criteria,
and stopping the enumeration as soon as one finds a cost-yesttoh that condition (1) holds. Hence,
no L-efficient solution belongs to the set of remaining sohs. Furthermore, the following observation
allows to speed up the search for L-efficient solutions angemerated solutions:

Remark 1A cost vectorx cannot be L-dominated by a cost vecymuch that:

Hence, we enumerate the list of solutions in increasingrasfitheir total cost and once we know
that all other solutions have a greater total cost, we onlg lha compare a solution with the previously
generated ones to decide wether it is L-efficient or L-domeida

In order to present more formally our algorithm, we introgagditional notations:

— XK denotes th&" best solution, andX is the associated cost-vector,
— b denotes the highest cost among generated solutions,

— LL denotes the set of L-efficient solutions currently found,

— Y'Y denotes a buffer set of solutions which have all the samédoth

Remark that our method remains valid whatever the numberesfagios since we enumerate the list of
solutions with respect to the total cost (and not with respea particular scenario as it is sometimes
done to enumerate P-efficient solutions in bicriteria peais).

Approximated cone IS SR s

- —-——= vector(7,5)

i o 3 4 5 6 7 8 9 10
Fig. 8 Approximation of the L-dominance cone of vecta@t5).
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Algorithm 1 Lorenz Optimization

X! — argmirye » zipzlxi;
Setb — max_1__pxh LL — 0; YY «— {X1}; k2
While P Xt <pxb
Compute thé!" best solutionxX;
If maxi—1. px< < bthenb « max_q__pX
If 524 > 52, %  then
Complete the sdtlL with solutions inY'Y that are L-efficientirL,LUY'Y;
YY «+— 0;
end
YY — YYU{XK};
k—k+1;
end
Output the seLL of L-efficient solutions;

end

We now illustrate the process of our algorithm on the instamicthe robust shortest path problem
given in Section 2 (see Figure 9). Note that we choose arijtthe order in which solutions with the
same total cost are generated. First solution 10 is gemkratel therefore the bound is set ta 23 =
26. Then, solution 11 is generated, and the bound is updat@cktl2 = 24. Next solutions have a
greater total cost, so we can already determine which solsitare L-efficient among solution 10 and
solution 11. Solution 10 is L-dominated by solution 11, ahdréfore solution 11 is the unique L-
efficient solution among both solutions. Afterwards, solug 9, 3 and 8 are generated. The bound is
updated to Z 11 = 22 (due to solution 3). Solutions 9 and 8 are discarded shheedre L-dominated
by solutions 3 and 11. Solution 3 is not L-dominated by soluti1l, and therefore it is L-efficient.
Finally, solutions 1, 2 and 7 are generated and the bounddatag to 2x 10 = 20 (due to solution 1).
Solution 1 is L-efficient and the other are L-dominated. Ttogging condition is now satisfied since
the other solutions have a total cost strictly greater than 2

Due to the underlying use &fest solutions algorithms, our method can be applied to auatdrial
problems for which efficienk best solutions algorithms are known. We focus here on thenmmim
spanning tree problem and the shortest path problem:

— for the generation of weighted spanning trees in order, veeamsalgorithm of Gabow (1977). Its
complexity isO(mlog(3(m,n)) for a graph withn vertices andn edges, wher@(m,n) = min{i :
log"’ n < m/n} and lod" x denotes the log function iteratedimes. It proceeds by successive edges
exchanges.

— for the generation of weighted paths in order, we use aniffgoof Eppstein (1998). Its complexity
is O(m+ nlogn+ k) for a graph withn vertices andn edges. It proceeds by computing the shortest
paths tree and constructing a new graph representing ewassiljpe deviations from the shortest
path.

Of course, our approach could also be applied to severat otivabinatorial problems for which
efficient k best solutions algorithms are known, such as matching, (Elgegireddy and Hamacher,
1987), scheduling (e.g., Brucker and Hamacher, 1989),ar&tflows (e.g., Hamacher, 1995).
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Fig. 9 Process of Algorithm 1 on the robust shortest path problem of Figure 2.

