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Abstract This paper is devoted to the search of robust solutions in finite graphs when costs depend on scenar-
ios. We first point out similarities between robust optimization and multiobjective optimization. Then, we present
axiomatic requirements for preference compatibility with the intuitive idea of robustness in a multiple scenarios
decision context. This leads us to propose the Lorenz dominance rule as abasis for robustness analysis. Then, after
presenting complexity results about the determination of Lorenz optima, weshow how the search can be embed-
ded in algorithms designed to enumeratek best solutions. Then, we apply it in order to enumerate Lorenz optimal
spanning trees and paths. We investigate possible refinements of Lorenzdominance and we propose an axiomatic
justification of OWA operators in this context. Finally, the results of numericalexperiments on randomly generated
graphs are provided. They show the numerical efficiency of the suggested approach.

Key words robust optimization, multicriteria optimization, Lorenz optima,k best solutions, minimum spanning
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1 Introduction

The applications of operations research techniques and decision aiding methodologies in real decision
contexts have shown the importance of the problem structuring stage in a decision process, see e.g.,
Roy (1996). The analyst has to elaborate a formal model capturing most significant features of the
problem. In particular, he has to define precisely the set of feasible solutions (the alternatives) but also to
collect or elicit the relevant preference information so asto evaluate and compare the potential solutions.
This evaluation task becomes more and more complex as both the size of the solutions space and the
sophistication of preferences increase. Thus, in combinatorial decision problems, the set of feasible
solutions is only implicitly known which often leads the analyst to consider very simple preferences
structures as those induced by a scalar-valued cost function. For example, in classical graph problems
like the shortest path problemor theminimal spanning tree problem, preferences over paths or trees
directly derive from the sum of the costs of their components(arcs or edges). This makes it possible
to define efficient constructive algorithms (Bellman, 1954;Kruskal, 1956) to determine the min-cost
solution.
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The assessment of such elementary costs during the structuring stage is critical because it entirely
determines which solutions are preferred. However, when facing real-world problems, the adequacy of
a unique and single-valued cost function can be questioned.It is indeed often unrealistic to assume the
existence of a unique plausible view on the decision context, and several plausible scenarios should be
considered instead. This makes the determination of scalarcosts functions uneasy. For this reason, an
alternative approach for the analyst consists in explicitly considering several views of the world (called
here scenarios) leading to several plausible cost functions. The initial optimization problem is then
reformulated as arobust optimization problemwhere the aim is to determine a solution which remains
good (in some sense) whatever scenario is considered.

Note that several ideas of robustness have been studied in decision aiding (Roy, 2002). Initially,
the robustness concept was introduced in OR by Rosenhead et al. in the context of dynamic planning.
Quickly robustness appeared very appealing a concept in many different contexts, but taking into ac-
count specificities of the latter led to very different definitions of robustness. For example, the term
“robust” has been used to qualify:

– a flexible strategy, preserving nice perspectives with respect to the various possible evolutions of the
decision context (Gupta and Rosenhead, 1968);

– a prudent solution, remaining satisfactory in all possibleinstances of a same problem (Kouvelis and
Yu, 1997; Vincke, 1999b);

– a stable conclusion, which remains valid for multiple realistic configurations of the parameters of a
decision model (Roy, 1998; Vincke, 1999a).

More specifically, concerning combinatorial problems, robust discrete optimization has been first
studied by Kouvelis and Yu. The underlying idea is that of prudence. The authors suggest modelling
uncertainty via a setS of scenarios, defined implicitly or explicitly. They define arobust solutionas
the one which has the best performance in its worst case. Theypropose also another formulation of
robustness based on the min-max regret criterion.

We can distinguish two main approaches to take into account the ambiguity about the costs in com-
binatorial problems:

– a set of possible costs is associated to each edge or arc of thegraph. In this case the setS is defined
implicitly as the cartesian product of these sets of costs.

– a vector of possible costs is associated to each edge or arc ofthe graph, one per scenario in a
predefined listSof scenarios, given explicitly.

The first approach has been mainly investigated in the case where each edge or arc is valued by an
interval of possible costs andS is the cartesian product of these intervals, see for instance Yaman et al.
(2001), Karaşan et al. (2003), Montemanni and Gambardella(2004). The second approach has been
mainly investigated in the case where a finite set of scenarios is defined, and treated in a multiobjective
setting as amin-maxor min-max regretoptimization problem (Warburton, 1985; Hamacher and Ruhe,
1994; Yu and Yang, 1998; Murthy and Her, 1992). Conversely, Sayin and Kouvelis (2002) have shown
how these approaches can be used to identify the efficient solutions of multiple objective discrete op-
timization problems, thus strengthening the links betweenrobust and multicriteria optimization. In all
these approaches, the robust solution is obtained by optimizing a function quantifying the robustness of
solutions. This implicitly assumes that all pairs of solutions are comparable in terms of robustness. In
this paper, we focus on the second approach but without necessarily assuming complete comparability
of solutions.

We consider a finite set of scenariosS= {s1, . . . ,sp}. Therefore, the initial optimization problem can
be recast in a multicriteria setting usingp cost functions (one per scenario). Thus, the impact of each
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solutionx in terms of cost is completely described by a cost vector(x1, . . . ,xp) wherex j is an integer
representing the cost of solutionx if scenariosj occurs. Hence, the comparison of solutions is reduced
to the comparison of such cost vectors. In this respect, the problem can be understood as a standard
multicriteria optimization problem (see also Hites et al.,2003) with three important specific features:

– all criteria share the same evaluation scale (the various criteria represent different possible views on
the consequences of solutions in terms of cost).

– the criteria play a symmetric role in such problems because 1) preferences in terms of cost do not
depend on the scenario considered 2) scenarios are seen as equally plausible and there is no reason
to attach more importance to some of them.

– the overall objective is to determine a solution (called “robust”) which is fairly well evaluated on
every criterion.

Note that the first specific feature is of particular interestbecause many aggregation operations (over
criterion values) which are meaningless in the general casebecome meaningful here due to the commen-
surateness of criteria. In this paper we are going to exploitthese specificities in order to propose mul-
ticriteria decision models refining Pareto-dominance while including the idea of robustness informally
introduced above. These models will receive an axiomatic characterization relying on inequality mea-
surement and decision theory. Then we will investigate the use of such models for robust optimization
in graphs. More precisely, we will provide algorithmic solutions to multicriteria discrete optimization
problems with commensurate objectives, focusing on classical problems like the shortest path problem
and the minimal spanning tree problem.

The paper is organized as follows: in Section 2, after an informal introduction to the robustness con-
cept via simple examples of the robust path problem and the robust spanning tree problem, we interpret
the notion of robustness in terms of equity and show the interest of generalized Lorenz dominance as a
preliminary multicriteria comparison rule. In Section 3, we establish complexity results concerning the
search of Lorenz optima; then, we propose a general approachbased on an early scalarization of costs
vectors to find robust solutions. This approach is illustrated on robust paths and robust trees problems.
In Section 4, we investigate a possible refinement of the notion of robustness and provide an axiomatic
justification of the Ordered Weighted Average aggregation function to define a measure of the rela-
tive robustness of solutions. Finally, in Section 5, we provide the results of numerical experiments on
randomly generated instances.

