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1 Introduction

Considerable work has been carried out since the early 1970s in generating strong
valid inequalities using “lifting” as introduced by Padberg (1973). In particular lift-
ing has been crucial in developing strong facet-defining inequalites for 0-1 knap-
sack sets Balas (1975); Hammer et al. (1975); Wolsey (1975), and their mixed inte-
ger counterpart, called single node flow sets Gu et al. (1999); Padberg et al. (1985);
Stallaert (1997); Van Roy andWolsey (1986). What is more these inequalities have
provided effective cuts for 0-1 programs Crowder et al. (1963) and mixed 0-1 pro-
grams Van Roy and Wolsey (1987), and along with Gomory mixed integer cuts
Gomory (1960) and mixed integer rounding inequalities Nemhauser and Wolsey
(1990) form part of state-of-the-art commercial mixed integer programming sys-
tems such as Cplex and Xpress.

Our goal here is to revisit some of this work, in particular that concerning
lifting and the generation of valid inequalities for single node flow sets.

Without being exhaustive, we aim to touch at least indirectly on the work on
cover inequalities for 0-1 knapsack problems and on flow cover inequalities for
single node flow sets referenced above, work on variable lifting (Padberg, 1973;
Wolsey, 1976) and superadditive lifting (Gu et al., 2000; Wolsey, 1977), work
on knapsack problems with integer and/or continuous variables (Atamtürk, 2002;
Ceria et al., 1998; Marchand and Wolsey, 1999; Richard et al., 2002a), and on
some models generalizing the knapsack and single node flow sets (Atamtürk et al.,
2001; Goemans, 1989; Miller et al., 2003b; Wolsey, 1990).

The viewpoint taken is close to that in Gu et al. (1999, 2000) and Marchand
and Wolsey (1999, 2001) dealing with single node flow sets, simultaneous lifting,
knapsack sets with a continuous variable and mixed integer rounding respectively.
First we develop fairly general results on the lifting of sets of variables, and then,
turning specifically to single node flow sets, we show how mixed integer rounding
combined with lifting provides a unified and computationally simple way to obtain
many of the valid inequalities for mixed 0-1 sets that have been proposed in the
literature, as well as new inequalities for integer single node flow sets.

We now describe the contents of this paper. In Section 2 we take an abstract
view of the lifting problem and of the question how to generate valid inequalities
for one set from the valid inequalities of a second lower-dimensional subset, or of
a second higher-dimensional set.

In Section 3 we present the problem of lifting a valid inequality to a valid
inequality for a higher dimensional set in some detail. Examples are presented to
suggest some new computational possibilities. We also examine the crucial role of
superadditivity in simplifying the calculations, and allowing simultaneous lifting
of several groups of variables.
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We then turn to the single node flow set, denoted XN (n1, n2, b, a, u),

∑
j∈N1

xj −
∑

j∈N2
xj − s ≤ b

xj ≤ ajyj for j ∈ N1 ∪ N2

yj ≤ uj for j ∈ N1 ∪ N2

x ∈ Rn1+n2
+ , y ∈ Zn1+n2

+ , s ∈ R1
+

where n1 = |N1|, n2 = |N2|, n = n1 + n2, b ∈ Z1, a ∈ Rn, u ∈ Zn
+. In Section

4, we consider the 0-1 case. Such sets were initially studied as a natural mixed
integer generalization of 0–1 knapsack sets, see Remark 2 below, and because
essentially every mixed integer row can be rewritten as a single node flow set, see
p286 in Nemhauser and Wolsey (1988). Here we show that the standard flow cover
inequality derived in Van Roy and Wolsey (1986) can be strengthened by using
mixed integer rounding, and/or superadditive lifting. In addition we indicate how
the reverse cover/flow pack inequalities of Stallaert (1997) and Atamtürk (2001)
can be derived as flow cover inequalities by reversing arc directions in the single
node flow set.

In Section 5, we consider the general case when the integer variables are
bounded, but not 0-1. An integer version of the mixed integer rounding flow cover
inequality is derived, and results of Atamtürk (2002) for the corresponding knap-
sack set are used to strengthen the inequalities.

In Section 6 we consider three generalizations ofXN , and examine to what ex-
tent they can be treated using our standard approach (Atamtürk et al., 2001; Miller
et al., 2003a; Wolsey, 1990). We terminate by mentioning a few open questions.

2 Generating Valid Inequalities from Sub or Supersets

Throughout we consider mixed integer sets described by integer (or rational) co-
efficients of the form

X = {z ∈ Rn1

+ × Zn2

+ : Az ≤ b}

with n = n1 + n2. Here we also consider a second lower-dimensional subset

Y = X ∩ {z : Cz = e}.

Below we consider two possibilities: using knowledge about conv(X) to get com-
plete information about conv(Y ), or using conv(Y ) to get partial information
about conv(X).
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2.1 Valid Inequalities from Supersets

Remark 1. If Cz ≤ e for all z ∈ X , then conv(Y ) is a face of conv(X), and

conv(Y ) = conv(X) ∩ {z : Cz = e}.

Thus every facet-defining inequality of conv(Y ) corresponds to a facet-defining
inequality of conv(X).

In both examples presented below, the superset X is the 0-1 single node flow
set XN with u = 1.

Remark 2. The 0-1 knapsack set with a single continuous variable (Marchand and
Wolsey, 1999)

XCK = {(y, s) ∈ {0, 1}n × R1
+ :

∑

j∈N1

ajyj ≤ b + s}

is obtained from the single node flow set XN with n1 = n, n2 = 0 by setting
xj = ajyj for all j ∈ N1.

Remark 3. The 0-1 single node flow model with some simple bounds Richard et al.
(2002a,b)

XNC = {(x, y, s) ∈ Rn
+ × Zn−r × R1

+ :
∑

j∈N1
xj −

∑
j∈N2

xj ≤ b + s

xj ≤ ajyj , yj ≤ 1 for j ∈ (N1 \ R1) ∪ (N2 \ R2)
xj ≤ aj for j ∈ R1 ∪ R2},

is obtained from XN by setting yj = 1 for j ∈ R1 ∪ R2, where r = |R1 ∪ R2|.

Example 1. Consider the set XN (3, 2, 4, (3, 4, 5, 2, 3), 1), or

x1 + x2 + x3 − x4 − x5 ≤ 4 + s

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4, x5 ≤ 3y5

x ∈ R5
+, y ∈ {0, 1}5, s ∈ R1

+

shown in Figure 1.
Now consider the 0-1 knapsack set with a single continuous variable XCK

3y1 + 4y2 + 5y3 − 2y4 − 3y5 ≤ 4 + s

y ∈ {0, 1}5, s ∈ R1
+.

A facet of conv(XCK), such as that represented by the inequality

2y1 + 3y2 + 4y3 − y4 − 3y5 ≤ 3 + s,
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Fig. 1. 0-1 Single Node Flow Set

can be obtained directly from the facet

x1 − y1 + x2 − y2 + x3 − y3 − y4 − x5 ≤ 3 + s

of conv(XN ) by setting x1 = 3y1, x2 = 4y2, x3 = 5y3 and x5 = 3y5. !

Another consequence of Remark 1 concerns the separation problem arising
when one wishes to find a valid inequality for X cutting off a point z∗.

Remark 4. If Cz ≤ e for all z ∈ X and z∗ satisfies Cz∗ = e, then z∗ /∈ conv(X)
if and only if z∗ /∈ conv(Y ).

Thus to solve the separation problem over X , it suffices to solve the separation
problem over Y , and then convert the violated valid inequality for Y into a violated
inequality forX . The latter conversion is precisely the lifting problem that we now
consider.

2.2 Valid Inequalities from Subsets

Here we ask when a valid inequality for Y can be “lifted” into a valid inequality
for X . We distinguish two cases: either Cz ≤ e for all z ∈ X , i.e. conv(Y ) is a
face of conv(X), as above, or not.

Remark 5. If conv(Y ) is a face of conv(X) and π1z ≤ π0 is a valid inequality for
conv(Y ), there exists a vector π2 such that

π1z + π2(e − Cz) ≤ π0

is valid for conv(X).

It is easily verified that the inequality is valid if one takes π2
j = −M for all j ∈ N

withM sufficiently large.

