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Abstract. In this paper two methods for automatic generation of connected chordal graphs are
proposed: the first one is based on results concerning the dynamic maintainance of chordality under
edge insertions; the second is based on expansion/merging of maximal cliques. In both methods,
chordality is preserved along the whole generation process.

1 Introduction

In the solution of algorithmic problems, graphs can play different roles, being the very input for
an algorithm or simply an auxiliary data structure handled by it. In the first case, the generation
of suitable instances (i.e. input graphs satisfying given constraints) can be so complex that it
constitutes a further problem, sometimes as hard to solve as the original one.

Chordal graphs are a broadly studied class, as their peculiar clique-based structure allows
a more efficient solution for many algorithmic problems [5, 9, 8, 12]. Since the generation of
instances for testing these algorithms is often required, our goal in this paper is to develop
procedures for automatically constructing connected chordal graphs.

Rather than generating connected graphs at random and testing whether they are chordal
or not, we focus here on generation procedures in which graphs are constructed while chordality
is maintained during the whole generation process. Two methods are presented in this paper:
the first one is based on a dynamic maintainance of chordality under edge insertions developed
in [2]; the second one relies on the expansion/merging of maximal cliques in the clique-tree. The
complexities of both algorithms are analyzed and experimental tests show that the first method
is more suitable for generating sparse chordal graphs, whereas the second one can generate
denser graphs very fast.

2 Basic Notions

Let G = (V,E) be a graph and v ∈ V . The set of neighbours of v is denoted as Adj(v) = {w ∈
V | (v,w) ∈ E}. For any S ⊆ V , let G[S] be the subgraph of G induced by S. S is a clique when
G[S] is a complete graph. If Adj(v) is a clique in G, v is said to be simplicial in G. A perfect
elimination ordering (peo) is an ordering σ = [v1, . . . , vn] of V with the property that vi is a
simplicial vertex in G[{vi, vi+1, . . . , vn}], 1 ≤ i ≤ n. A proper subset S ⊂ V is a vertex separator
for non-adjacent vertices u and v (a u-v separator) if the removal of S from the graph separates
u and v into distinct connected components.



A graph G is chordal when every cycle of length 4 or more has a chord (i.e. an edge joining
two non-consecutive vertices of the cycle). Golumbic [10] presents the following characterization:

Theorem 1. Let G be a graph. The following statements are equivalent:
• G is a chordal graph.
• G has a perfect elimination ordering. Moreover, any simplicial vertex can start a perfect

ordering.
• Every minimal vertex separator induces a complete subgraph of G.

Given a connected chordal graph G = (V,E) the clique-intersection graph of G is the con-
nected weighted graph whose vertices are the maximal cliques of G and whose edges connect
vertices corresponding to non-disjoint cliques. Each edge is assigned an integer weight, given by
the cardinality of the intersection between the maximal cliques represented by its endpoints.

Every maximum-weight spanning tree of the clique-intersecton graph of G is called a clique-
tree of G. It can be proved that each edge (Q′, Q′′) of a clique-tree corresponds to a minimal
vertex separator for the vertices belonging to Q′ −Q′′ and Q′′ −Q′. Besides, if Q1 and Q2 are
maximal cliques of G, the intersection Q1 ∩Q2 is a subset of any maximal clique of G lying on
the path between Q1 and Q2 in any clique-tree of G. See [3] for more details.

3 Generation of Chordal Graphs Through Successive Edge Insertions

The first algorithm takes as input V , with |V | = n, and the number of desired edges m, n− 1 ≤
m ≤ n(n−1)

2 , building up a connected labeled chordal graph G = (V,E), with |E| = m, in two
steps:
• Generates a labeled tree with vertices in V ;
• Fills in this seed tree with the m − n + 1 missing edges. At each iteration, a pair of non-

adjacent vertices u, v ∈ V is selected and the edge (u, v) is added as long as the resulting
graph is also chordal.

The first step aims at guaranteeing connectivity, since trees are chordal graphs. Using an
appropriate tree signature (e.g. Prüfer coding) along with the corresponding reconstruction
procedure ([6],[15]), the first step can be accomplished in time O(n). For the second step, the
dynamic maintainance of chordality under edge insertions must be studied, avoiding to test for
this property over the whole graph at every edge insertion.