2 From multicriteria analysis to robust optimization

In this section, we introduce a new concept to characterize robustness of a solution in combinatorial
problems. We first present the “robust” variations of two classical problems, namely therobust spanning
treeproblem and therobust shortest pathproblem. We see them as special instances of multiobjective
problems. Then, we formalize an intuitive idea of robustness by putting the emphasis on the notion of
equity of a solution with respect to the different scenarios.

2.1 Motivation

We present here two examples that are representative of the intuitive idea underlying the notion of
robustness.
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Example 1We now present an example from Vincke (1999b). Consider the complete graph of Figure 1
(representing a transportation network or a communicationnetwork for instance) and assume that we are
looking for a minimum spanning tree. Two scenarios (representing the uncertainty about the transporta-
tion cost or the routing delay for instance) are taken into account, leading to a vector-valued graph. The
first component of the vectors is associated to the first scenario and the second component of the vectors
is associated to the second scenario. For the the first scenario, the spanning tree{((a,b),(a,d),(b,c)}
is optimal; for the second scenario, the spanning tree{(d,a),(d,b),(d,c)} is optimal. However, none
of these two solutions is convenient for the considered problem. Indeed, the first solution yields a cost
of 17 in the second scenario, compared to a cost of 9 in the optimal solution. Similarly, the second
solution yields a cost of 14 in the first scenario, compared toa cost of 8 in the optimal solution. The
tree{(a,d),(d,b),(b,c)}, which yields a cost of 9 in the first scenario and a cost of 10 inthe second
scenario, is near the optimal value in both scenarios. It canbe seen as therobust spanning treein this
problem, i.e. it is a network configuration that hedges against the worst possible contingency in terms
of transportation costs (routing delays).

a b

d c

(3,3)

(10,4)

(8,8)

(2,10)

(5,5)(1,2)

Fig. 1 The robust spanning tree problem.

Another problem of interest is the robust path problem that can be introduced by the following
example:

Example 2Consider a taxi who wants to rush a man from pointa to pointg in a city network the map
of which is represented by the graph of figure 2. We assume the travel times are not perfectly known
because they depend on scenarios concerning the traffic. Forthe sake of simplicity, we consider here
only two scenarioss1,s2. Hence, each arrow representing a path from a point to another is valued by
a time vector of type(t(s1), t(s2)) wheret(sj) represents the expected time if scenariosj occurs. The
problem is then to determine the best path froma to g. In such a problem, one might be interested in
finding a “robust” solution, i.e., a path which remains suitable whatever scenario is considered. This
idea of robustness is consistent with the view of Kouvelis and Yu (1997) and Vincke (1999b) but differs
from the approach for interval-valued problems. The major difference is that, in our context, costs are
linked to scenarios, thus making some combinations impossible. For example, considering Figure 1,
the effective cost of path(a,b,c) cannot be 7, because(a,b) and(b,c) cannot get simultaneously costs
like 5 and 2 (or 3 and 4) respectively. Considering the graph pictured on Figure 2, the costs vectors of
solution-paths are listed in the right table.
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b e

a c g

d f

(5,3)

(10,4)

(2,6)

(4,6)

(4,2)

(1,4)

(3,5)

(3,1)

(1,2)

(1,1)

(1,1)

(1,3)

Fig. 2 The robust shortest path problem.

Path Vertices Costs
1 (a,b,e,g) (10,10)
2 (a,b,c,e,g) (13,7)
3 (a,b,c, f ,g) (11,8)
4 (a,b,d,c,e,g) (11,12)
5 (a,b,d,c, f ,g) (9,13)
6 (a,b,d, f ,g) (10,12)
7 (a,c,e,g) (14,6)
8 (a,c, f ,g) (12,7)
9 (a,d,c,e,g) (7,12)

10 (a,d,c, f ,g) (5,13)
11 (a,d, f ,g) (6,12)

Facing such problems, simple scalarizations of cost-vectors do not lead to convincing results. For
instance, using the average of the costs yields, among others, path 10 which is the worst solution if sce-
narios2 occurs. Performing a weighted sum of the costs does not solvethis problem either. Indeed, by
geometrical arguments, it can easily be shown that solutions 1 and 3 cannot be obtained by minimizing
a weighted sum of costs (they do not belong to the boundary of the convex hull of the points represent-
ing paths in the criteria space). Finally, focusing only on the worst cost over the scenarios (minimax
criterion) is not really satisfactory due to overpessimistic evaluation. For example solution 3 cannot
be obtained by the minimax criterion despite its promising costs due to the presence of the -indeed
interesting- solution 1. Note that the dominance order is not more adequate since it yields too many
solutions (paths 10, 11, 1, 3, 8, 7). These observations showthe inadequacy of standard decision criteria
to account for the idea of robustness as introduced above. Thus, the aim of the paper is to propose an
axiomatic framework for robustness and a formal definition of robust solutions, and to introduce new
algorithms to determine robust solutions in spanning treesand shortest paths problems.

2.2 Formalization

Let G = (V,U) be a graph (oriented or not), whereV is a set of vertices andU ⊆V×V is a set of “ele-
mentary components” linking vertices (arcs in shortest path problems, edges in spanning tree problems).
Considering a finite set of scenariosS= {s1, . . . ,sp}, each elementary component inu∈U is valued by
a vector(u1, . . . ,up) in Z

p
+, where theith component represents the cost of the elementary component

in scenariosi . The feasible set of a multicriteria combinatorial problemis defined as a subsetF ⊆ 2U

of the power set ofU . Hence, assuming costs are additive, we can associate a costvectorx∈ Z
p
+ to any

subsetX ∈F by setting:
xi = ∑

u∈X
ui , i = 1, . . . , p

Hence, the comparison of any pair(X,Y) of subsets inF in terms of costs amounts to comparing
the vectors(x1, . . . ,xp) and (y1, . . . ,yp). In this framework, the classical dominance notions used in
multiobjective optimization apply:

Definition 1 The Weak-Pareto dominance relation (WP-dominance for short) on cost-vectors ofZp
+ is

defined, for all x,y∈ Z
p
+ by:

x %P y ⇐⇒ [∀i ∈ {1, . . . , p},xi ≤ yi)]
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The Pareto dominance relation (P-dominance for short) on cost-vectors ofZp
+ is defined as the

asymmetric part of%P:

x≻P y ⇐⇒ [x %P y and not(y %P x)]

Definition 2 Within a set A any element x is said to beP-dominatedwhen y≻P x for some y in A, and
P-efficientwhen there is no y in A such that y≻P x.

In order to decide whether a path is better than another, we want to define a transitive preference relation
% on cost-vectors capturing both the aim of cost-minimization and the idea of robustness. For this
reason, the preference relation is expected to satisfy the following axioms:

P-Monotonicity. For all x,y∈ Z
p
+, x %P y⇒ x % y andx≻P y⇒ x≻ y,

where≻ is the strict preference relation defined as the asymmetric part of %. This natural unanimity
principle says that, if pathx has a lower cost than pathy whatever the scenario considered, thenx is
preferred toy, and this preference is strict as soon asx 6= y. In addition, the idea of robustness refers to
equity in cost distribution among scenarios which can be expressed by the following axiom:

Transfer Principle. Let x∈ Z
p
+ such thatxi > x j for somei, j. Then for allε such that 0≤ ε ≤ xi−x j ,

x− εei + εej % x whereei (resp.ej ) is the vector whoseith (resp. j th) component equals 1, all others
being null.