On the other hand, when Cz = e cuts through the interior of conv(X), it is
known that the required multipliers may not exist. This is demonstrated by the
following simple example.
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Example 2. Take the integer knapsack set

X = {y ∈ Z2
+ : 3y1 + 5y2 ≤ 21, y2 ≤ 4},

and let

Y = X ∩ {y ∈ R2 : y2 = 2} = {(y1, 2) ∈ Z2
+ : 3y1 ≤ 11}

with valid inequality y1 ≤ 3. Now if y1 + π2(2 − y2) ≤ 3 is a valid inequality for
X , the point (0, 4) ∈ X implies π2 ≥ −3/2, whereas the point (7, 0) ∈ X implies
that π2 ≤ −2. Thus there is no possible multiplier. !

In the next section we consider how to find the multipliers π2 or show that there
are none. However the question is posed a little differently. Specifically, consider
introducing slack variables t = e−Cz ≥ 0. Now Y is obtained fromX by setting
t = 0, and the problem is to find lifting coefficients π2 so that π1z + π2t ≤ π0 is
valid.

3 Lifting Valid Inequalities

We consider the mixed integer sets, denoted Zτ (b), of the form
∑τ

k=1 Akzk ≤ b + s (1)
zk ∈ Xk for k = 1, . . . τ, s ∈ Rm

+ ,

where Ak ∈ Rm×nk for k = 1, . . . , K, b ∈ Rm, Xk = {zk ∈ Rn1
k × Zn2

k :
Ckzk ≤ ck} with nk = n1

k +n2
k is a mixed integer set in Rnk for all k and 0 ∈ Xk

for k = 2, . . . , K. Here we study how to find valid inequalities for ZK(b), starting
from valid inequalities for Z1(b).

The simultaneous lifting of variables in blocks was presented by Gu et al.
(2000). The specific calculations required to lift flow cover inequalities with each
block consisting of two variables (xk, yk) were presented in Gu et al. (1999). The
description below is new in several respects: we reduce to a single case by im-
posing that the variables are fixed to zero (zk = 0) which may imply a change
of variables, and we show that the structure of the lifting functions (piecewise lin-
ear) and the sets of valid coefficients (polyhedral) is such that the calculations are
well-defined.

The lifting approach consists of the following:

1. Fix zk = 0 for k = 2, . . . , K.

2. Find a tight valid inequality π1z1 ≤ π0 + νs for Z1(b).
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3. Iterations τ = 2, . . . , K. Given a tight valid inequality
∑τ−1

k=1 π
kzk ≤ π0 + νs

for Zτ−1(b), lift the variables zτ and derive coefficients πτ such that

τ−1∑

k=1

πkzk + πτzτ ≤ π0 + νs (2)

is valid for Zτ (b), or determine that no such πτ exists.

Relative to the description in Section 2,X = ZK(b) and Y = ZK(b)∩{(z1, . . . , zK) :
z2 = . . . = zK = 0} = Z1(b).

Below we discuss theoretically how to find valid lifting coefficients πτ for τ =
2, . . . , K, and then consider cases in which the required calculations may be tractable.

3.1 Lifting: Basic Theory

We first define a crucial function.

Definition 1. The lifting function φk : Rm → R1 is

φk(u) = min{π0 + νs −
k∑

τ=1

πτzτ : (z1, . . . , zk, s) ∈ Zk(b − u)}.

Note that for any u ∈ Rm and any (z1, . . . , zk) ∈ X1 × . . . × Xk, there exists
s ∈ Rm

+ such that (z1, . . . , zk, s) ∈ Zk(b − u), so φk(u) is finite for all u ∈ Rm.
Also from the definition, it follows that

φ1 ≥ . . . ≥ φK .

We also introduce the set

Πk = {π ∈ Rnk : πt ≤ φk−1(Akt) for all t ∈ Xk}

of lifting coefficients. For most of the results, it will suffice to consider the case
whereK = 2.

Proposition 1. If π1z1 ≤ π0 + νs is a tight valid inequality for Z1(b),

π1z1 + π2z2 ≤ π0 + νs

is valid for Z2(b) if and only if π2 ∈ Π2.
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Proof. Suppose π2 ∈ Π2 and consider a point (z̄1, t, s̄) ∈ Z2(b). Then

π2t ≤ φ1(A2t) as t ∈ X2

≤ π0 + νs̄ − π1z̄1 as (z̄1, s̄) ∈ Z1(b − A2t)

and so the inequality is valid.
Conversely if π2t > φ1(A2t) for some t ∈ X2, take a point (z1, s) ∈ Z1(b −

A2t) with π1z1 = π0 + νs− φ1(A2t). Now (z1, t, s) ∈ Z2(b), but π1z1 + π2t >
π0 + νs, and the inequality is not valid.

We now consider briefly the structure of the functions φk and the setsΠk, and
whether the required calculations can be carried out.

Remark 6. φk(u) is the value function of a mixed integer program. Thus there
exists a finite set of polyhedra P q = {u ∈ Rm : Dqu ≤ dq} whose union is Rm

and vectors (αq, βq) ∈ Rm × R1 such that for all q

φk(u) = αqu + βq for u ∈ P q.

Proposition 2. If each set Xk = {(x, y) ∈ Rn1
k

+ × Zn2
k

+ : Ck
1 x + Ck

2 y ≤ ck} is a
bounded mixed integer set, then Πk is a polyhedron.

Proof We consider Π2. Now for fixed y ∈ projy(X2) and fixed region q, with
π = (λ, µ) ∈ Π2 and t = (x, y) ∈ X2, π ∈ Π2 if and only if

λx + µy ≤ φ2(A2t) ≤ αq(A2
1x + A2

2y) + βq

for all u = A2t = A2
1x + A2

2y satisfying Dqu ≤ dq, with A2 = (A2
1, A

2
2) and

C2 = (C2
1 , C2

2 ).
In other words π ∈ Π2 if and only if (λ − αqA2

1)x + (µ − αqA2
2)y ≤ βq

for all x such that Dq(A2
1x + A2

2y) ≤ dq, C2
1x ≤ c − C2

2y, x ≥ 0. For fixed y
and q, the latter set is a bounded polyhedron in x with a finite number of extreme
points {xt}T

t=1. Thus enumerating over the finite set of feasible integer vectors y,
the finite number of regions q and the finite set of extreme points, we obtain an
explicit description:

Π2 = {π = (λ, µ) : λxt + µy ≤ αq(A2
1x

t + A2
2y) + βq ∀q, y, t}.

Next ifΠ2 *= ∅ and lifting coefficients π2 ∈ Π2 have been selected, one needs
to calculate the new lifting function φ2. Rather than calculating it from scratch, it
can also be obtained by updating.

Proposition 3.
φ2(u) = min

t∈X2
[φ1(u + A2t) − π2t].
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Proof. By definition φ2(u)

= minz1,z2,s{π0 + νs − π1z1 − π2z2 :
A1z1 + A2z2 ≤ b + s − u, zi ∈ Xi for i = 1, 2, s ≥ 0}

= mint∈X2{minz1,s{π0 + νs − π1z1 :
A1z1 ≤ b + s − u − A2t, z1 ∈ X1, s ≥ 0} − π2t}

= mint∈X2{φ1(u + A2t) − π2t}.

Example 3. (The Lifting Function and the Set of Lifting Coefficients).

Consider the set

5y1 + 5y2 + 5y3 + x4 + 2y4 ≤ 12 + s

1y4 ≤ x4 ≤ 3y4

yi ∈ {0, 1} for i = 1, . . . 3, y4 ∈ {0, 1, 2}, x4 ∈ R1
+.

This can be modelled in the form (1) with A1 = (5, 5, 5), A2 = (1, 2), b =
12,X1 = {0, 1}3,X2 = {(x4, y4) ∈ R1

+ × Z1
+ : 1y4 ≤ x4 ≤ 3y4, y4 ≤ 2}.

As valid inequality for Z1(b), we take

3y1 + 3y2 + 3y3 ≤ 6 + s.

The lifting function φ1 is given, see Figure 2, by

φ1(u) =






−3 if u ≤ −3
u if −3 ≤ u < 0
0 if 0 ≤ u < 2

u − 2 if 2 ≤ u < 5
3 if 5 ≤ u < 7

u − 4 if 7 ≤ u < 10
6 if 10 ≤ u < 12

u − 6 if 12 ≤ u.