In the last years there has been considerable research interest in dynamic algorithms. An
algorithm for a problem is said to be dynamic if it is able to update a current solution while the
structure of the problem undergoes changes, rather than computing an entirely new solution from
scratch. Hence a standard model for dynamic graph problems involves a sequence of intermixed
updates and queries: an update inserts or deletes an edge or isolated vertex and a query asks
for certain information about a graph property [1, 7, 4].

We are interested only in maintaining chordality under edge insertions, providing efficient
algorithms for the following operations:
• insert query(u, v): checks whether the insertion of edge (u, v) preserves chordality;
• insert(u, v): inserts the edge (u, v).

Ibarra [11] solves this problem using a clique-tree of the graph as an auxiliary data structure.
We propose instead a quite different approach, in that no additional data structure is needed.
The central result is given in Theorem 2.

In a graph G = (V,E), let Iu,v = Adj(u) ∩Adj(v), for u, v ∈ V .



Theorem 2. Let G = (V,E) be a connected chordal graph and u, v ∈ V , (u, v) /∈ E. The
augmented graph G + (u, v) is chordal if and only if G[V − Iu,v] is not connected.

Proof. Let S = V − Iu,v and G′ = G + (u, v).
(⇒) If G[S] is connected, there must be at least one path between u and v in G[S]. Let Pu,v be

such a path with minimun length. As no vertex belonging to Iu,v lies on Pu,v, this path has
length greater than 2. Hence G′[S] = G[S] + (u, v) has a cycle with length greater than 3,
composed of Pu,v and the new edge (u, v). Since Pu,v has minimum length, this cycle has no
chords and G′[S] is not chordal. So G′ is not chordal either.

(⇐) If G[S] is not connected, then Iu,v is a u-v separator in G, since G is connected by assumption.
Moreover, Iu,v is a minimal u-v separator. Thus, by Theorem 1, Iu,v is a clique in G and
Iu,v ∪ {u, v} is a clique in G′.
The vertices u and v belong to distinct connected components of G[S]: Gu = (Vu, Eu) and
Gv = (Vv , Ev), both chordal. For every x ∈ Vu and y ∈ Vv, Iu,v is a minimal x-y separator
in G, but not in G′. However, the only minimal x-y separators in G that may have been
modified under the addition of (u, v) are subsets of Iu,v ∪ {u, v}, which are cliques in G′. So,
every minimal vertex separator of G′ is a clique and, by Theorem 1, G′ is chordal. 	


Corollary 1. Let G = (V,E) be a connected chordal graph and u, v ∈ V , (u, v) /∈ E. If Iu,v = ∅,
then G + (u, v) is not chordal.

Proof. If Iu,v = ∅, then G[V − Iu,v] = G[V ] = G. Since G is connected, by Theorem 2, G+(u, v)
is not chordal. 	


Theorem 2 and Corollary 1 give the answer to insert query(u, v): if Iu,v �= ∅, a path must
be searched between u and v in G[V − Iu,v], i.e. all vertices and edges of G[V − Iu,v] must be
traversed, in the worst case. If Iu,v has few vertices, this search may cover almost every vertex
and edge of G. Lemma 1 shows however that this search can be constrained.

Lemma 1. Let G = (V,E) be a connected chordal graph. If there is a non-empty path Pu,v

between u and v with minimun-length in G[V −Iu,v], then {w}∪Iu,v is a clique in G, ∀w ∈ Pu,v.

Proof. If Iu,v = ∅, the result holds trivially. Otherwise, let Pu,v = [u = a1, a2, . . . , ak = v], k ≥ 2,
and t ∈ Iu,v. By assumption, ai �∈ Iu,v, 1 ≤ i ≤ k. So, there is a cycle in G [t, u = a1, a2, . . . , ak =
v, t]. Since Pu,v has minimum length and G is chordal, all chords within this cycle must have
t as an endpoint. Hence every vertex on Pu,v is adjacent to every vertex in Iu,v. But Iu,v is a
subset of a minimal u-v separator and, by Theorem 1, Iu,v is a clique. 	