This axiom captures the idea of robustness as follows: ifxi > x j for some cost-vectorx∈ Z
p
+, slightly

improving (here decreasing) componentxi to the detriment ofx j while preserving the mean of the costs
would produce a better distribution of costs, and consequently a more robust solution. Hence, path 1
should be as least as good as path 7 in Example 1 because there is an admissible transfer of size 4
between vectors (14, 6) and (10, 10). Note that using a similar transfer of size greater than 8 would
increase inequality in terms of costs. This explains why thetransfers must have a sizeε ≤ xi−x j . Such
transfers are said to beadmissiblein the following. They are known asPigou-Dalton transfersin Social
Choice Theory, where they are used to reduce inequality in the income distribution over a population
(see Sen, 1997 for a survey).

Since elementary permutations of the vector(x1, . . . ,xp) that just interchange two coordinates can
be achieved using an admissible transfer, and since any permutation of{1, . . . , p} is the product of such
elementary permutations, the Transfer Principle implies the following axiom:

Symmetry. For all x∈ Z
p
+, for all permutationsπ of {1, . . . , p},

(xπ(1), . . . ,xπ(p))∼ (x1, . . . ,xp),

where∼ is the indifference relation defined as the symmetric part of%. This axiom is natural in our
context. Since no information about the likelihood of scenarios is available, they must be treated equiv-
alently.

Note that the transfer principle possibly provides arguments to discriminate between vectors hav-
ing the same average-cost but does not apply in the comparison of vectors having different average-
costs. However, the possibility of discriminating is improved when combining the Transfer Principle
with P-monotonocity. For example, consider paths 7 and 8 in Table 1 whose cost vectors are(14,6)
and (12,7) respectively. Although P-dominance cannot discriminate between these two vectors, the
discrimination is possible for any preference relation% satisfying both the Transfer Principle and the P-
monotonocity axiom. Indeed, on the one hand,(12,7)≻P (13,7) and therefore(12,7)≻ (13,7) thanks
to P-monotonicity; on the other hand,(13,7) % (14,6) thanks to the Transfer Principle applied to the
transfer(14− 1,6+ 1) = (13,7). Hence, we get:(12,7) ≻ (14,6) by transitivity. In order to better
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characterize those vectors that can be compared using such combination of the P-monotonicity and the
Transfer Principle we recall the definition of Lorenz vectors and related concepts (for more details see
e.g. Marshall and Olkin, 1979; Shorrocks, 1983):

Definition 3 For all a ∈ Z
p
+, theGeneralized Lorenz Vectorassociated to x is the vector:

L(x) = (x(1),x(1) +x(2), . . . ,x(1) +x(2) + . . .+x(p))

where x(1) ≥ x(2) ≥ . . . ≥ x(p) represents the components of x sorted by decreasing order. The kth com-

ponent of L(x) is Lk(x) = ∑k
i=1x(i).

Definition 4 The Generalized Lorenz dominance relation (L-dominance for short) onZ
p
+ is defined by:

∀x,y∈ Z
p
+, x %L y ⇐⇒ L(x) %P L(y)

The notion of Lorenz dominance was initially introduced to compare vectors with the same average cost
and its link to the Transfer Principle was established by Hardy et al. (1934). The generalized version
of L-dominance considered here is classical (see e.g. Marshall and Olkin, 1979) and allows any pair of
vectors inZ

p
+ to be compared. This notion has been used recently for characterizing equitable solutions

in multicriteria optimization (Kostreva and Ogryczak, 1999; Kostreva et al., 2004).
Within a setX, any elementx is said to beL-dominatedwheny≻L x for somey in X, andL-efficient

when there is noy in X such thaty≻L x. For illustration purposes, the L-dominance cone in the bi-
scenario case is depicted in Figure 3 (the subset of points L-dominated by vector(7,5)). In order to
establish the link between Generalized Lorenz dominance and preferences satisfying combination of
P-Monotonocity and Transfer Principle we recall a result ofChong (1976):

Theorem 1For any pair of distinct vectors x,y∈ Z
p
+, if x %P y, or if x is obtained from y by a Pigou-

Dalton transfer, then x%L y. Conversely, if x%L y, then there exists a sequence of admissible transfers
and/or Pareto-improvements to transform y into x.

This theorem establishes%L as the minimal transitive relation (with respect to set inclusion) satisfying
simultaneously P-Monotonicity and the Transfer Principle. As a consequence, the subset of L-efficient
elements appears as a very natural solution to choice problems with multiple scenarios, as far as ro-
bustness is concerned. For this reason, we investigate in the next section the generation of the set of
L-efficient paths in a graph.

3 Seeking robust path and trees

3.1 Complexity issues

3.1.1 Robust shortest path problem.We investigate here the computational complexity of the search
of the set of L-efficient paths. Note first that the L-efficientsolutions are a subset of the P-efficient
solutions which might be very numerous. We wish to evaluate the extent to which focusing on L-efficient
solutions (rather than P-efficient solutions) reduces the size of the solutions space. In this respect, the
study of the pathological instance introduced in Hansen (1980) for the multi-objective shortest path
problem is interesting (one looks for the set of P-efficient paths from a source node to a destination
node, see Figure 4). In that bivalued graph, all the paths from node 1 to noden = 2q+1 have the same
average-cost (whose value is(2q−1)/2) but distinct costs on the first component (due to the uniqueness
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3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

vector(7,5)

L-dominated area

Fig. 3 The L-dominance cone of vector(7,5).

of the binary representation of an integer). The resulting set of cost-vectors is{(x,2q− 1− x), x ∈
{0, . . . ,2q−1}}, which contains only P-efficient elements by construction.Notice that the cardinality of
this set is exponential in the size of the graph. However, dueto the Transfer Principle, there exists only
two L-efficient cost vectors (those minimizing the difference between their components).

1 3 5 ... n

2 4 ... ...

(0,20)

(20,0)
(0,0)

(0,21)

(21,0) (0,0)

(0,2q−1)

(2q−1,0) (0,0)

Fig. 4 An instance by Hansen where all paths are P-efficient.

Unfortunately, it is possible to adapt the previous instance so as to get a pathological instance for our
problem. Starting from the graph of Hansen, we add an arc valued in such a way that the set of points
associated to the paths of the graph shifts above the bisecting line (so that the symmetry axiom cannot
apply), and we slightly modify the cost-vectors of the arcs in order to change the angle between the
alignment of the points and the bisecting line (so that the more well-balanced is a point, the more costly
is its value, and therefore the transfer principle cannot apply). The resulting instance is given on Figure 5
(where every arc without cost-vectors is actually valued(0,0)). Let us show that all the paths from node
0 to noden = 2q+1 have distinct Lorenz vectors and are L-efficient. The set ofcost vectors associated
with the paths of the graph is{(2x,3×2q−x), x∈ {0, . . . ,2q−1}}. Note that the second component is
always greater than the first component forx∈ {0, . . . ,2q−1}. Consequently, the corresponding set of
Lorenz vectors writes{(3×2q−x,3×2q +x), x∈ {0, . . . ,2q−1}}. All Lorenz vectors have the same
average-cost and distinct values on the first component. Moreover, the size of that set is exponential in
the size of the graph.