Now we wish to find lifting coefficients π2 = (λ, µ) ∈ Π2. We note that 3 ≤
x4 + 2y4 ≤ 10 and y4 ∈ {1, 2} for (x, y) ∈ X2 \ {(0, 0)}.

For y4 = 1, 1 ≤ x4 ≤ 3 and thus 3 ≤ u = x4 + 2y4 ≤ 5. This just inter-
sects the region/segment u ∈ [2, 5], and the extreme points are x4 = 1 and x4 = 3.

For y4 = 2, 6 ≤ u = x4 + 2y4 ≤ 10, and two segments [5, 7] and [7, 10] are
intersected leading to the extreme points x4 = 1, x4 = 3 and x4 = 6.
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Fig. 2. Lifting function

So Π2 is described by the inequalities

1λ + 1µ ≤ φ1(3) = 1
3λ + 1µ ≤ φ1(5) = 3
1λ + 2µ ≤ φ1(5) = 3
3λ + 2µ ≤ φ1(7) = 3
6λ + 2µ ≤ φ1(10) = 6

with extreme points π = (−1, 2) and π = (1, 0) giving the valid inequalities

3y1 + 3y2 + 3y3 − z4 + 2y4 ≤ 12 + s and

3y1 + 3y2 + 3y3 + z4 ≤ 12 + s.!

3.2 Superadditive Lifting

Lifting requires calculation of the lifting function φk−1(u) and then finding a point
πk ∈ Πk for k = 2, . . . , K. Calculation of φk−1(u) is typically a difficult prob-
lem, so in practice there is a need to reduce the amount of computation. When
the lifting function has appropriate structure, more can be said and the amount of
computation can be reduced.

Definition 2. A function F : D → R is superadditive on D ⊆ Rm if

F (u) + F (v) ≤ F (u + v)

for all u, v for which u, v, u + v ∈ D.
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Throughout we will assume thatD is a cone, so that u, v ∈ D implies u + v ∈ D.
We also limit our attention to superadditive functions that are continuous, with the
property that F̄ (d) =limt→0

F (td)
t exists for all d ∈ D, and with F (0) = 0.

Two classes of functions will be very useful later.

Definition 3. For 0 < α < 1, the mixed integer rounding function Fα : R1 → R1

is defined by

Fα(d) = -d. +
(fd − α)+

1 − α
,

where fd = d − -d..

This function is superadditive on R1 and is shown in Figure 3. Note that F̄α exists,
and F̄α(d) = min[0, d

1−α ].

F

d

Fig. 3. Superadditive MIR Function

Definition 4. Suppose that a ∈ Rn
+ with ai1 ≥ ai2 ≥ . . . ≥ air > λ ≥

air+1 . . . ain > 0, and let At =
∑t

j=1 aij for t ≤ r with A0 = 0 and Ar+1 = ∞.
Define Ga,λ : R1

+ → R1
+ by

Ga,λ(u) =






(j − 1)λ if Aj−1 ≤ u ≤ Aj − λ j = 1, . . . , r
(j − 1)λ+ [u − (Aj − λ)] if Aj − λ ≤ u ≤ Aj j = 1, . . . , r − 1
(r − 1)λ+ [u − (Ar − λ)] if Ar − λ ≤ u.
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u

Fig. 4. Superadditive Function Ga,λ on R1
+

This function is superadditive on R1
+ and an instance with a = (10, 7, 4, 2) and

λ = 3 is shown in Figure 4.
Though we will not use it directly here, superadditive functions are basic to

mixed integer programming as the next Proposition indicates.

Proposition 4. Johnson (1973); Jeroslow (1979)
If XMIP = {(x, y) ∈ Rn1

1
+ × Zn2

1
+ : A1x + A2y ≤ b}, F : Rm → R1 is

superadditive and nondecreasing, and F̄ exists, then

n1
1∑

j=1

F̄ (a1j)xj +
n2

1∑

j=1

F (a2j)yj ≤ F (b)

is a valid inequality for XMIP , where a1j and a2j are the columns of A1 and A2

respectively.

Now we return to the lifting problem. When the function φ1 is superadditive
on some appropriate coneD, the computation of the functions φ2, · · · , φK can be
avoided.

Proposition 5. If φ1 is superadditive on D, and A2t ∈ D for all t ∈ X2, φ2 = φ1

on D.

Proof. For t ∈ X2 and u ∈ D,

φ1(u + A2t) − π2t

≥ φ1(u + A2t) − φ1(A2t) as π2t ≤ φ1(A2t)
≥ φ1(u) by superadditivity.

On the other hand as 0 ∈ X2, mint∈X2 [φ1(u + A2t) − π2t] ≤ φ1(u). Therefore
for u ∈ D, φ2(u) = mint∈X2 [φ1(u + A2t) − π2t] = φ1(u).
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Any function φ̂ ≤ φ1 is called a valid lifting fuction for X2 because π2t ≤
φ̂(A2t) for all t ∈ X2 implies that π1z1 + π2z2 ≤ π0 + νs is valid for Z2(b). We
say that φ̂ is used for lifting if π2 satisfies π2t ≤ φ̂(A2t) for all t ∈ X2. When in
addition φ̂ is superadditive, more can be said.

Proposition 6. Suppose that φ̂ ≤ φ1 on D and φ̂ is superadditive on D. If A2t ∈
D for all t ∈ X2 and φ̂ is used for lifting, then φ1 ≥ φ2 ≥ φ̂ on D.

Proof. As φ̂ is used for lifting, π2t ≤ φ̂(A2t) for t ∈ X2. Now for t ∈ X2 and
u ∈ D, φ1(u+A2t)−π2t ≥ φ1(u+A2t)−φ̂(A2t) ≥ φ̂(u+A2t)−φ̂(A2t) ≥ φ̂(u)
where the last two inequalities follow from φ̂ ≤ φ1 and the superadditivity of φ̂ on
D respectively. Thus φ2(u) = mint∈X2 [φ1(u + A2t)− π2t] ≥ φ̂(u) for u ∈ D.

So φ̂ remains a valid lifting function for φ2, . . . , φK . Thus if such a superaddi-
tive function φ̂ is used for lifting, the ordering of the sets X2, . . . , XK and of the
calculations is irrelevant, as shown by the following result.

Corollary 1. If φ̂ ≤ φ1 and φ̂ is superadditive on D, π̂kt ≤ φ̂(Akt) and Akt ∈ D
for all t ∈ Xk and k = 2, . . . , K, then

π1z1 +
K∑

k=2

π̂kzk ≤ π0 + νs

is valid for ZK(b).

Proof. If (z1, . . . , zK , s) ∈ ZK(b), π1z1 +
∑K

k=2 π̂
kzk

≤ π0 + νs − φ1(
∑K

k=2 Akzk) +
∑K

k=2 φ̂(Akzk)
≤ π0 + νs − φ1(

∑K
k=2 Akzk) + φ̂(

∑K
k=2 Akzk) using superadditivity

≤ π0 + νs as φ̂ ≤ φ1.

It is natural to ask whether functions such as φ̂ always exist.

Proposition 7. φ∗(u) = minv∈D[φ1(u + v) − φ1(v)] is superadditive on D, and
φ∗ ≤ φ1 on D.

Proof. For u, v ∈ D, u + v ∈ D and so, for some w ∈ D,
φ∗(u+v) = φ1(u+v+w)−φ1(w) = φ1(u+v+w)−φ1(v+w)+φ1(v+w)−φ1(w)
≥ φ∗(u) + φ∗(v). Also φ∗(u) ≤ φ1(u + 0) − φ(0) = φ1(u) for all u ∈ D.

If a superadditive function has been used to generate the initial valid inequality
π1z1 ≤ π0 + νs for Z1(b), there is a natural candidate to be used as a valid lifting
function.
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Proposition 8. Suppose that the initial valid inequality for Z1(b) is of the form

n1
1∑

j=1

F̄ (a1j)x1
j +

n2
1∑

j=1

F (a2j)y1
j ≤ F (b)

with F superadditive and nondecreasing on Rm. Then F̂ (u) ≡ F (b) − F (b − u)
is a valid lifting function with F̂ (u) ≤ φ1(u) for all u ∈ Rm.