Lemma 1 reduces the set of candidates to the path Pu,v. Actually the search for such a
path can be restricted to G[(V − Iu,v) ∩ Adj(x)], for any x ∈ Iu,v. The implementation of
insert query(u, v) is shown in the following procedure.

procedure insert query (G = (V, E), u, v);
begin

Iu,v ← Adj(u) ∩Adj(v);
if Iu,v = ∅ then

G + (u, v) is not chordal
else begin

Choose x ∈ Iu,v;
Aux← G[(V − Iu,v) ∩ Adj(x)];
Perform a breadth-first search on Aux, starting at u;
G + (u, v) is chordal ⇔ v has not been reached in the search

end
end;



The worst-case time complexities of the operations insert query(u, v) and insert(u, v) are
given in Lemmas 2 and 3.

Lemma 2. In the worst case, insert query performs in time O(m).

Proof. I = Adj(u)∩Adj(v) can be obtained in O(n). The induced subgraph Aux does not need
to be explicitly computed: the vertices belonging to (V − I) ∩ Adj(x) can be marked as the
only ones to be visited during the search. This can be also done in O(n). In the worst case, the
breadth-first search performs in time O(m). 	


Lemma 3. Operation insert(u, v) has complexity of O(1).

Proof. As no additional data structure is maintained, just insert u in Adj(v) and v in Adj(u). 	


Evidently the classical recognition algorithm [13] can be used to solve this problem: for each
new candidate edge (u, v), chordality must be tested for the augmented graph G + (u, v). This
algorithm consists of two steps: a lexicographic breadth-first search, which produces a vertex
ordering σ, and the verification if σ is a peo. For the answer yes, 2m iterations are performed in
each step. For the answer no, the first step is entirely performed, whereas the second one may
not run to completion.

Instead, our algorithm performs a single step, in which at most 2m edges are traversed.
In average, much fewer edges are considered in the search, given the result of Lemma 2. In
particular, the answer no can be obtained much faster, since the test Adj(u)∩Adj(v) �= ∅, which
can be accomplished in O(n), may readily fail.

Although the worst-case complexities obtained in Lemmas 2 and 3 does not represent a
theoretical improvement over the classical recognition algorithm, it is not difficult to conclude
that our algorithm performs much faster on average.

We stress here an interesting result concerning the generation of connected chordal graphs
through this method, depicted in Figure 1. The following experiment is repeated 215 times:
starting at a randomly generated tree with n = 100 vertices, feasible edges are inserted until
the upper limit n(n − 1)/2 = 4950 is reached. At each iteration, several candidate edges are
attempted, until an edge is found that can be added to the graph without violating chordality.
Two kinds of failures may arise:

• Type-1 failures (represented by white bars): a pair of vertices corresponding to an existent
edge (or loop) is selected and discarded;

• Type-2 failures (represented by black bars): the edge is new, but its insertion violates chordal-
ity, hence it is also discarded.

As the graph grows in density, the number of failures increases. Although the number of
Type-2 failures tends to decrease, Type-1 failures dominate the generation process and most of
the execution time is wasted on discarding repeated edges. However, each Type-1 failure takes
only O(1) time to be processed.

The most important remark about this experiment is that the results obtained are quite
independent from the algorithm that implements the operation insert query, being actually
inherent to the generation method.
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Figure 1: Type-1 and Type-2 failures

4 Generation of Chordal Graphs by Expansion and Merging of Maximal
Cliques

The second generation method relies strongly on the clique-structure of a chordal graph and
maintains an auxiliary data structure to allow fast identification and selection of cliques.

4.1 The Algorithm

A careful look at the perfect elimination ordering (peo) suggests a secure way of adding a new
vertex to an existent chordal graph: if the incoming vertex is joined to any clique of the graph,
the resulting graph is guaranteed to be chordal.

Lemma 4. Let G = (V,E) be a chordal graph, v /∈ V a new vertex and Q ⊆ V a clique of G.
The graph

JOIN (Q,v)(G) = (V ∪ {v}, E ∪ {(v, x)|x ∈ Q})
is also chordal.