4 Discriminating between L-efficient solutions

As shown in the previous section, the set of L-efficient ohg is a subset of P-efficient solutions and,
as such, it might contain an important number of elementsvéver, all these L-efficient elements are
not equivalent for the decision maker. For example, cosgovec= (10, 10) might be seen as more robust
thany = (18 1), despite the fact that no dominance holds betwigeh = (10,20) andL(y) = (18,19).
Besides, cost vecta= (11, 1) might be preferred ta despite the fact that no dominance holds between
L(z) = (11,12) andL(x). Thus, L-dominance only provides a preliminary filter fobustness analysis,
quite similarly to P-dominance in multi-objective optiration. To go further, we need a sharper pref-
erence model allowing better discrimination between smhstand possibly enabling different attitudes
towards robustness to be captured. We propose below an ati@approach aiming at introducing a
preference weak-ordér on X = R® consistent with L-dominance.

The first axiom requires that discrimination between sohgimust be founded on Lorenz vectors.
Hence, we do not want to discriminate between solutionsigai¥ie same Lorenz vector, which writes:

Neutrality. For allx,yin RP, L(x) = L(y) = x~Y.

We may define a preference relatigii among Lorenz vectors df(R?) = {ve R} : 3x e RY,
=L(x)} by setting:

v L,M c L(Rg), L i/ M < ElX,yE Rp , { )IZ(:_()y: L andL(Y) =M
For the sake of convenience, we now gsistead of=’ to denote the preference relation among Lorenz
vectors. As we intend the preference relation to refine Lidance, we need the following axiom:
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Strict L-Monotonicity. L(X) >=p L(y) = x>y.

Then we introduce three axioms that can be seen as courntegpaon Neumann and Morgenstern
(1947) axioms adapted for Lorenz vectors. As the former agel o characterized preferences repre-
sentable by a utility function, we will use the latter to cheterize a measure of robustness. The first of
them is the weak-order assumption (in order to discrimibateveen solutions).

Complete weak-order.~ is reflexive, transitive and complete.

We introduce now a continuity axiom for preferences overelnarvectors, using Jensen’s classical
formulation (Jensen, 1967):

Continuity. LetL,M,N € L(R?) such that. = M = N. There exist®r, B €]0,1[ such that:
aL+(1—a)N>M>BL+(1-B)N

Continuity of preferences formalizes the intuitive nottbat if two elements in.(R? ) are not very
different, then their utilities should be closed togetheslkiburn, 1970). More precisely, consider two
vectorsL andN such that > N, andL, the vector resulting from the convex combinatidri- (1 — y)N.
For anyM such that. >~ M >~ N, wheny is closed to 1L, is closed toL and therefore., is preferred
to M, provided continuity holds. Similarly, whepis closed to OL is closed taN and thereforav is
preferred td_,.

IndependenceletL,M,N belong toL(Rﬁ). Then, for alla €]0,1]:
L-M=aL+(1—-a)N>aM+(1—a)N

This axiom requires that the preference between two Lorentovs does not depend on their com-
mon components. It is important to observe that this inddpece axiom is a weakening of the usual
independence axiom dR" , obtained by restriction to comonotonic vectors. Recait frandy in Rﬁ
are said to beomonotonidf x > x; andy; <yj for noi, j € {1,...,p} (see Yaari, 1987). Indeed, for
any pairx,y of comonotonic vectors, there exists a permutatiwf {1,..., p} such thaky 1) > Xy2) >
e 2 Xy @NAY1) > Yr2) = -0 > Yop)- Consequentiyl (ax+ (1—a)y) = aL(x) + (1 —a)L(y).
Hence, for all comonotonic vectossy,z € R, if x = y = ax+ (1—a)z> ay+ (1— a)z then
L(x) = L(y) = aL(x)+ (1— a)L(2) = aL(y)+ (1— a)L(z). Observing that for any tripl&, M, N
of Lorenz vectors, there existsy, z, three comonotonic vectors Rf! such that. = L(x),M = L(y) and
N = L(z), we deduce that usual independenceékdnimplies independence dr(R?).

Note that weakening the usual independence axiom is negaessaur framework due to its incom-
patibility with the Strict L-monotonicity axiom, as shows the following:

Example 3Let us considex = (24,24), y = (22,26) andz = (26,22). Due to Strict L-monotonicity,
X = y. Hence, usual independence would impBp,23) = 3x+ 3z Jy+ 3z = (24,24) which is in
contradiction with(24,24) > (25,23).