Proof. φ1(u) = F (b) − max{
∑n1

1
j=1 F̄ (a1j)x1

j +
∑n2

1
j=1 F (a2j)y1

j : A1
1x

1 +

A1
2y

1 ≤ b − u, (x1, y1) ∈ Rn1
1 × Zn2

1} ≥ F (b) − F (b − u) as
∑n1

1
j=1 F̄ (a1j)x1

j +
∑n2

1
j=1 F (a2j)y1

j ≤ F (b − u) is a valid inequality for Z1(b − u).

Now suppose that the MIR function Fα is used to generate the first inequality.

Remark 7. If fb = α, F̂ (u) = Fα(b) − Fα(b − u) = Fα(u) for all u ∈ Rm.

Thus Fα is itself a valid superadditive lifting function.

Example 4. (Simultaneous Lifting)
Consider the initial set X

5y1 + 5y2 + 5y3 + x4 − x5 ≤ 4 + s

0 ≤ x4 ≤ 6y4, 0 ≤ x5 ≤ 8y5

y ∈ {0, 1}5, s ∈ R1
+.

Setting x4 = 0, y4 = 0, x5 = 8, y5 = 1, we obtain the set Y

5y1 + 5y2 + 5y3 ≤ 12 + s

y ∈ {0, 1}3, s ∈ R1
+

of Example 3.
We now rewrite the setX in the form (1).

5y1 + 5y2 + 5y3 +x4+ +x̄5 − s ≤ 12
(y1, . . . , y3) ∈ X1, (x4, y4) ∈ X2, (x̄5, ȳ5) ∈ X3, s ∈ R1

+,

where x̄5 = 8 − x5, ȳ5 = 1 − y5,
X1 = {0, 1}3, A1 = (5, 5, 5)
X2 = {(x4, y4) ∈ R1

+ × {0, 1} : x4 ≤ 6y4}, A2 = (1)
X3 = {(x̄5, ȳ5) ∈ R1 × {0, 1} : 8 ≥ x̄5 ≥ 8ȳ5}, A3 = (1) and b = 12.

Taking the same valid inequality as in Example 3, it is easily checked that
its lifting function φ1 is superaditive on R1

+. As A2t ∈ R1
+ for all t ∈ X2 and

A3t ∈ R1
+ for all t ∈ X3, Corollary 1 of Proposition 6 is applicable.
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For the set X2, we have

Π2 = {(λ, µ) : λx4 + µy4 ≤ φ1(x4) for (x4, y4) ∈ X2},

and, as shown in Gu et al. (1999), we obtain valid lifting coefficients by taking
a support to the lifting function φ1 over the range [0,6]. There are two extreme
solutions (λ, µ) = (0, 0) and (λ, µ) = (3

4 ,− 3
2 ).

For the set X3,

Π3 = {(λ, µ) : λx̄5 + µȳ5 ≤ φ(x̄5) for (x̄5, ȳ5) ∈ X3}

with unique extreme point (λ, µ) = (0, φ(8)) = (0, 4).
So simultaneously lifting on the setsX2 and X3 gives the valid inequalities

3y1 + 3y2 + 3y3 + 4(1 − y5) ≤ 6 + s and

3y1 + 3y2 + 3y3 + (
3
4
x4 −

3
2
y4) + 4(1 − y5) ≤ 6 + s.!

3.3 Further Remarks on Lifting

The Role of the Continuous Variables s.
The inclusion of the continuous variables s in the description (1) of Zk(b) for all
k = 1, . . . , K simplifies the presentation, but clearly restricts the inequalities that
can be obtained by lifting. If the variables s are set to zero and lifted later, we
no longer have that Zk(b − u) *= ∅ for all u, with the result that φk can be dis-
continuous, and is not defined everywhere. Calculating φk and new coefficients
πk+1, and finding a valid superadditive function that is superadditive remain dif-
ficult problems. The resulting lifting functions φk are potentially stronger, but the
final inequality may not be valid until the variables s are lifted in. Examples of
such functions can be found in Gu et al. (1999) among others.

Facet-defining Inequalities.
We have not discussed at all the question when the lifted inequalities are facet-
defining. The brief answer is that if the set Z1(b) is full-dimensional, the initial
inequality is facet-defining, the exact lifting function is used to define Πk and πk

is an extreme point of Πk for all k, then the final inequality (2) is facet-defining
for ZK(b). When the sets are not full-dimensional, more conditions are needed.
See Oosten (1996) for a detailed study of this question. Note also that most of the
papers cited in the Introduction present conditions under which the inequalities
derived are facet-defining.
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4 0-1 Single Node Flow Sets

As indicated in the Introduction, single node flow sets XN are a natural general-
ization of knapsack sets and single row mixed integer sets. As suggested in sec-
tion 2, we can take two approaches. The first: studying conv(XN ) in depth and
thereby obtaining complete information about the special cases Y (the 0-1 knap-
sack set with a continuous variable XCK , or the single node flow with simple
bounds XNC) is unfortunately still an important challenge. The second, using
knowledge about Y = XCK to obtain important, but partial knowledge about the
superset XN , is pursued here. The presentation is related to that of Marchand and
Wolsey (2001). Surprisingly we show that by using mixed integer rounding (com-
bined with superadditive lifting), one obtains inequalities as least as strong as all
the flow cover inequalities forXN proposed earlier.

4.1 The MIR approach

From now on we will use a standard approach to generate valid inequalities for
the single node flow set XN and its variants, which is a minor modification of the
c − MIR approach in Marchand and Wolsey (1999).

Step 1 Using slack variables for the variable upper bound constraints, relax XN

to obtain a knapsack set with a continuous variable XKC .
Step 1b (Optional) Fix the values of some variables giving a restricted setXKC−F .
Step 2 Complement certain integer variables - those in an appropriately chosen
“cover”.
Step 3 Rescale the row.
Step 4 Generate a mixed integer rounding inequality for XKC or XKC−F , and
rescale the inequality.
Step 4b If variables have been fixed in Step 1b, calculate the lifting function φ1.
If the lifting function is not superadditive on some appropriate domain, look for a
valid superadditive lifting function φ̂. Generate a valid inequality forXKC .
Step 5 By complementing again, and eliminating the slack variables introduced in
Step 1, generate a valid inequality forXN .

4.2 The MIR Flow Cover Inequalities

Consider the set XN (n1, n2, b, a, 1). We now use the MIR approach described
above to derive basic valid inequalities for this set.
Definition 5. (C1, C2) is a flow cover for XN if
i) C1 ⊆ N1, C2 ⊆ N2

ii)
∑

j∈C1
aj −

∑
j∈C2

aj − b = λ > 0.



Lifting and Single Node Flow Sets 17

Proposition 9. Suppose that (C1, C2) is a flow cover, and choose ā ∈ R1
+ with

ā > λ. Then the MIR flow cover inequality
∑

j∈C1

{xj + [aj + λF (−aj

ā
)](1 − yj)}

+
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ā
)]yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF (
aj

ā
)(1 − yj)

−
∑

j∈L2

λF (−aj

ā
)yj +

∑

j∈R2

xj + s (3)

is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα
with α = ā−λ

ā .

Proof. Step 1 Starting from the inequality
∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the
nonnegativity of xj for j ∈ R1 and of tj for j ∈ C2 ∪ L2 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.

Step 2 Now introducing variables ȳj = 1 − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1

aj ȳj +
∑

j∈L1

ajyj +
∑

j∈C2

aj ȳj−
∑

j∈L2

ajyj ≤ −λ+
∑

j∈R2

xj +
∑

j∈C1∪L1

tj +s.

Step 3We now divide by ā > λ.
Step 4 Generate the mixed integer rounding inequality giving

∑

j∈C1

F (−aj

ā
)ȳj +

∑

j∈L1

F (
aj

ā
)yj +

∑

j∈C2

F (
aj

ā
)ȳj +

∑

j∈L2

F (−aj

ā
)yj

≤ −1 +
1
λ

(s +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj).

Step 5Multiplying by λ, and restating the inequality in terms of the original vari-
ables gives the required inequality.