Due to the potentially exponential number of L-efficient paths, we get the following proposition:
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1 3 5 ... n

0 2 4 ... ...

(0,2q+1 +1)

(0,20)

(21,0)
(0,0)

(0,21)

(22,0) (0,0)

(0,2q−1)

(2q,0) (0,0)

Fig. 5 An instance where all paths are L-efficient.

Proposition 1 The problem of finding L-efficient paths in a graph is, in worstcase, intractable, i.e.
requires for some problems a number of operations which grows exponentially with the size of the
problem.

In other respects, one may be interested in the complexity ofdeciding whether there exists a path
whose cost distribution L-dominates a given cost-vector. The following result establishes that this deci-
sion problem cannot be solved in polynomial time unlessP = NP:

Proposition 2 Deciding whether there exists a path whose cost distribution L-dominates a given cost-
vector is an NP-complete decision problem.

Proof We reduce the partition problem to our problem.

instance:Finite setA = {a1, . . . ,aq} and a sizes(a) ∈ Z+ for eacha∈ A.

question:Is there a subsetA′ ⊆ A such that∑a∈A′ s(a) = ∑a∈A−A′ s(a)?

That problem is proved NP-complete (see e.g. Garey and Johnson, 1979). One constructs -in polyno-
mial time- a graph as indicated on Figure 6 (where every arc without cost-vectors is actually valued
(0,0)). Deciding whether there exists a path from node 1 to noden = 2q+ 1 such that its vector-cost

L-dominates the vector(∑a∈A s(a)
2 , ∑a∈A s(a)

2 ) amounts to solve the partition problem. �

1 3 5 ... n

2 4 ... ...

(s(a1),0)

(0,s(a1))
(0,0)

(s(a2),0)

(0,s(a2)) (0,0)

(s(aq),0)

(0,s(aq)) (0,0)

Fig. 6 Reduction from partition problem to robust shortest path.

3.1.2 Robust spanning tree problem.We investigate here the computational complexity of the search
of the set of L-efficient spanning trees. Similarly to the study of the multiobjective shortest path problem,
Emelichev and Perepelitsa (1988) and Hamacher and Ruhe (1994) have constructed instances of the
multi-objective spanning tree problem for which thenn−2 spanning trees of a complete graph withn
vertices are distinct and%P-efficient. The authors consider complete graphs withn vertices and a set
E = {e1, . . . ,em} of edges valued by(2i−1,2m−2i−1) (i = 1, . . . ,m). Consequently, the average-cost of
an edge is 2m−1 for all ei ∈ E and therefore the average-cost of a tree is(n−1)2m−1 for any spanning
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tree. Once more, by the uniqueness of the binary representation of an integer, all the spanning trees
have distinct costs on the first component. Thus, thenn−2 spanning trees of the graph (Cayley, 1889)
are P-efficient and are associated with distinct cost-vectors. However, as in the robust shortest path
problem, there exists only two L-efficient cost vectors (those minimizing the difference between their
components).

This instance can be easily transformed to get a pathological instance for our robust spanning tree
problem, by slightly modifying the cost-vectors of the edges. We consider complete graphs withn
vertices and a setE = {e1, . . . ,em} of edges valued by(2i−1 + 2m,2m− 2i) (i = 1, . . . ,m). The set of
cost vectors associated with the spanning trees of the graphis a subset of{(∑i∈X 2i−1 +(n−1)2m,(n−
1)2m−∑i∈X 2i) : X ⊆ {1, . . . ,m} and |X|= n−1}. Note that the first component is always greater than
the second component. Consequently, the corresponding setof Lorenz vectors writes{(∑i∈X 2i−1 +
(n−1)2m,2(n−1)2m−∑i∈X 2i−1) : X ⊆ {1, . . . ,m} and |X|= n−1}. All Lorenz vectors have the same
average-cost (whose value is 3(n−1)2m−1) and distinct values on the first component. Moreover, the
size of the set of spanning trees is exponential in the size ofthe graph.

In other respects, once again, one may be interested in the complexity of deciding whether there
exists a spanning tree whose cost distribution L-dominatesa given cost-vector. The following result
establishes that this decision problem cannot be solved in polynomial time unlessP = NP:

Proposition 3 Deciding whether there exists a spanning tree whose cost distribution L-dominates a
given cost-vector is an NP-complete decision problem.

Proof Similarly to the robust shortest path problem, we reduce thepartition problem to our problem.
One constructs -in polynomial time- a grid graph as indicated on Figure 7. Deciding whether there exists
a spanning tree such that its vector-cost L-dominates the vector (∑a∈A s(a)

2 , ∑a∈A s(a)
2 ) amounts to solve the

partition problem. �

1 3 5 ... ...

2 4 6 ... n

(s(a1),0) (s(a2),0)

(0,0)

(0,s(a1)) (0,s(a2))

(0,0) (0,0) (0,0)

(s(aq),0)

(0,s(aq))

(0,0)

Fig. 7 Reduction from partition problem to robust spanning tree.

3.2 A general algorithmic approach

We show here howk best solutions algorithms can be used for robust discrete optimization. Ranking
algorithms have been already used in various contexts in multicriteria combinatorial optimization:

– Enumeration of P-efficient solutions in the bicriteria shortest path problem(Climaco and Martins,
1982). The idea of the method is to start with a lexicographically optimal path (which is Pareto-
optimal) and then construct the second best path for the firstobjective, the third, etc. until the nadir
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value on the first criterion is reached (the nadir point is characterized by the componentwise maxi-
mum of all P-efficient solutions).

– Search for an optimal solution of the max-ordering multicriteria spanning tree problem(Hamacher
and Ruhe, 1994). In these problems, one looks for a solution minimizing the worst possible cost
among criteria (i.e., a solutionX minimizing maxi=1,...,pxi). The idea of the method is to enumerate
the k best solutions with respect to a weighted sum of the criteria. The authors give a stopping
condition in the enumeration of thek best solutions so that the optimal solution is included in the
generated subset of solutions. Ehrgott and Skriver (2003) proposed recently a refinement in the
bicriteria case. They suggest resorting to a two-phase method. The first phase allows to determine
an adequate weighting vector for the ranking algorithm usedin the second phase.