The conflict here can be explained as follows: on the one hhadost-dispersion of vect¢25, 23)
resulting from the combination of andz is greater than that of = (24,24); on the other hand, the
cost dispersion of vectof24,24) resulting from the combination of andz is smaller than that of
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y = (22,26). This situation cannot occur wheny andz are pairwise comonotonic, which explains the
very idea of our independence axiom. Indeed, assumingilysindz are pairwise comonotonic, this

axiom states that if an individual prefers a cost-veattw a cost vectoy, then he should also prefer a
a/(1— a) chance of getting ory to aa/(1— a) chance of getting or z.

Actually, a similar idea was already present in Dual Choibedry under Risk (see Yaari, 1987) in
the form of theDual independance axianihe link with Yaari's theory under Risk is natural here €nc
Lorenz vectors can be seen as counterparts of cumulatiréoditon functions in decision under risk.

Before introducing our representation theorem, we neetidw ghatL (R® ) with the usual convex
combination in vector spaces igraxture se{Herstein and Milnor, 1953):

Definition 5 A set.# is said to be a mixture set if for anyye .# and for anya we can associate
another element, which we write ax+ (1 — o)y, which is again in#, and where:

M1. 1x+ 0y =X,

M2.ax+(1—a)y=(1—a)y+ax,
M3.a[Bx+(1-B)y|+ (1-a)y=(aB)x+(1—aB)y,
forall x,y in.# and alla, in [0,1].

We have:

Lemma 1 L(RY) is a mixture set with respect to the usual convex combinatieector spaces.

Proof Let L,M € L(RF). We first establish thatrL + (1— a)M belongs toL(R"). SinceL andM
are Lorenz vectors, there existandy in RP such that_(x) = L andL(y) = M. Consider nowx =
(X)s-- > X(p)) @ndy = (Y(1),---,Y(p))- Remark that (x) = L(x) = L andL(y) = L(y) = M. Itis easy to
check tharL + (1— a)M = aL(X) + (1—a)L(y) = L(ax+ (1 — a)y) sincexandy are comonotonic
by construction. ThereforeL + (1—a)M € L(RY). Then, M1 and M2 being straightforward, we only
prove M3:a[fL+ (1-BM]+(1—a)M =aBL+aM—-—aBM+M—-aM =afL+(1—afB)M. R

A linear function on a mixture set is defined as follows:
Definition 6 ¢ : .# — Ris linear if p(ax+ (1—a)y) = a¢d(X) + (1—a)¢(y) for all a € [0,1] and
Xye . #.
Note that here, since the mixture operation coincides vhighusual convex combination in vector
spacesg is automaticallyp-linear:
P P

¢(i;0ixi)=i;ai¢(>q)

with $P  ai = 1 anda; € [0,1] for all i (proof by induction).

Moreover, vectorg; = (1,2,...,i—1/i,...,i) fori =1,...,p, form a basis of_(RR) ; in particular,
every element ot(Rfﬂ) can be seen as a linear combination of those vectors. Inbgeskttinglo =
(0,...,0) and/p;1 = £, We can writeg = 2¢; — {1 — ¢ foralliin {1,..., p}, whereg is the vector
whoseit" component equals 1, all others being null. ConsequentigyevectorL of L(R®) can be
written:

L= zip:]_ Lie = Z{;:]_ Li (2& —€i71—€i+1) (2)
=3 1(2Li—Li1—Lip)b

with the conventiorLy = 0 andL 1 = L. We can now establish our representation theorem:
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Theorem 2 A preference relatior; satisfies Neutrality, Strict L-monotonicity, Complete kweader,
Continuity and Independence if and only if there exists edirfunctiong on L(R?) such that:

XZYy <= ¢(L(X) < ¢(L(y)

whered (L(x)) = 3P 1 (20 (61) — ¢ (fi—1) — $ (£iz1))Li(x)
and ¢ (4)— ¢(li-1) > @ (lisa) — ¢(4i) >0 foralli

Proof By Neutrality, x 27 y iff L(x) 5 L(y) and therefore assuming a complete weak-ordeR8n
amounts to assuming a complete weak—ordeL(jRﬁ). Consequently, Complete weak-order, Conti-
nuity and Independence hold. Herstein and Milnor (1953t&nown that, given#z a mixture set and
>~ a preference relation o7, the following two statements are equivalent:

— Complete weak-order, Continuity and Independence hold;
— there exists a linear functiafion.# such that, foralk,y € .#, x>y <= ¢(x) < ¢(y).