Remark 8. i) λF (−aj

ā ) ≥ −max[min[λ, aj ], aj − (ā−λ)] with equality for aj ≤
ā + λ.
ii) λF (−aj

ā ) = −min[λ, aj ] for aj ≤ ā.
iii) λF (aj

ā ) ≥ min[max[(aj − (ā − λ), 0], λ] with equality for aj ≤ 2ā − λ.
iv) λF (aj

ā ) = max[(aj − (ā − λ), 0] if aj ≤ ā.
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Corollary 2. If ā = maxj∈C1 aj , the MIR flow cover inequality (3) takes the form
∑

j∈C1
{xj + [aj − λ]+(1 − yj)} +

∑
j∈L1

xj −
∑

j∈L1
[aj − λF (aj

ā )]yj

≤ b +
∑

j∈C2
aj −

∑
j∈C2

λF (aj

ā )(1 − yj) −
∑

j∈L2
λF (−aj

ā )yj +
∑

j∈R2
xj + s

and is at least as strong as the GFC2 inequality (Van Roy and Wolsey, 1986)
∑

j∈C1

xj +
∑

j∈C1

[aj − λ]+(1 − yj) +
∑

j∈L1

xj −
∑

j∈L1

(max[aj , ā] − λ)yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

min[λ, (aj − (ā − λ))+](1 − yj)

+
∑

j∈L2

max[aj − (ā − λ), λ]yj +
∑

j∈R2

xj + s.

Corollary 3. If ā = maxj∈C1∩L2 aj and aj > λ for all j ∈ L2, the MIR flow
cover inequality (3) takes the form

∑

j∈C1

{xj + [aj − λ]+(1 − yj)} +
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ā
)]yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF (
aj

ā
)(1 − yj) +

∑

j∈L2

λyj +
∑

j∈R2

xj + s (4)

and is at least as strong as the GFC1 inequality (Van Roy and Wolsey, 1986)

∑

j∈C1

{xj + [aj − λ]+(1 − yj)} ≤ b +
∑

j∈C2

aj +
∑

j∈L2

λyj +
∑

j∈R2

xj + s.

4.3 A Strengthened MIR Flow Cover Inequality

Now we strengthen the inequality.

Proposition 10. Suppose that (C1, C2) is a flow cover and ā = maxj∈C1∪L2 aj >
λ. Then the lifted inequality

∑

j∈C1

{xj + [aj − λ]+(1 − yj)}

+
∑

j∈L1

[xj − (aj − φ1(aj))yj ]

≤ b +
∑

j∈C2

aj −
∑

j∈C2

φ1(aj)(1 − yj)

−
∑

j∈L2

λyj +
∑

j∈R2

xj + s (5)

is valid forXN , where (Ci, Li, Ri) is a partition ofNi for i = 1, 2 and φ1 = Ga,λ

on R1
+ with a = (aC1 , aL2).
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Proof. Proceeding as in the proof of Proposition 9, we modify as follows:
Step 1b Set yj = 0 for j ∈ L1 and ȳj = 0 for j ∈ C2.
Step 2 The restricted set takes the form:

−
∑

j∈C1

aj ȳj −
∑

j∈L2

ajyj ≤ −λ+
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s.

Step 3. Divide by ā = maxj∈C1∪L2 aj .
Step 4. Generate the MIR inequality

−
∑

j∈C1

min[λ, aj ]ȳj −
∑

j∈L2

λyj ≤ −λ+ σ

where σ =
∑

j∈R2
xj +

∑
j∈C1∪L1

tj + s.
Step 4b Calculate the lifting function

φ1(u) = min
∑

j∈C1
min[λ, aj ]ȳj +

∑
j∈L2

λyj − λ+ σ,

−
∑

j∈C1
aj ȳj −

∑
j∈L2

ajyj − σ ≤ −λ− u

ȳj ∈ {0, 1} for j ∈ C1, yj ∈ {0, 1} for j ∈ L2, σ ≥ 0.

It can be shown that on R1
+, φ1 is precisely the superadditive function Ga,λ with

a = (aC1 , aL2).

Lift to obtain the inequality

−
∑

j∈C1

min[λ, aj ]ȳj −
∑

j∈L2

λyj +
∑

j∈L1

Ga,λ(aj)yj +
∑

j∈C2

Ga,λ(aj)ȳj ≤ −λ+ σ.

Step 5. Uncomplement variables and substitute for tj .

Example 5. Consider the single node flow set

x1 + x2 − x3 + x4 + x5 − x6 ≤ −8 + s

x1 ≤ 10y1, x2 ≤ 9y2, x3 ≤ 7y3, x4 ≤ 16y4, x5 ≤ 5y5, x6 ≤ 19y6

x ∈ R6
+, s ∈ R1

+, y ∈ [0, 1]6.

Taking as flow cover C1 = {1, 2}, C2 = {6}, we obtain λ = 10+9− 19+8 = 8.
With L1 = {4}, L2 = ∅, we take ā = maxj∈C1∪L2 aj = 10, α = 10−8

10 .
The resulting MIR flow cover inequality (4) is

x1 + 2(1 − y1) + x2 + 1(1 − y2) − x3 + x4 − 4y4 ≤ 11 − 15(1 − y6) + s.

To obtain the strengthened inequality (5), we calculate the lifting function φ1. With
a = (10, 9), λ = 8
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Ga,λ(u) =






0 if 0 ≤ u ≤ 2
u − 2 if 2 ≤ u ≤ 10

8 if 10 ≤ u ≤ 11
u − 3 if 11 ≤ u.

As Ga,λ(16) = 13 and Ga,λ(19) = 16, we obtain the inequality

x1 + 2(1− y1) + x2 + 1(1− y2)−x3 + x4 − (16− 13)y4 ≤ 11− 16(1− y6) + s

which in this case is stronger than the MIR inequality. !

4.4 The MIR Reverse Flow Cover Inequality

We now present an explicit expression for the reverse flow cover inequality for this
set. This inequality is obtained by applying the results of the previous subsection
to the single node flow set in which the directions of the flows are all reversed.

Definition 6. (T1, T2) is a reverse flow cover for XN if
i) T1 ⊆ N1, T2 ⊆ N2

ii)
∑

j∈T1
aj −

∑
j∈T2

aj − b = −µ < 0.

Proposition 11. Suppose that (T1, T2) is a reverse flow cover and ā > µ. Then the
MIR reverse flow cover inequality

∑

j∈T1

xj +
∑

j∈T1

µF (
aj

ā
)](1 − yj)

+
∑

j∈L1

xj +
∑

j∈L1

µF (−aj

ā
)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

[aj + µF (−aj

ā
)](1 − yj)

+
∑

j∈L2

[aj − µF (
aj

ā
)]yj +

∑

j∈R2

xj + s. (6)

is valid for XN , where (Ti, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα
with α = ā−µ

ā .

Corollary 4. If ā = maxj∈T2 aj , the MIR reverse flow cover takes the form
∑

j∈T1

xj +
∑

j∈T1

µF (
aj

ā
)(1 − yj) +

∑

j∈L1

xj +
∑

j∈L1

µF (−aj

ā
)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj) +
∑

j∈L2

[aj − µF (
aj

ā
)]yj +

∑

j∈R2

xj + s,

and is at least as strong as the inequality
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∑

j∈T1

xj +
∑

j∈T1

min[aj − (ā − µ)+, µ](1 − yj)

+
∑

j∈L1

xj −
∑

j∈L1

max[min(µ, aj), aj − (ā − µ)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj)

+
∑

j∈L2

[max(aj − µ,min{aj , ā − µ}]yj +
∑

j∈R2

xj + s,

obtained by fixing the variable lower bounds to zero in the inequalities of Stallaert
(1997).

Corollary 5. If ā is large, the MIR reverse flow cover takes the form
∑

j∈T1

xj +
∑

j∈L1

(xj − µyj) ≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj) +
∑

j∈L2∪R2

xj + s.

4.5 Further Remarks

The main difference between the MIR approach proposed here and the c − MIR
approach in Marchand and Wolsey (2001) is the role of the cover in determining
which variables to complement. None of the inequalities proposed in this section is
really new. In particular the strengthened MIR flow cover inequality is essentially
derived in Marchand and Wolsey (1999) and can also be seen as a special case of
the LSGFCI inequality in Gu et al. (1999) when there is an unbounded continuous
variable. Also as remarked above, the reverse flow cover inequalities are nothing
but flow cover inequalities, and arc reversal was already used in Van Roy and
Wolsey (1987).

5 Integer Single Node Flow Sets

Here we consider the case where the integer variables arising in the single node
flow set are bounded, but not all 0–1. The flow cover inequality proposed below is
apparently new. However the strengthening procedure is that for integer knapsack
sets proposed by Atamtürk (2002).