Similarly to this latter approach, our algorithm is based onthe insertion of a stopping condition in
the enumeration of thek best solutions. More precisely, it relies on the following result:

Proposition 4 A cost-vector(x1, . . . ,xp) L-dominates any cost-vector(y1, . . . ,yp) such that

p

∑
i=1

yi > p.x(1) (1)

Proof By contradiction, assume that:

p

∑
i=1

y(i) > p.x(1) (i)

and

∃k≤ p such that
k

∑
i=1

y(i) <
k

∑
i=1

x(i) (ii)

Since∑k
i=1x(i) ≤ k.x(1), (ii) implies that:

k

∑
i=1

y(i) < k.x(1) (iii )

Furthermore, we have:
p

∑
i=k+1

y(i) ≤ (p−k)y(k) (iv)

However, we know thaty(1) > x(1) by (i). Consequently, by(ii), ∃ j ∈ {1, . . . ,k} such thaty( j) < x( j) ≤
x(1) and thereforey(k) < x(1) (sincey(k) ≤ y( j)). Then, we deduce from(iv):

p

∑
i=k+1

y(i) < (p−k)x(1) (v)

Finally, we get by(iii ) and(v):
p

∑
i=1

y(i) < p.x(1)

which yields a contradiction with(i). �
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In the bi-scenario case, this result can be represented graphically (see Figure 8). In Figure 8, the
hatching area corresponds to the set of vectors which have a total cost greater than 2× 7 = 14. This
approximated cone is as better as the considered cost-vector is well-balanced (near the bisecting line).

Thus, Proposition 4 suggests enumerating thek best solutions with respect to the sum of the criteria,
and stopping the enumeration as soon as one finds a cost-vector y such that condition (1) holds. Hence,
no L-efficient solution belongs to the set of remaining solutions. Furthermore, the following observation
allows to speed up the search for L-efficient solutions amonggenerated solutions:

Remark 1A cost vectorx cannot be L-dominated by a cost vectory such that:

p

∑
i=1

yi >
p

∑
i=1

xi

Hence, we enumerate the list of solutions in increasing order of their total cost and once we know
that all other solutions have a greater total cost, we only have to compare a solution with the previously
generated ones to decide wether it is L-efficient or L-dominated.

In order to present more formally our algorithm, we introduce additional notations:

– Xk denotes thekth best solution, andxk is the associated cost-vector,
– b denotes the highest cost among generated solutions,
– LL denotes the set of L-efficient solutions currently found,
– YY denotes a buffer set of solutions which have all the same total cost.

Remark that our method remains valid whatever the number of scenarios since we enumerate the list of
solutions with respect to the total cost (and not with respect to a particular scenario as it is sometimes
done to enumerate P-efficient solutions in bicriteria problems).

3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

vector(7,5)

Approximated cone

Fig. 8 Approximation of the L-dominance cone of vector(7,5).
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Algorithm 1 Lorenz Optimization

X1← argminX∈F ∑p
i=1xi ;

Setb← maxi=1,...,px1
i ; LL← /0; YY← {X1}; k← 2;

While ∑p
i=1xk−1

i ≤ p×b
Compute thekth best solutionXk;
If maxi=1,...,pxk

i < b thenb← maxi=1,...,pxk
i ;

If ∑p
i=1xk

i > ∑p
i=1xk−1

i then
Complete the setLL with solutions inYY that are L-efficient inLL∪YY;
YY← /0;

end
YY←YY∪{Xk};
k← k+1;

end
Output the setLL of L-efficient solutions;

end

We now illustrate the process of our algorithm on the instance of the robust shortest path problem
given in Section 2 (see Figure 9). Note that we choose arbitrarily the order in which solutions with the
same total cost are generated. First solution 10 is generated, and therefore the bound is set to 2×13=
26. Then, solution 11 is generated, and the bound is updated to 2× 12 = 24. Next solutions have a
greater total cost, so we can already determine which solutions are L-efficient among solution 10 and
solution 11. Solution 10 is L-dominated by solution 11, and therefore solution 11 is the unique L-
efficient solution among both solutions. Afterwards, solutions 9, 3 and 8 are generated. The bound is
updated to 2×11= 22 (due to solution 3). Solutions 9 and 8 are discarded since they are L-dominated
by solutions 3 and 11. Solution 3 is not L-dominated by solution 11, and therefore it is L-efficient.
Finally, solutions 1, 2 and 7 are generated and the bound is updated to 2×10= 20 (due to solution 1).
Solution 1 is L-efficient and the other are L-dominated. The stopping condition is now satisfied since
the other solutions have a total cost strictly greater than 20.

Due to the underlying use ofk best solutions algorithms, our method can be applied to combinatorial
problems for which efficientk best solutions algorithms are known. We focus here on the minimum
spanning tree problem and the shortest path problem:

– for the generation of weighted spanning trees in order, we use an algorithm of Gabow (1977). Its
complexity isO(mlog(β (m,n)) for a graph withn vertices andm edges, whereβ (m,n) = min{i :
log(i) n≤m/n} and log(i) x denotes the log function iteratedn times. It proceeds by successive edges
exchanges.

– for the generation of weighted paths in order, we use an algorithm of Eppstein (1998). Its complexity
is O(m+nlogn+k) for a graph withn vertices andm edges. It proceeds by computing the shortest
paths tree and constructing a new graph representing every possible deviations from the shortest
path.

Of course, our approach could also be applied to several other combinatorial problems for which
efficient k best solutions algorithms are known, such as matching (e.g., Chegireddy and Hamacher,
1987), scheduling (e.g., Brucker and Hamacher, 1989), network flows (e.g., Hamacher, 1995).
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L-efficient

P-efficient increasing sum

18 19 20 (sum value)

Fig. 9 Process of Algorithm 1 on the robust shortest path problem of Figure 2.

4 Discriminating between L-efficient solutions

As shown in the previous section, the set of L-efficient solutions is a subset of P-efficient solutions and,
as such, it might contain an important number of elements. However, all these L-efficient elements are
not equivalent for the decision maker. For example, cost vector x= (10,10) might be seen as more robust
thany = (18,1), despite the fact that no dominance holds betweenL(x) = (10,20) andL(y) = (18,19).
Besides, cost vectorz= (11,1) might be preferred tox despite the fact that no dominance holds between
L(z) = (11,12) andL(x). Thus, L-dominance only provides a preliminary filter for robustness analysis,
quite similarly to P-dominance in multi-objective optimization. To go further, we need a sharper pref-
erence model allowing better discrimination between solutions and possibly enabling different attitudes
towards robustness to be captured. We propose below an axiomatic approach aiming at introducing a
preference weak-order% onX = R

p
+ consistent with L-dominance.

The first axiom requires that discrimination between solutions must be founded on Lorenz vectors.
Hence, we do not want to discriminate between solutions having the same Lorenz vector, which writes:

Neutrality. For allx,y in R
p
+, L(x) = L(y)⇒ x∼ y.

We may define a preference relation%′ among Lorenz vectors ofL(Rp
+) = {v ∈ R

p
+ : ∃x ∈ R

p
+,

v = L(x)} by setting:

∀ L,M ∈ L(Rp
+), L %′ M ⇔ ∃x,y∈ R

p
+,

{

L(x) = L andL(y) = M
x % y

For the sake of convenience, we now use% instead of%′ to denote the preference relation among Lorenz
vectors. As we intend the preference relation to refine L-dominance, we need the following axiom:
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Strict L-Monotonicity. L(x)≻P L(y)⇒ x≻ y.