By Lemma 1L (R") is a mixture set. Hence, there exists a linear funcfiam L(R® ) such that, for all
LMELRP),L-M < ¢(L) < p(M).

In other respects, for every vectofx) of L(R?)\ {¢o} we have:
2Li(x) — Li—1(X) = Liza(X) = Xi) = Xi+1) = 0
fori=1,..., pwith the conventiorX 1) = 0. Moreover we have:
p

.;(ZLi (X) = Li—1(x) = Liza(x Zl Zl (i+1) = X1

Hence the coefficient&L(x) — Li-1(X) — Li+1(X))/X.1) are positive and add-up to 1. By tipeinearity
of ¢, ¢(£o) = 0 and for every vectar(x) of L(RF )\ {¢o} we get from Equation 2:

=]

¢ (LI %)) = ¢(H [(2Li(x) = Li-1(X) = Li1(X)) /X))

[(2Li (%) = Li-a(X) = Liva (X)) /X)) 0 (4)

p

= E i;(ZLi(X) —Li—1(X) = Li+1(x)) ¢ (&)

|—\.'_1M'°

x

Then multiplication byx.;) and linearity yield:

°

¢ (LX) = > (2Li(x) —Li-a(x) — Lit1(x)) @ (6)

(2¢( i) = @ (fi-1) — ¢ (liy1))Li(X)

I
;Mu
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Moreover, Strict L-monotonicity implies, forall=1,..., p:

20(6) > ¢ (biv1) + 9 (4i-1) since lip1+Lli—1 >p 20
and ¢(4iy1) > ¢(4) since b =p it

Conversely, if¢ (6i) — ¢ (fi—1) > ¢ (liz1) — @(¢4) > 0foralli € {1,..., p}, then Strict L-Monotonicity
clearly holds. This concludes the proof. |

In order to get a better interpretation éf let us formulate the corresponding functignon R¥
(suchthak —y < (x) < g(y)) using the definition of componenits(x). We get:

p

P(x) = _Zl(d’(fi) — ¢ (li—1))x) 3)

We recognize an Ordered Weighted Average (OWA, Yager, 18@88)strictly decreasing and strictly
positive weightsv; = ¢ (¢) — ¢ (¢i_1). Using these weights, Equation 3 writes:

p
Yw(X) = _;Wix(i)

This is consistent with a result obtained by Ogryczak (2G0@wing that any solution minimizing an
ordered weighted average with strictly decreasing anctstpositive weights is L-efficient. This can be
also linked to the characterization of Gini indices by Weyk{d4981). Indeed, wheg, (x) < iy (y), Xis
preferred toy in terms of robustness. Hence, the functifaax) can be seen as a measure of robustness.
The use of “rank-dependent” weightsgr, can be used to express various attitude towards robustness.
For example, let us mention the following particular cases:

— Max criterion: by settingw; = 1,w, =0,...,wp = 0, our measure reduces to the classical minimax
criterion, used by Kouvelis and Yu (1997) to define absolatmistness.

— Leximax criterioniassuming a big-stepped distribution of weights (ixg.;> w2 > ... > w) yields
a leximax comparison rule (see e.g., Dubois and Fortemp@®})2@wo cost vectorx andy are
compared on the basis of their worst component; in case otdieparison involves the second
worst components of each vector and so on until breakingi¢hé possible. Such an approach to
robustness based on worse cases analysis is convenienuf@np decision makers.

— Average:choosingw; = 1/p, vectors are ranked according to the average of costs. Méren
evaluating the robustness of a cost veatbly a scalatiy(x), the existence of a bad scenario for
can be fully compensated by a collection of more favorabémados.