5.1 The MIR Flow Cover Inequality

Consider now the set XN (n1, n2, b, a, u) with uj > 1 for some j ∈ N . We now
derive an MIR flow cover inequality for this set.
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Definition 7. (C1, C2) is an integer flow cover for XN if
i) C1 ⊆ N1, C2 ⊆ N2

ii) there exists k ∈ C1 such that
∑

j∈C1\k ajuj −
∑

j∈C2
ajuj < b and there

exists unique values λ and ηk such that

akηk +
∑

j∈C1\k

ajuj −
∑

j∈C2

ajuj = b + λ

with 0 < λ < ak, and ηk ∈ Z1 with 1 ≤ ηk ≤ uk.

Proposition 12. Suppose that (C1, C2) is an integer flow cover. Then the integer
flow cover inequality

∑

j∈C1

xj + (ak − λ)(ηk − yk) +
∑

j∈C1\k

[aj + λF (−aj

ak
)](uj − yj)

+
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ak
)]yj

≤ b +
∑

j∈C2

ajuj −
∑

j∈C2

λF (
aj

ak
)(uj − yj)

−
∑

j∈L2

λF (−aj

ak
)yj +

∑

j∈R2

xj + s (7)

is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα
with α = ak−λ

ak
.

Proof. We again use the MIR approach from the previous section. Starting from
the inequality

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the
nonnegativity of xj for j ∈ R1 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.

Now introducing variables ȳj = uj − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1
aj ȳj +

∑
j∈L1

ajyj +
∑

j∈C2
aj ȳj −

∑
j∈L2

ajyj

≤ ak(ηk − uk) − λ+
∑

j∈R2
xj +

∑
j∈C1∪L1

tj + s. (8)
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We now divide by ak, and then generate the mixed integer rounding inequality
giving

∑

j∈C1

F (−aj

ak
)ȳj +

∑

j∈L1

F (
aj

ak
)yj +

∑

j∈C2

F (
aj

ak
)ȳj +

∑

j∈L2

F (−aj

ak
)yj

≤ (ηk − uk) − 1 +
1
λ

(s +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj).

Multiplying by λ, and restating the inequality in terms of the original variables
gives the required inequality.

5.2 Strengthening the Integer Flow Cover Inequality

To obtain stronger inequalities, we use results of Atamtürk (2002) on integer knap-
sack sets. We start from inequality (8) in the proof of validity of Proposition 12
which we write more compactly, after recomplementing ȳk, as

akzk −
∑

j∈I− ajzj +
∑

j∈I+ ajzj ≤ akηk − λ+ σ

zj ≤ uj , zj ∈ Z1
+ for j ∈ {k} ∪ I− ∪ I+, σ ∈ R1

+.

where I− = C1 \ {k} ∪ L2, I+ = C2 ∪ L1, σ = s +
∑

j∈R2
xj +

∑
j∈C1∪L1

tj
and zj represents either yj or ȳj as appropriate.

Setting zj = 0 for j ∈ I− ∪ I+, leads to the reduced system

akzk − σ ≤ akηk − λ

zk ≤ uk, zk ∈ Z1
+, σ ∈ R1

+

with valid inequality
λzk ≤ λ(ηk − 1) + σ.

The lifting function for this inequality is easily calculated, is identical to λF ak−λ
ak

around the origin, and explicitly takes into account the upper and lower bounds on
zk:

φ(v) =






(ηk − uk − 1)λ if v ≤ ak(ηk − uk) − λ
(j − 1)λ+ [v − (jak − λ)] if jak − λ ≤ v ≤ jak,

j = (ηk − uk), . . . , ηk − 1
jλ if jak ≤ v ≤ (j + 1)ak − λ,

j = (ηk − uk), . . . , ηk − 1
(ηk − 1)λ+ [v − (ηkak − λ)] if ηkak − λ ≤ v.

This function is superadditive on R1
+ and separately on R1

−.
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Here we just consider the case where we first lift in the variables in I−, and
then the variables in I+. Because φ is superadditive on R1

−, the lifting coefficients
do not change as these variables in I− are lifted in. After lifting in the variables in
I−, we obtain the lifting function φ+.

This function turns out to be superadditive on R1
+ under certain conditions, see

Appendix. In the general case, we obtain a valid lifting functionH+ superadditive
onR1

+ by dropping the nonnegativity constraint on zk in the mixed integer program
defining φ+, namely

H+(v) = min{λ(ηk − 1) − λzk + σ −
∑

j∈I−

φ(−aj)zj :

akzk −
∑

j∈I−

ajzj − σ ≤ akηk − λ− v,

zk ≤ uk, zk ∈ Z1, zj ≤ uj , zj ∈ Z1
+ for j ∈ I−, σ ∈ R1

+.}

To describeH+ (and φ+), we define an ordering on the indices in I−, i1, · · · , i|I−|
such that ai1 ≥ ai2 ≥ · · · ≥ ai|I−|

. We also define the set I−− = {i : i ∈
I− and ai ≥ ak(uk − ηk + 1)} with r̄ = max{r : ir ∈ I−−}. We also define
ρr = ak(ηk −uk)−λ+ air for r = 1, . . . , r̄. Finally, for an index r ≤ r̄, we con-
sider two types of aggregate, Ur = ui1 +· · ·+uir , andMr = ai1ui1 +· · ·+airuir .

It is not difficult to see that as v increases from 0, the mixed integer program
definingH+(v) has optimal solutions in which the variables i1, . . . , ir ∈ I−− are
used in that order. Thus when zis = uis for s < r and zir = t, j = uk − zk takes
values increasing from 0 to uk − ηk. Once all of the variables in I−− are at their
upper bound, zk then takes negative values. Specifically H+(v) =






(uk − ηk + 1)λ(Ur−1 + t) if Mr−1 + tair ≤ v ≤ Mr−1 + tair + ρr

r = 1, . . . , r̄, t = 0, · · · , uir − 1

(uk − ηk + 1)λ(Ur−1 + t) + jλ
+v − Mr−1 − tair − jak − ρr

if

Mr−1 + tair + ρr + jak ≤ v ≤
Mr−1 + tair + ρr + jak + λ

r = 1, . . . , r̄, t = 0, · · · , uir − 1,
j = 0, · · · , uk − ηk

(uk − ηk + 1)λ(Ur−1 + t)
+(j + 1)λ

if

Mr−1 + tair + ρr + jak + λ ≤ v ≤
Mr−1 + tair + ρr + (j + 1)ak

r = 1, . . . , r̄, t = 0, · · · , uir − 1,
j = 0, · · · , uk − ηk − 1

(uk − ηk + 1)λUr̄ + jλ if Mr̄ + jak ≤ v ≤ Mr̄ + (j + 1)ak − λ
j = 0, · · ·

(uk − ηk + 1)λUr̄ + (j − 1)λ
+v − Mr̄ − jak + λ

if Mr̄ + jak − λ ≤ v ≤ Mr̄ + jak
j = 1, · · ·

An example of the valid superadditive lifting functionH+ and an exact lifting
function φ+ are depicted in Figure 5.

Finally H+ can be used to lift in all the variables in I+.
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Fig. 5. Lifting functionsH+ and φ+

Proposition 13. The inequality

λyk +
∑

j∈C1\{k} φ(−aj)(1 − yj) +
∑

j∈L2
φ(−aj)yj

+
∑

j∈C2
H+(aj)(1 − yj) +

∑
j∈L1

H+(aj)yj

≤ λ(ηk − 1) +
∑

j∈R2
xj +

∑
j∈C1∪L1

(ajyj − xj) + s

is valid for XN .
In Atamtürk (2002), similar functions are also calculated for the case when one
first lifts variables in I+, and then those in I−, which leads to another family of
strong inequalities.

Example 6. Consider the set XN (2, 2, 4, (3, 4, 5, 2), (2, 3, 2, 3)), namely

x1 + x2 − x3 − x4 ≤ 4 + s

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4

y1 ≤ 2, y2 ≤ 3, y3 ≤ 2, y4 ≤ 3
x ∈ R4

+, y ∈ Z4
+, s ∈ R1

+.

Suppose that one wishes to cut off the fractional solution

x∗ = (2, 12, 10, 0), y∗ = (
2
3
, 3, 2, 0), s∗ = 0.