Then we introduce three axioms that can be seen as counterparts of von Neumann and Morgenstern
(1947) axioms adapted for Lorenz vectors. As the former are used to characterized preferences repre-
sentable by a utility function, we will use the latter to characterize a measure of robustness. The first of
them is the weak-order assumption (in order to discriminatebetween solutions).

Complete weak-order.% is reflexive, transitive and complete.

We introduce now a continuity axiom for preferences over Lorenz vectors, using Jensen’s classical
formulation (Jensen, 1967):

Continuity. Let L,M,N ∈ L(Rp
+) such thatL≻M ≻ N. There existsα,β ∈]0,1[ such that:

αL+(1−α)N≻M ≻ βL+(1−β )N

Continuity of preferences formalizes the intuitive notionthat if two elements inL(Rp
+) are not very

different, then their utilities should be closed together (Fishburn, 1970). More precisely, consider two
vectorsL andN such thatL≻N, andLγ the vector resulting from the convex combinationγL+(1−γ)N.
For anyM such thatL ≻M ≻ N, whenγ is closed to 1,Lγ is closed toL and thereforeLγ is preferred
to M, provided continuity holds. Similarly, whenγ is closed to 0,Lγ is closed toN and thereforeM is
preferred toLγ .

Independence.Let L,M,N belong toL(Rp
+). Then, for allα ∈]0,1[:

L≻M =⇒ αL+(1−α)N≻ αM +(1−α)N

This axiom requires that the preference between two Lorenz vectors does not depend on their com-
mon components. It is important to observe that this independence axiom is a weakening of the usual
independence axiom onRp

+, obtained by restriction to comonotonic vectors. Recall that x andy in R
p
+

are said to becomonotonicif xi > x j andyi < y j for no i, j ∈ {1, . . . , p} (see Yaari, 1987). Indeed, for
any pairx,y of comonotonic vectors, there exists a permutationπ of {1, . . . , p} such thatxπ(1) ≥ xπ(2) ≥
. . . ≥ xπ(p) andyπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(p). Consequently,L(αx+ (1−α)y) = αL(x) + (1−α)L(y).
Hence, for all comonotonic vectorsx,y,z∈ R

p
+, if x ≻ y =⇒ αx+ (1− α)z≻ αy+ (1− α)z then

L(x) ≻ L(y) =⇒ αL(x) + (1−α)L(z) ≻ αL(y) + (1−α)L(z). Observing that for any tripleL,M,N
of Lorenz vectors, there existsx,y,z, three comonotonic vectors inRp

+ such thatL = L(x),M = L(y) and
N = L(z), we deduce that usual independence onR

p
+ implies independence onL(Rp

+).

Note that weakening the usual independence axiom is necessary in our framework due to its incom-
patibility with the Strict L-monotonicity axiom, as shown by the following:

Example 3Let us considerx = (24,24), y = (22,26) andz = (26,22). Due to Strict L-monotonicity,
x≻ y. Hence, usual independence would imply(25,23) = 1

2x+ 1
2z≻ 1

2y+ 1
2z = (24,24) which is in

contradiction with(24,24)≻L (25,23).

The conflict here can be explained as follows: on the one hand,the cost-dispersion of vector(25,23)
resulting from the combination ofx andz is greater than that ofx = (24,24); on the other hand, the
cost dispersion of vector(24,24) resulting from the combination ofy and z is smaller than that of
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y = (22,26). This situation cannot occur whenx, y andz are pairwise comonotonic, which explains the
very idea of our independence axiom. Indeed, assuming thatx, y andz are pairwise comonotonic, this
axiom states that if an individual prefers a cost-vectorx to a cost vectory, then he should also prefer a
α/(1−α) chance of gettingx or y to aα/(1−α) chance of gettingx or z.

Actually, a similar idea was already present in Dual Choice Theory under Risk (see Yaari, 1987) in
the form of theDual independance axiom. The link with Yaari’s theory under Risk is natural here since
Lorenz vectors can be seen as counterparts of cumulative distribution functions in decision under risk.

Before introducing our representation theorem, we need to show thatL(Rp
+) with the usual convex

combination in vector spaces is amixture set(Herstein and Milnor, 1953):

Definition 5 A setM is said to be a mixture set if for any x,y ∈M and for anyα we can associate
another element, which we write asαx+(1−α)y, which is again inM , and where:

M1. 1x+0y = x,
M2. αx+(1−α)y = (1−α)y+αx,
M3. α[βx+(1−β )y]+ (1−α)y = (αβ )x+(1−αβ )y,

for all x,y in M and all α,β in [0,1].

We have:

Lemma 1 L(Rp
+) is a mixture set with respect to the usual convex combinationin vector spaces.

Proof Let L,M ∈ L(Rp
+). We first establish thatαL + (1−α)M belongs toL(Rp

+). SinceL andM
are Lorenz vectors, there existsx andy in R

p
+ such thatL(x) = L andL(y) = M. Consider now ¯x =

(x(1), . . . ,x(p)) andȳ = (y(1), . . . ,y(p)). Remark thatL(x̄) = L(x) = L andL(ȳ) = L(y) = M. It is easy to
check thatαL + (1−α)M = αL(x̄) + (1−α)L(ȳ) = L(α x̄+(1−α)ȳ) sincex̄ andȳ are comonotonic
by construction. ThereforeαL + (1−α)M ∈ L(Rp

+). Then, M1 and M2 being straightforward, we only
prove M3:α[βL+(1−β )M]+ (1−α)M = αβL+αM−αβM +M−αM = αβL+(1−αβ )M. �

A linear function on a mixture set is defined as follows:

Definition 6 ϕ : M → R is linear if ϕ(αx+(1−α)y) = αϕ(x) + (1−α)ϕ(y) for all α ∈ [0,1] and
x,y∈M .

Note that here, since the mixture operation coincides with the usual convex combination in vector
spaces,ϕ is automaticallyp-linear:

ϕ(
p

∑
i=1

αixi) =
p

∑
i=1

αiϕ(xi)

with ∑p
i=1 αi = 1 andαi ∈ [0,1] for all i (proof by induction).

Moreover, vectorsℓi = (1,2, . . . , i−1, i, . . . , i) for i = 1, . . . , p, form a basis ofL(Rp
+) ; in particular,

every element ofL(Rp
+) can be seen as a linear combination of those vectors. Indeed,by settingℓ0 =

(0, . . . ,0) andℓp+1 = ℓp, we can writeei = 2ℓi− ℓi−1− ℓi+1 for all i in {1, . . . , p}, whereei is the vector
whoseith component equals 1, all others being null. Consequently, every vectorL of L(Rp

+) can be
written:

L = ∑p
i=1Liei = ∑p

i=1Li(2ℓi− ℓi−1− ℓi+1)
= ∑p

i=1(2Li−Li−1−Li+1)ℓi
(2)

with the conventionL0 = 0 andLp+1 = Lp. We can now establish our representation theorem:
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Theorem 2A preference relation% satisfies Neutrality, Strict L-monotonicity, Complete weak-order,
Continuity and Independence if and only if there exists a linear functionϕ on L(Rp

+) such that:

x % y ⇐⇒ ϕ(L(x))≤ ϕ(L(y))

whereϕ(L(x)) = ∑p
i=1(2ϕ(ℓi)−ϕ(ℓi−1)−ϕ(ℓi+1))Li(x)

and ϕ(ℓi)−ϕ(ℓi−1) > ϕ(ℓi+1)−ϕ(ℓi) > 0 for all i

Proof By Neutrality, x % y iff L(x) % L(y) and therefore assuming a complete weak-order onR
p
+

amounts to assuming a complete weak-order onL(Rp
+). Consequently, Complete weak-order, Conti-

nuity and Independence hold. Herstein and Milnor (1953) have shown that, givenM a mixture set and
% a preference relation onM , the following two statements are equivalent:

– Complete weak-order, Continuity and Independence hold;
– there exists a linear functionϕ onM such that, for allx,y∈M , x≻ y ⇐⇒ ϕ(x) < ϕ(y).