Proof. Just notice that v is a simplicial vertex of JOIN (Q,v)(G). So, if [v1, v2, . . . , vn] is a peo
of G then [v, v1, v2, . . . , vn] is a peo of JOIN (Q,v)(G) and, by Theorem 1, JOIN (Q,v)(G) is
chordal. 	


Based upon this property, the algorithm for generating a connected chordal graph G = (V,E),
where V = {v1, v2, . . . , vn}, has two steps:
• Initialization step. Start with the trivial graph G = ({v1}, ∅), v1 ∈ V .
• Clique-expansion step. For v ← v2, . . . , vn, perform: choose a clique Q ⊆ V of G and replace

G with JOIN (Q,v)(G), linking v to all vertices of Q.

In order to compute JOIN (Q,v)(G) efficiently, a fast way to choose a clique Q of G at
random is required. Since any clique Q is a subset of a maximal clique, the idea is to keep track
of all maximal cliques of G, using the clique-tree. Recall from the definition presented in Section
2 that each edge of the clique-tree has as weight the cardinality of the intersection between
the cliques given by its endpoints. This auxiliary structure is maintained along the generation
process according to the following guidelines:



• Initially the clique-tree is trivial, consisting of a single node: {v1}.
• At each iteration of the Clique-expansion step, a node Q′ of the clique-tree is selected. This

node is a maximal clique in G so a subset Q ⊆ Q′ is chosen.
• If Q = Q′, a new maximal clique {v} ∪Q replaces Q′ in the graph being generated. So

the node Q′ is simply replaced with {v} ∪Q in the clique-tree.
• If Q ⊂ Q′, a new maximal clique {v}∪Q is created and Q is a minimal separator between

v and the vertices in Q′−Q. Thus a new node {v}∪Q is added to the clique-tree, joined
to Q′ by an edge with weight |Q|.

It can be noticed that the exact number of edges of the graphs obtained by this method
cannot be set a priori, since it depends on the sizes of the cliques selected during the process.
In Table 1, we summarize some experimental results about the generation of large graphs. Each
row shows the results of 215 executions of the algorithm for the number of vertices specified in
the first column (n); m is the average number of edges, sd is the standard deviation and min,
max are respectively the minimum and the maximum number of edges obtained.

n m m/n sd min max

10000 21135.40 2.114 289.86 20093 22640

20000 42312.48 2.116 419.12 40746 44401

30000 63492.96 2.116 525.14 61494 65878

40000 84678.21 2.117 613.27 82460 87900

50000 105871.98 2.117 690.48 103434 109132

60000 127051.38 2.118 756.71 124217 131327

70000 148242.81 2.118 824.94 144836 152174

80000 169431.58 2.118 891.14 166192 174837

90000 190610.54 2.118 941.51 187188 196546

100000 211808.79 2.118 1005.11 207799 217068

Table 1: Experimental Results

The results suggest that the average number of edges of the generated graphs tends to grow
up almost linearly with the number of vertices, within a factor of 2.11. Hence the algorithm
produces mostly sparse graphs with small maximal cliques.

In order to cope with this drawback, a third step is appended to the algorithm, in which
maximal cliques are merged into larger ones:

• Clique-merging step. Perform many times: choose two maximal cliques Q′ and Q′′ of G,
represented by adjacent nodes in the clique-tree, and merge them into a single one.

When two cliques Q′ and Q′′, adjacent in the clique-tree, are collapsed, exactly

(|Q′| − weight(Q′, Q′′))× (|Q′′| − weight(Q′, Q′′))

edges with endpoints in Q′−Q′′ and Q′′−Q′ are added to G, since weight(Q′, Q′′) is the number
of vertices that Q′ and Q′′ have in common. In the clique-tree, the edge (Q′, Q′′) disappears and
the weights of the remaining ones are unaffected.

As the generated graph is connected, no more than n − 1 maximal cliques can be obtained
by the Clique-expansion step. Hence, at most n− 2 merge operations can be performed during
the Clique-merging step. If an upper bound for the number of edges is given as input, the
Clique-merging step can be interrupted as soon as this limit is reached.