C = {1, 2, 3} with k = 1 is an integer flow cover with ak = 3, λ = 1 and ηk = 1.
Inequality (7) with L1 = L2 = ∅ gives

x1+(3−1)(1−y1)+x2+[4+F 2
3
(−4

3
)](3−y2) ≤ 14−F 2

3
(
5
3
)](2−y3)+x4+s, or
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x1 + 2(1 − y1) + x2 + 2(3 − y2) ≤ 14 − 1(2 − y3) + x4 + s

which cuts off the fractional point, but is not facet-defining for XN .

To try to obtain a stronger inequality, we again choose C1 = {1, 2}, C2 = {3}
as a cover with k = 1. Thus we consider

3y1 + 4y2 − 5y3 − x4 ≤ 4 + t1 + t2 + s.

Complementing gives

3y1 − 4ȳ2 + 5ȳ3 − x4 ≤ 2 + t1 + t2 + s.

Setting ȳ2 = ȳ3 = 0 leaves the system

3y1 − x4 ≤ 2 + t1 + t2 + s

with valid inequality
y1 − x4 ≤ t1 + t2 + s.

Now the lifting function φ is given above. If we first lift in ȳ2, φ(−4) = −2 and
we obtain

y1 − 2ȳ2 − x4 ≤ t1 + t2 + s.

Using the superadditive function H+ to lift the variable ȳ3, H+(5) = 1, so we
obtain the same inequality as above.

If we calculate the exact lifting function, it turns out that φ+(5) = 2 giving the
inequality

x1 − 2y1 − 2ȳ2 + 2ȳ3 − x4 ≤ t2 + s,

or
x1 − 2y1 + x2 − 2y2 − 2y3 − x4 ≤ 2 + s,

which is facet-defining. !

5.3 The MIR Reverse Flow Cover Inequality

Here we give an explicit formula for the reverse flow cover inequality when the
bounds are integer. We modify ii) in Definition 7

Definition 8. (T1, T2) is an integer reverse flow cover for XN if
i) T1 ⊆ N1, T2 ⊆ N2

ii) there exists k ∈ T2 such that
∑

j∈T1
ajuj −

∑
j∈T2\k ajuj > b and there exists

unique values µ and ηk such that
∑

j∈T1

ajuj −
∑

j∈T2\k

ajuj − akηk = b − µ

with 0 < µ < ak and ηk ∈ Z1 with 1 ≤ ηk ≤ uk.
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Proposition 14. Suppose that (T1, T2) is an integer reverse flow cover for XN .
The following inequality

∑

j∈T1

[xj + µF (
aj

ak
)(uj − yj)] +

∑

L1

[xj + µF (−aj

ak
)yj ]

≤
∑

j∈T1

ajuj − (ak − µ)(ηk − yk) −
∑

j∈T2\k

[aj + µF (−aj

ak
)](uj − yj)

+
∑

j∈L2

[aj − µF (
aj

ak
)]yj +

∑

j∈R2

xj + s (9)

is valid for XN , where (Ti, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα
with α = ak−µ

ak
.

Example 7. We consider the same set XN as in Example 6. Suppose that one
wishes to cut off the fractional solution

x∗ = (0, 12, 2, 6), y∗ = (0, 3,
2
5
, 2), s∗ = 0.

T = {2, 3, 4} with k = 3 is an integer reverse flow cover with ak = 5, ηk = 1 and
µ = 3. Inequality (9) with L1 = L2 = ∅ gives

x2 + 3F 2
5
(
4
5
)(3− y2) ≤ 12− (5− 3)(1− y3)− (2 + 3F 2

5
(−2

5
)(3− y4) + s, or

x2 + 2(3 − y2) ≤ 12 − 2(1 − y3) + s,

which cuts off the fractional solution, and turns out to be facet-defining for XN .

6 Extensions

Here we consider several extensions of the single node flow set. In particular we
study a set with variable lower bounds of the form ljyj ≤ xj which can also be
related to problems with set-up times having flow constraints of the form

∑
j(xj +

bjyj) ≤ b, a set with generalized variable upper bounds of the form xj ≤ a0j +∑
i aijyij , and finally a set with generalized upper bounds

∑
i yij ≤ 1.

6.1 Variable Lower Bounds, or Set-up Times

First we consider briefly the general case, namely the set
∑

j∈N1
xj −

∑
j∈N2

xj ≤ b + s (10)
ljyj ≤ xj ≤ ajyj , yj ∈ {0, 1} for j ∈ N1 ∪ N2.
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Valid inequalities for this model were first developed in Van Roy and Wolsey
(1986), see also Marchand and Wolsey (1999); Stallaert (1997). To use the MIR
approach, it suffices to choose as a cover disjoint sets (Cl

1, C
a
1 , Cl

2, C
a
2 ) for which

∑

j∈Cl
1

lj +
∑

j∈Ca
1

aj −
∑

j∈Cl
2

lj −
∑

j∈Ca
2

aj − b = λ > 0.

Then given disjoint sets Ll
i, L

a
i ⊆ Ni \ (Cl

i ∪ Ca
i ) for i = 1, 2, set ā =

max[maxj∈Cl
1∪Ll

2
lj ,maxj∈Ca

1∪La
2
aj ], introduce appropriate slacks, etc.

The resulting inequality
∑

j∈Ca
1

{xj + (aj − λ)+(1 − yj)} +
∑

j∈Cl
1

{[ljyj + (lj − λ)+(1 − yj)}

+
∑

j∈La
1

[xj − (aj − λF (
aj

ā
)yj ] +

∑

j∈Ll
1

λF (
lj
ā

)yj

≤ b +
∑

j∈Ca
2

aj +
∑

j∈Cl
2

lj −
∑

j∈Ca
2

λF (
aj

ā
)(1 − yj)

+
∑

j∈Cl
2

[xj − ljyj − λF (
lj
ā

)(1 − yj)] +
∑

j∈La
2

λyj

+
∑

j∈Ll
2

[xj − (lj − λ)+yj ] +
∑

j∈R2

xj + s

is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα
with α = ā−λ

ā .
We now consider the special case with N2 = ∅, namely the set XV LB

∑
j∈N1

xj ≤ b + s

ljyj ≤ xj ≤ ajyj , yj ∈ {0, 1} for j ∈ N1.

where lj ≥ 0 for all j ∈ N1.

Remark 9. By the change of variable wj = xj − ljyj ≥ 0, this is equivalent to the
“set-up time” model XST :

∑
j∈N1

(wj + ljyj) ≤ b + s

0 ≤ wj ≤ ãjyj , yj ∈ {0, 1} for j ∈ N1, s ≥ 0

where ãj = aj − lj for all j ∈ N1.
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With s fixed at zero, this set was first studied by Goemans (1989). Recently a
closely related model has been studied by Miller et al. (2003a) in which wj rep-
resents the amount produced of item j and lj is the set-up time for this item. We
now present the latter model.

The set considered is
∑

j∈N1
(wj + ljyj) ≤ b

wj ≤ ρjyj + σj , wj ≤ Myj , for j ∈ N1

y ∈ {0, 1}n1 , w ∈ Rn1
+ , σ ∈ Rn1

+ .

Making the change of variable xj = wj + ljyj ≤ (ρj + lj)yj + σj , the GFC1
inequality (5) becomes

∑

j∈C1

(wj + ljyj) +
∑

j∈C1

(ρj + lj − λ)+(1 − yj) ≤ b +
∑

j∈C1

σj

and the strengthened MIR inequality (5) becomes

∑
j∈C1

(wj + ljyj) +
∑

j∈C1
(ρj + lj − λ)+(1 − yj)

+
∑

j∈L1
[xj − ρjyj + Ga,λ(ρj + lj)yj ] ≤ b +

∑
j∈C1∪L1

σj (11)

where, in the definition of Ga,λ, aj = ρj + lj for j ∈ C1 ∪ L2.

Example 8. The instance has n = 4, b = 16, ρ = (5, 4, 5, 10), l = (2, 2, 1, 3).
Thus a = ρ+ l = (7, 6, 6, 13).
Taking C1 = {1, 2, 3} and L1 = {4}, λ = 3, ā = 7, and Ga,λ(13) = 6 giving the
inequality (11)

w1 + 2y1 + (7 − 3)(1 − y1) + w2 + 2y2 + (6 − 3)(1 − y2)

+w3 + y3 + (6 − 3)(1 − y3) + x4 − (10 − 6)y4 ≤ 16 +
4∑

i=1

σi

Substituting for σj gives precisely the inequality (38) on p26 in Miller et al.
(2003a).