By Lemma 1,L(Rp
+) is a mixture set. Hence, there exists a linear functionϕ onL(Rp

+) such that, for all
L,M ∈ L(Rp

+), L≻M ⇐⇒ ϕ(L) < ϕ(M).

In other respects, for every vectorL(x) of L(Rp
+)\{ℓ0} we have:

2Li(x)−Li−1(x)−Li+1(x) = x(i)−x(i+1) ≥ 0

for i = 1, . . . , p with the conventionx(p+1) = 0. Moreover we have:

p

∑
i=1

(2Li(x)−Li−1(x)−Li+1(x)) =
p

∑
i=1

x(i)−
p

∑
i=1

x(i+1) = x(1)

Hence the coefficients(2Li(x)−Li−1(x)−Li+1(x))/x(1) are positive and add-up to 1. By thep-linearity
of ϕ, ϕ(ℓ0) = 0 and for every vectorL(x) of L(Rp

+)\{ℓ0} we get from Equation 2:

ϕ(L(x)/x(1)) = ϕ(
p

∑
i=1

[(2Li(x)−Li−1(x)−Li+1(x))/x(1)]ℓi)

=
p

∑
i=1

[(2Li(x)−Li−1(x)−Li+1(x))/x(1)]ϕ(ℓi)

=
1

x(1)

p

∑
i=1

(2Li(x)−Li−1(x)−Li+1(x))ϕ(ℓi)

Then multiplication byx(1) and linearity yield:

ϕ(L(x)) =
p

∑
i=1

(2Li(x)−Li−1(x)−Li+1(x))ϕ(ℓi)

=
p

∑
i=1

(2ϕ(ℓi)−ϕ(ℓi−1)−ϕ(ℓi+1))Li(x)
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Moreover, Strict L-monotonicity implies, for alli = 1, . . . , p:

2ϕ(ℓi) > ϕ(ℓi+1)+ϕ(ℓi−1) since ℓi+1 + ℓi−1≻P 2ℓi

and ϕ(ℓi+1) > ϕ(ℓi) since ℓi ≻P ℓi+1

Conversely, ifϕ(ℓi)−ϕ(ℓi−1) > ϕ(ℓi+1)−ϕ(ℓi) > 0 for all i ∈ {1, . . . , p}, then Strict L-Monotonicity
clearly holds. This concludes the proof. �

In order to get a better interpretation ofϕ, let us formulate the corresponding functionψ on R
p
+

(such thatx % y ⇐⇒ ψ(x)≤ ψ(y)) using the definition of componentsLi(x). We get:

ψ(x) =
p

∑
i=1

(ϕ(ℓi)−ϕ(ℓi−1))x(i) (3)

We recognize an Ordered Weighted Average (OWA, Yager, 1988)with strictly decreasing and strictly
positive weightswi = ϕ(ℓi)−ϕ(ℓi−1). Using these weights, Equation 3 writes:

ψw(x) =
p

∑
i=1

wix(i)

This is consistent with a result obtained by Ogryczak (2000)showing that any solution minimizing an
ordered weighted average with strictly decreasing and strictly positive weights is L-efficient. This can be
also linked to the characterization of Gini indices by Weymark (1981). Indeed, whenψw(x) < ψw(y), x is
preferred toy in terms of robustness. Hence, the functionψw(x) can be seen as a measure of robustness.
The use of “rank-dependent” weights inψw can be used to express various attitude towards robustness.
For example, let us mention the following particular cases:

– Max criterion:by settingw1 = 1,w2 = 0, . . . ,wp = 0, our measure reduces to the classical minimax
criterion, used by Kouvelis and Yu (1997) to define absolute robustness.

– Leximax criterion:assuming a big-stepped distribution of weights (i.e.,w1≫w2≫ . . .≫wp) yields
a leximax comparison rule (see e.g., Dubois and Fortemps, 2004): two cost vectorsx and y are
compared on the basis of their worst component; in case of tie, comparison involves the second
worst components of each vector and so on until breaking the tie, if possible. Such an approach to
robustness based on worse cases analysis is convenient for prudent decision makers.

– Average:choosingwi = 1/p, vectors are ranked according to the average of costs. Here,when
evaluating the robustness of a cost vectorx by a scalarψw(x), the existence of a bad scenario forx
can be fully compensated by a collection of more favorable scenarios.

Between these two extreme cases, various attitudes towardsrobustness can be defined, depending on the
way the weightswi spread over components, and allowing more or less compensation between scenarios.
For example, coming back to set of paths corresponding to Figure 2, criterionψw can be used to evaluate
the relative robustness of any L-efficient path and to rank them by decreasing order of preference:

Example 4Assume thatϕ(ℓ0) = 0, ϕ(ℓ1) = 0.9 andϕ(ℓ2) = 1, so that the weights arew1 = 0.9 and
w2 = 0.1, adding up to 1. Table 1 provides the evaluation of solutions. The first part of the table provides
the ranking of L-efficient solutions (here paths 1, 3 and 11) and the second part of the table provides
the ranking of L-dominated solutions. The selection proposed in the first part of the table can be seen as
a pessimistic view since focused on the worst case. Note thatdecreasing the strictly positive difference
w1−w2 = 2ϕ(ℓ1)−ϕ(ℓ2) reflects a less pessimistic view and favors other Lorenz optima. For example,
choosingϕ(ℓ0) = 0, ϕ(ℓ1) = 0.51 andϕ(ℓ2) = 1 so that the weightsw1 = 0.51 andw2 = 0.49, we get
Table 2 (with the same presentation as in Table 1).
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Path Vertices Costs
1 (a,b,e,g) 10.0
3 (a,b,c, f ,g) 10.7

11 (a,d, f ,g) 11.4
8 (a,c, f ,g) 11.5
9 (a,d,c,e,g) 11.5
6 (a,b,d, f ,g) 11.8
4 (a,b,d,c,e,g) 11.9

10 (a,d,c, f ,g) 12.2
2 (a,b,c,e,g) 12.4
5 (a,b,d,c, f ,g) 12.6
7 (a,c,e,g) 13.2

Table 1 The paths and OWA values (0.9,0.1).