Between these two extreme cases, various attitudes tonabdstness can be defined, depending on the
way the weightsv; spread over components, and allowing more or less compengetween scenarios.
For example, coming back to set of paths corresponding tar&ig, criterionys, can be used to evaluate
the relative robustness of any L-efficient path and to raekily decreasing order of preference:

Example 4Assume tha (¢p) =0, ¢(¢1) = 0.9 and¢(¢,) = 1, so that the weights amg; = 0.9 and

w, = 0.1, adding up to 1. Table 1 provides the evaluation of solstidime first part of the table provides
the ranking of L-efficient solutions (here paths 1, 3 and Iij the second part of the table provides
the ranking of L-dominated solutions. The selection prepids the first part of the table can be seen as
a pessimistic view since focused on the worst case. Notal#aeasing the strictly positive difference
wy —Wp = 2¢(¢1) — ¢ (¢2) reflects a less pessimistic view and favors other LorenzraptiFor example,
choosingg (o) = 0, ¢ (¢1) = 0.51 and¢ (¢2) = 1 so that the weighte;, = 0.51 andw, = 0.49, we get
Table 2 (with the same presentation as in Table 1).
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Path  Vertices Costs Path  Vertices Costs
1 (ab,eqQ) 10.0 11 (a,d, f,qg) 9.06
3 (ab,c f,g) 10.7 3 (ab,c f,0) 9.53
11 (ad,f,g) 11.4 1 (ab,eqQ) 10.0
8 (acf,0) 115 10 (a,d,c, f,Q) 9.08
9 (ad,c,eQ) 115 8 (acf,0) 9.55
6 (ab,d,f,g) 11.8 9 (ad,ceQ) 9.55
4 (a/b,d,c,eg) 11.9 2 (a/b,c,eq) 10.06
10 (a,d,c,f,Q) 12.2 7 (aceqQ) 10.08
2 (ab,ceq) 12.4 6 (ab,d, f,g) 11.02
5 (ab,d,c,f,g) 12.6 5 (ahb,d,c,f,g) 11.04
7 (ac.eQ) 13.2 4 (ab,d,c,eg) 1151
Table 1 The paths and OWA values (0.9,0.1). Table 2 The paths and OWA values (0.51,0.49).

Note that, in this case, the subset of L-efficient paths do¢$omm the top of the ranking. Indeed,
paths 10 which is L-dominated by 11 received a better evialusthan paths 3 and 1. For this reason, it
is not recommended to use the OWA criterion directly on theeset of paths. We recommend to use
the following procedure:

PRESENTATION OF ROBUST SOLUTIONS

1. Determine the L-efficient solutions.
2. Choose a weighting vectov and rank the above list by decreasing order of prefereneg fy
increasing order ofyy(X)).

Hence we see that functiaf, can be used to discriminate between L-efficient solutiorit the
possibility of handling various attitudes towards robest depending on the values of coefficients
¢ (4),i=1,...,p. Due to strict-L-monotonicity, we know that any solutionmmizing function gy
over the set of feasible solution is L-efficient. Converselye may wonder if any L-efficient solution
can be obtained by minimizing functiagi,(x) = zipzlwix(i) over a sefX C RE with an appropriate
choice of the weighting vectav. In the general case, the answer is negative, as shown bglibeihg
example:

Example 5Consider a simple problem with 2 scenarios and 3 feasiblgieak X, y,z such thatx =
(50,50), y = (80,10) andz = (65,30). The corresponding Lorenz vectors &f&) = (50,100), L(y) =
(80,90) andL(z) = (65,95). Remark that iX = {x,y,z} no element is L-dominated by another. Assume
the Decision Maker prefers solutiato the two others.

Such a preference cannot be described with an OWA. Indeed,

Z=X= Wy X 654+wWy x 30 < wy x 50+wy x 50
Z>= Y= Wy X 65+Wwy x 30 < wg x 80+w, x 10

Hence we get:

w1
Wy
w1
Wy

15xw; < 20x Wy —>
15xw; > 20x W, —

<
>

WAWIA

This yields a contradiction. Therefore, there is no weigitvectorw = (w,...,wp) such thatz €
Argmaxex Yw(X). In such a case, we say thats not anadmissible OWA minimizem X, the set of
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admissible OWA minimizer ixX being defined by:

OWAX) = |J Arg rlgl(xw\,\,(x)

wew

whereW is the set of admissible weights defined by:
W={weRP /wy>w>...>wp}

This impossibility to obtairz by optimizing an admissible OWA function can easily be ekpdd by
the violation of the independence axiom. Indeed, assumabave:

(65,95) = (80,90)
(65,95) = (50,100)

the independence axiom implies:

$(65,95) + 3(65,95) > 3(80,90) + 3(50,100)
which yields(65,95) > (65,95)

Hence we get a contradiction. This shows that preferzit@jthe two other solutions is not compatible
with the independence axiom. In such a case, there is no walyt&inz by optimizing functiony over
X. Hence, given a seX of cost-vectors associated to feasible solutions, andtaenBE(X), LE(X),
OWA(X) the subsets of P-efficient elements, L-efficient elemenmntd, amissible OWA minimizers
respectively, we have:

OWAX) C LE(X) C PE(X)

but any of these inclusions can be strict. However, noteahsuristic search algorithm specially de-
signed to determine an OWA minimizer has been provided impPand Spanjaard (2003). This algo-
rithm is based on a refinement of a multicriteria search @lgornamed MOA* (Stewart and White I,
1991). It could be easily adapted for the shortest path probl

5 Numerical experiments

In this section we present some numerical experiments ierdi@ evaluate the performance of the
method described in Section 3.2. Both algorithms (for tH=uisb spanning trees problem and for the
robust shortest paths problem) have been implemented ire@dt-all the tests have been carried out on
a computer equipped with a PENTIUM IV 2.6Ghz and 1Gb of memory

The algorithms are applied on graphs with randomly genéretsts between 0 and 1000, for 5
scenarios. We evaluate the efficiency of our algorithms waipect to the size of the input graph. For
the robust spanning tree problem, we consider completehgrtie number of vertices of which are
between 10 and 34 (twenty instances for each value). Foothest shortest path problem, we consider
graphs of density 0.5 (an arc is included between two vextigéh a probability of 0.5) the number
of vertices of which are between 1000 and 3000 (twenty ingtsuior each value). The corresponding
numerical results are indicated on Table 3 and Table 4. Far sat of instances, we record the average
number of L-efficient solutions (LE), the average numberafigrated solutions (GS) and the average
execution time.

Although the number of L-efficient solutions can be huge ahgagical instances, it remains quite
low on a large sample of randomly generated instances fiass20 on average for trees, less than 4 on
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size LE GS time size LE GS time

10 2 11 0 1000 1 237 0.2492
14 4 623 0.0117 1250 2 285 0.4469
20 7 1168 0.0328 1500 2 320 0.7047
24 10 25147 0.9681 1750 3 383 1.06105
26 10 15604 0.65235 2000 2 466 1.29385
28 11 43515 1.93675 2250 4 501 1.85115
30 17 51145 2.50955 2500 3 553 2.22375
32 16 47139 2.42965 2750 2 599 2.90835
34 19 75013 4.13535 3000 2 662 3.21185

Table 3 Numerical results for trees. Table 4 Numerical results for paths.

average for paths). The number of paths generated duringeiteh remains quite low too. However,
the number of generated trees may significantly increaststive number of vertices. In the robust
spanning trees problem, the critical ressource for runoingalgorithm is therefore the memory space
and not the processing time. Note that experimentations baen carried out for 5 scenarios. This
gives a good idea of the potential efficiency of our algorighmpractice since most decision problems
involve a few number of scenarios or criteria (less than 10).

6 Conclusion

We have introduced a new formal framework to define robustiresombinatorial problems. This
framework can be seen as a special case of multicriteria itatdsial optimization, where all scales are
commensurate. Taking advantage of this specific featurbawe justified the use of Lorenz-dominance
as a useful refinement of Pareto-dominance to compare aadugiccording to multiple scenarios. Then,
we have proposed a general algorithmic approach to seelofeniz-efficient solutions for robust short-
est path and robust spanning tree problems. This approdeh om ak best solutions algorithm on a
monovalued graph, combined with a stopping condition whereals efficient in practice. This stop-
ping condition prunes the search while guaranteeing thhbatnz-efficient solutions have been found.
We have then refined the notion of Lorenz-dominance by inicod) the ordered weighted average
as an axiomatically founded measure of robustness. Thietmesnables to handle various behavior
patterns towards robustness, depending on the choice ofdighits. The elicitation of these weights to
capture the attitude of a given decision maker is not dismli#s the paper but can clearly be derived
from classical methods used for assessing utility funstidmother important issue might be to inves-
tigate the extension of our work when additional informatidoout the likelihood of scenarios is present.
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