The new results are shown in Table 2. For n = 10000, the generated graphs can have at
most M = n(n − 1)/2 = 49995000 edges. Several upper bounds for the number of edges (M)
are tested, varying in the range n, . . . ,M. For each of these values, 215 graphs are generated



and the following informations are shown: the average number of edges (column 2), the standard
deviation (column 3), the average size of the maximum clique (column 4) and the average number
of clique merges (column 5).

n = 10000, M = n(n− 1)/2 = 49995000

M (M/M) m (m/M) sd maxclique merges

10000 (< 1%) 21135.40 (< 1%) 289.86 9.08 0.00

15000 (< 1%) 21135.40 (< 1%) 289.86 9.08 0.00

20000 (< 1%) 21135.40 (< 1%) 289.86 9.08 0.00

25000 (< 1%) 25000.00 (< 1%) 0.00 22.98 816.70

214980 (< 1%) 214980.00 (< 1%) 0.00 409.80 3745.42

404960 (< 1%) 404960.00 (< 1%) 0.00 634.57 4153.20

499950 (1.00%) 499950.00 (1.00%) 0.00 727.90 4277.76

4999500 (10.00%) 4999500.00 (10.00%) 0.04 2847.09 5485.50

9999000 (20.00%) 9998999.75 (20.00%) 8.76 4178.11 5820.81

14998500 (30.00%) 14998021.40 (30.00%) 22553.66 5213.73 6013.69

19998000 (40.00%) 19988378.12 (39.98%) 131036.68 6100.69 6145.99

24997500 (50.00%) 24965199.52 (49.94%) 317725.92 6875.00 6248.87

29997000 (60.00%) 29720361.41 (59.45%) 983019.15 7559.18 6328.46

34996500 (70.00%) 34344306.45 (68.70%) 2066276.17 8170.49 6389.55

39996000 (80.00%) 39073234.46 (78.15%) 2875688.94 8760.86 6438.77

44995500 (90.00%) 43950092.65 (87.91%) 3279525.34 9330.25 6483.56

49995000 (100.00%) 49995000.00 (100.00%) 0.00 10000.00 6534.63

Table 2: More Experimental Results

The results in Table 2 can be understood as follows:

• in the first section, very sparse graphs (n ≤M < 2.2n) are generated and m > M ; the upper
limit is violated during the Clique-expansion step and no merge operation is performed;

• in the second section, sparse graphs with M ≥ 2.5n edges are produced and m = M (the
standard deviation is 0.0);

• in the third section, as the density of the graphs become higher, a slight difference can be
noticed between the values of m and M .

4.2 Implementation and Complexity

The proposed algorithm can be viewed as a 2-phase process: phase 1 is responsible for building
the clique-tree; only in phase 2 the corresponding connected chordal graph is obtained.

The inputs of the algorithm are: the number of vertices n and the upper bound for the number
of edges M . The generated graph will have V = {1, . . . , n} as its vertex set. The following data
structures are used:

• Each node of the clique-tree is represented by a linked list of vertices and the array of those
lists is called Q, with positions in the range 1, . . . , n− 1;

• S is an array of integers, such that Si is the cardinality of Qi, 1 ≤ i < n;
• L is the list of weighted edges of the clique-tree; each element of L is a triple containing the

endpoints of an edge (actually the positions of the endpoints in the array Q) and its weight;
• A is an auxiliary array of integers, with positions in the range 1, . . . , n.

The implementation of the initial and the Clique-expansion steps is given in the following
procedure. The operator || means list concatenation.



procedure expand cliques;
begin
Q1 ← [1]; S1 ← 1; L ← [ ]; m← 0; �← 1;
for v ← 2, 3, . . . , n do
begin

Choose i, 1 ≤ i ≤ �;
Choose t, 1 ≤ t ≤ Si;
if t = Si then
begin
Qi ← [v] || Qi; { an old clique is expanded }
Si ← Si + 1

end
else begin

Choose Q ⊆ Qi with |Q| = t;
�← � + 1;
Q� ← [v] || Q; { a new clique is created }
S� ← t + 1;
L ← L || [(i, �, t)]

end;
m← m + t

end
end;

At each iteration, the current vertex v must be joined to an existent clique. The value of i is
the position in the array Q of the maximal clique from which this clique is chosen and t stores
the cardinality of the clique. Hence the value of t is exactly the number of edges being added to
the chordal graph being generated.