Path Vertices Costs
11 (a,d, f ,g) 9.06
3 (a,b,c, f ,g) 9.53
1 (a,b,e,g) 10.0

10 (a,d,c, f ,g) 9.08
8 (a,c, f ,g) 9.55
9 (a,d,c,e,g) 9.55
2 (a,b,c,e,g) 10.06
7 (a,c,e,g) 10.08
6 (a,b,d, f ,g) 11.02
5 (a,b,d,c, f ,g) 11.04
4 (a,b,d,c,e,g) 11.51

Table 2 The paths and OWA values (0.51,0.49).

Note that, in this case, the subset of L-efficient paths does not form the top of the ranking. Indeed,
paths 10 which is L-dominated by 11 received a better evaluation than paths 3 and 1. For this reason, it
is not recommended to use the OWA criterion directly on the entire set of paths. We recommend to use
the following procedure:

PRESENTATION OF ROBUST SOLUTIONS

1. Determine the L-efficient solutions.
2. Choose a weighting vectorw and rank the above list by decreasing order of preference (i.e., by

increasing order ofψw(x)).

Hence we see that functionψw can be used to discriminate between L-efficient solutions, with the
possibility of handling various attitudes towards robustness depending on the values of coefficients
ϕ(ℓi), i = 1, . . . , p. Due to strict-L-monotonicity, we know that any solution minimizing functionψw

over the set of feasible solution is L-efficient. Conversely, one may wonder if any L-efficient solution
can be obtained by minimizing functionψw(x) = ∑p

i=1wix(i) over a setX ⊆ R
p
+ with an appropriate

choice of the weighting vectorw. In the general case, the answer is negative, as shown by the following
example:

Example 5Consider a simple problem with 2 scenarios and 3 feasible solutions x,y,z such thatx =
(50,50), y = (80,10) andz= (65,30). The corresponding Lorenz vectors areL(x) = (50,100), L(y) =
(80,90) andL(z) = (65,95). Remark that ifX = {x,y,z} no element is L-dominated by another. Assume
the Decision Maker prefers solutionz to the two others.

Such a preference cannot be described with an OWA. Indeed,

z≻ x⇒ w1×65+w2×30 < w1×50+w2×50
z≻ y⇒ w1×65+w2×30 < w1×80+w2×10

Hence we get:
15×w1 < 20×w2 =⇒ w1

w2
< 4

3

15×w1 > 20×w2 =⇒ w1
w2

> 4
3

This yields a contradiction. Therefore, there is no weighting vectorw = (w1, . . . ,wp) such thatz∈
Argmaxx∈X ψw(x). In such a case, we say thatx is not anadmissible OWA minimizeron X, the set of
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admissible OWA minimizer inX being defined by:

OWA(X) =
⋃

w∈W

Argmax
x∈X

ψw(x)

whereW is the set of admissible weights defined by:

W = {w∈ R
p
+ / w1 > w2 > .. . > wp}

This impossibility to obtainzby optimizing an admissible OWA function can easily be explained by
the violation of the independence axiom. Indeed, assuming we have:

(65,95) ≻ (80,90)
(65,95) ≻ (50,100)

the independence axiom implies:

1
2(65,95)+ 1

2(65,95) ≻ 1
2(80,90)+ 1

2(50,100)
which yields(65,95) ≻ (65,95)

Hence we get a contradiction. This shows that preferringz to the two other solutions is not compatible
with the independence axiom. In such a case, there is no way toobtainzby optimizing functionψ over
X. Hence, given a setX of cost-vectors associated to feasible solutions, and denoting PE(X), LE(X),
OWA(X) the subsets of P-efficient elements, L-efficient elements, and admissible OWA minimizers
respectively, we have:

OWA(X)⊆ LE(X)⊆ PE(X)

but any of these inclusions can be strict. However, note thata heuristic search algorithm specially de-
signed to determine an OWA minimizer has been provided in Perny and Spanjaard (2003). This algo-
rithm is based on a refinement of a multicriteria search algorithm named MOA* (Stewart and White III,
1991). It could be easily adapted for the shortest path problem.

5 Numerical experiments

In this section we present some numerical experiments in order to evaluate the performance of the
method described in Section 3.2. Both algorithms (for the robust spanning trees problem and for the
robust shortest paths problem) have been implemented in C++and all the tests have been carried out on
a computer equipped with a PENTIUM IV 2.6Ghz and 1Gb of memory.

The algorithms are applied on graphs with randomly generated costs between 0 and 1000, for 5
scenarios. We evaluate the efficiency of our algorithms withrespect to the size of the input graph. For
the robust spanning tree problem, we consider complete graphs the number of vertices of which are
between 10 and 34 (twenty instances for each value). For the robust shortest path problem, we consider
graphs of density 0.5 (an arc is included between two vertices with a probability of 0.5) the number
of vertices of which are between 1000 and 3000 (twenty instances for each value). The corresponding
numerical results are indicated on Table 3 and Table 4. For each set of instances, we record the average
number of L-efficient solutions (LE), the average number of generated solutions (GS) and the average
execution time.

Although the number of L-efficient solutions can be huge on pathological instances, it remains quite
low on a large sample of randomly generated instances (less than 20 on average for trees, less than 4 on
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size LE GS time
10 2 11 0
14 4 623 0.0117
20 7 1168 0.0328
24 10 25147 0.9681
26 10 15604 0.65235
28 11 43515 1.93675
30 17 51145 2.50955
32 16 47139 2.42965
34 19 75013 4.13535

Table 3 Numerical results for trees.

size LE GS time
1000 1 237 0.2492
1250 2 285 0.4469
1500 2 320 0.7047
1750 3 383 1.06105
2000 2 466 1.29385
2250 4 501 1.85115
2500 3 553 2.22375
2750 2 599 2.90835
3000 2 662 3.21185

Table 4 Numerical results for paths.

average for paths). The number of paths generated during thesearch remains quite low too. However,
the number of generated trees may significantly increases with the number of vertices. In the robust
spanning trees problem, the critical ressource for runningour algorithm is therefore the memory space
and not the processing time. Note that experimentations have been carried out for 5 scenarios. This
gives a good idea of the potential efficiency of our algorithms in practice since most decision problems
involve a few number of scenarios or criteria (less than 10).

6 Conclusion

We have introduced a new formal framework to define robustness in combinatorial problems. This
framework can be seen as a special case of multicriteria combinatorial optimization, where all scales are
commensurate. Taking advantage of this specific feature, wehave justified the use of Lorenz-dominance
as a useful refinement of Pareto-dominance to compare solutions according to multiple scenarios. Then,
we have proposed a general algorithmic approach to seek for Lorenz-efficient solutions for robust short-
est path and robust spanning tree problems. This approach relies on ak best solutions algorithm on a
monovalued graph, combined with a stopping condition whichreveals efficient in practice. This stop-
ping condition prunes the search while guaranteeing that all Lorenz-efficient solutions have been found.

We have then refined the notion of Lorenz-dominance by introducing the ordered weighted average
as an axiomatically founded measure of robustness. This operator enables to handle various behavior
patterns towards robustness, depending on the choice of theweights. The elicitation of these weights to
capture the attitude of a given decision maker is not discussed in the paper but can clearly be derived
from classical methods used for assessing utility functions. Another important issue might be to inves-
tigate the extension of our work when additional information about the likelihood of scenarios is present.
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