6.2 Generalized Variable Upper Bounds

Here we consider the set XGV UB

∑
j∈N1

xj −
∑

j∈N2
xj ≤ b + s

xj ≤ a0j +
∑

i∈Sj
aijyi, for j ∈ N.

xj ≥ 0 for j ∈ N, yi ∈ {0, 1} for i ∈ M.

studied by Atamtürk et al. (2001).
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Remark 10. This set can be obtained by projecting a face of the single node flow
model

∑
i,j wij −

∑
i,j wij ≤ b

0 ≤ wij ≤ aijyij , yij ∈ {0, 1}
by setting y0j = 1 and xj =

∑
i wij for all j.

Here we again take a direct approach. Again we have a partition (Ck, Lk, Rk) of
Nk for k = 1, 2 and a set F ⊆ M of variables fixed at zero. For simplicity we
assume that L1 = ∅ and F ∩ Sj = ∅ for j ∈ C2 ∪ L2. To define a cover we need
that

∑

j∈C1

[a0j +
∑

i∈Sj\F

aij ] −
∑

j∈C2

[a0j +
∑

i∈Sj

aij ] − b −
∑

j∈L2

a0j = λ > 0.

Assuming for simplicity that the sets Sj are disjoint, we obtain using the standard
MIR approach
Proposition 15. The inequality

∑
j∈C1

[xj +
∑

i∈Sj\F (aij − λ)+)(1 − yi)] +
∑

j∈C1
[
∑

i∈Sj∩F φ(aij)yi]

≤ b +
∑

j∈C2

∑
i∈Sj

aij +
∑

j∈L2
a0j

−
∑

j∈C2

∑
i∈Sj

φ(aij)(1 − yi) +
∑

j∈L2

∑
i∈Sj

min[λ, aij ]yi +
∑

j∈R2
xj + s

is valid forXGV UB where φ = Ga,λ and a consists of the terms aij for i ∈ Sj \F
and j ∈ C1, and aij for i ∈ Sj and j ∈ L2.

Example 9. (Atamtürk et al., 2001) p157. Consider the setXGV UB

x1 + x2 − x3 − x4 ≤ 2
x1 ≤ 4 + 2y1 + 3y2

x2 ≤ 3 + y3 + 2y4

x3 ≤ 2 + y5 + 4y6

x4 ≤ 4 + 2y7 + 2y8

x ∈ R4
+, y ∈ {0, 1}8.

Taking C1 = {1, 2}, C2 = ∅, L2 = {3, 4}, F = {1, 2, 3}, we obtain λ = a10 +
a20 + a4 − a30 − a40 − b = 1, and ā = max{2, 1, 4, 2, 2} = 4.

Taking as lifting function the MIR function φ(d) = λFα( d
ā ) with λ = 4 and

α = 4−1
4 , we obtain φ(2) = 0 = φ(3) = 0 and φ(4) = 1. The resulting inequality

is

(x1−4−2y1 −3y2)+(x2 −3−y3)+(2−1)+(1−y4) ≤ 8+y5 +y6 +y7 +y8.

Using Ga,λ, as proposed in Proposition 15, leads to the same inequality. !

In Atamtürk et al. (2001), a modified inequality is given for the case in which the
different generalized VUBs have 0-1 variables in common. This inequality can
also be obtained directly by the lifted MIR procedure.
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6.3 Generalized Upper Bounds

Here we consider the set XGUB

∑
j∈N1

xj −
∑

j∈N2
xj ≤ b + s

0 ≤ xj ≤ ajyj for j ∈ N1 ∪ N2∑
j∈Si

yj ≤ 1 for i ∈ M1 ∪ M2.

We assume for simplicity that the sets Si are disjoint and Si ⊆ Nk for i ∈ Mk

for k = 1, 2. This model has been examined by Wolsey (1990). In addition the
knapsack set with GUBs has been studied in Gu et al. (1998) and lifted cover
inequalities for such sets are used in Cplex and Xpress.

Definition 9. C = (C1, C2) withCk ⊆ Nk for k = 1, 2 is aGUB-cover inequality
if
i) |Ck ∩ Si| ≤ 1 for i ∈ Mk and k = 1, 2
ii)

∑
j∈C1

aj −
∑

j∈C2
aj − b = λ > 0.

In addition we let M+
k = {i ∈ Mk : |Ck ∩ Si| = 1}, and j(i) ∈ Ck ∩ Si be the

unique element of Si in the cover, if any. For each i, select a subset Ti ⊆ Si such
that j(i) ∈ Ti for all i ∈ M+

1 ∪ M+
2 .

Applying the MIR procedure, using 0-1 variables zi =
∑

j∈Ti
yj and their

complements z̄j = 1− zj for GUB sets in the cover, and taking the divisor ā very
large, we obtain a simple generalization of the GFC1 inequality (4).

Proposition 16. The inequality
∑

i∈M+
1

[xj(i) + (aj(i) − λ)+(1 − yj(i))]
∑

i∈M+
1

∑
j∈Ti\j(i)[xj − (max(aj , aj(i)) − λ)+)yj ]

≤ b +
∑

j∈C2
aj +

∑
i∈M+

2

∑
j∈Ti

min[λ, aj − aj(i)]+yj

+
∑

i∈M+
2

∑
j∈Si\Ti

xj +
∑

i∈M2\M+
2

∑
j∈Ti

λyj
∑

i∈M2\M+
2

∑
j∈Si\Ti

xj

is valid for XGUB .

Other inequalities can be obtained using smaller values of ā.

Example 10. Consider the set XGUB

x1 +x2 +x3 +x4 −x5 ≤ 12
y1 +y2 +y3 ≤ 1

x1 ≤ 6y1, x2 ≤ 7y2, x3 ≤ 8y3, x4 ≤ 9y4, x5 ≤ 6y5

x ∈ R5
+, y ∈ {0, 1}5.
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¿From Proposition 16 with cover C1 = {2, 4}, C2 = ∅, λ = 4, and sets T1 =
{1, 2, 3} and T2 = {4}, we obtain the valid inequality

x2 + 3(1 − y2) + x4 + 5(1 − y4) + x1 − 3y1 + x3 − 4y3 ≤ 12 + 4y5.!

Note that to carry out exact lifting for this model using the approach of Section 3,
we need to use multi-dimensional lifting functions, unless each set of variables Si

lies within just one of the vectors of variables xk ∈ Xk for some k.

7 Conclusions

In spite of the fact that we have concentrated in the last three sections on using
MIR combined with simple superadditive lifting on a knapsack set with continu-
ous variables to obtain strong valid inequalities for the various single node flow
models, we believe that a more profound polyhedral study of the single node flow
model XN is warranted, especially as most of the variants that have been studied
can be viewed as faces and or projections of it.

The importance of superadditive lifting functions in permitting simultaneous
lifting of sets of variables cannot be overestimated. Thus it seems crucial to im-
prove our understanding of superadditive functions, as well as ways to calculate
valid superadditive lifting functions. The fact that the submodularity of certain set
functions arising from flows leads to valid inequalities with the simultaneous lift-
ing propertyWolsey (1989), and can be used to explain certain flow cover inequali-
ties also appears to merit further investigation. As an example new inequalities for
capacitated lot-sizing have been proposed recently Atamtürk and Munoz (2002)
where certain coefficients can be derived using such submodular lifting.

Though we have not directly discussed computation with the inequalities pre-
sented here, various researchers have devised heuristic algorithms to choose the
covers C1, C2 by solving some version of the knapsack problem

min
∑

j∈N ′
1
(1 − x∗

j )zj −
∑

j∈N ′
2
x∗

jzj
∑

j∈N ′
1
ajzj −

∑
j∈N ′

2
ajzj > b

z ∈ {0, 1}n′
1+n′

2

where N ′
i ⊆ Ni for i = 1, 2 are suitably chosen subsets with x∗

j not too far
from its upper bound ajy∗

j , see Gu et al. (1998); Van Roy and Wolsey (1987) and
the discussion in Nemhauser and Wolsey (1988). Here it would undoubtedly be
interesting to devise improved heuristics that take into account a priori part of the
effects of lifting. Another possibility would be to test existing separation heuristics
against an exact separation algorithm for conv(XN ).

Acknowledgement We are grateful to A. Atamturk and Y. Pochet for their helpful
comments on an earlier version of this paper.
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