After the execution of expand cliques, the following can be claimed:

– the variable � holds the number of maximal cliques generated (� < n, since the graph is
connected);

– the array Q stores the contents of the � maximal cliques generated;
– the list of triples L contains the edges of the clique-tree along with their weights; each edge

is given by a pair of integers (i, j), which are the positions of its endpoints in the array Q;

Let m1 denote the number of edges of the chordal graph whose clique-tree is generated by
expand cliques (i.e. the value of m after the execution of expand cliques). Lemma 5 shows an
upper bound for the number of elements (vertices) belonging to the lists Qi, 1 ≤ i ≤ �:

Lemma 5. After the execution of expand cliques

�∑

i=1

|Qi| ≤ n + m1.

Proof. Let us call ∆v the number of vertices added to some list at the v-th iteration, 1 ≤ v ≤ n.

– Initially, vertex 1 is added to Q1: ∆1 = 1.
– At the subsequent iterations (v ← 2, 3, . . . , n), either v is added to Qi, 1 ≤ i < v or a new

maximal clique is created and Q� is built up with t(v) + 1 vertices, where t(v) is the value of
t at iteration v; in both cases, ∆v ≤ t(v) + 1, 2 ≤ v ≤ n.

Hence
�∑

i=1

|Qi| =
n∑

v=1

∆v ≤ 1 +
n∑

v=2

[t(v) + 1] = n +
n∑

v=2

t(v) = n + m1.	




Lemma 6. At each iteration, if the choice “Q ⊆ Qi with |Q| = t”, is performed in O(t), then
expand cliques performs in the worst case in time O(n + m1).

Proof. To select a subclique Q ⊆ Qi with t elements in time O(t), just pick up the first t elements
of Qi. Since the two other choices at the iteration can be performed in O(1), the result follows
directly from Lemma 5. 	


At each iteration of the Clique-merging step, a pair of adjacent nodes of the clique-tree
is selected to be coalesced. If explicitly performed, this operation involves modifications on
the clique-tree: a new node replaces the original ones in the array Q and the list L must be
consistently altered. To avoid this overhead, a disjoint set union structure is used, along with
the well known operations UNION and FIND ([14]). The initial collection consists of unitary
sets containing the positions of the nodes in the array Q.

Since each node of the clique-tree is represented by a list of vertices of the original graph,
when coalescing two nodes, it is enough to concatenate both lists, yielding a new one with
repeated elements. So, at the end of the generation process, the remaining lists need to be
packed.

In order to assure that the final number of edges does not exceed the given upper bound M ,
we must determine the exact number of edges added at each iteration, as shown beforehand.

The Clique-merging step is implemented by the following algorithm (notice that Si always
contains the true cardinality of Qi, considering repeated elements only once):

procedure merge cliques;
begin

Initial collection of disjoint sets ← {{1}, {2}, . . . , {�}};
while L �= [] and m < M do
begin

Choose (a, b, ω) ∈ L and remove (a, b, ω) from L;
i← FIND (a); δ ← Si − ω;
j ← FIND (b); ∆← Sj − ω;
if m + ∆× δ ≤M then
begin

UNION (i, j, i);
Qi ← Qi || Qj ; Si ← ∆ + δ + ω;
Qj ← [ ]; Sj ← 0;
m← m + ∆× δ

end
end

end;

Lemma 7 gives the worst-case time complexity of merge cliques. Notice that this complexity
depends only on n.

Lemma 7. In the worst case, merge cliques performs in time O(nα(2n, n)).

Proof. Considering L as a sequential list (with at most n positions), the choice and deletion from
L can both be performed in O(1). Since � < n, in the worst case � = n − 1 and |L| = n− 2. So
the initialization of the collection can be performed in O(n) and, at each iteration, two FINDs
and at most one UNION are performed. Since there is at most n − 2 iterations, less than 2n
FINDs and n− 1 UNION s are executed. The overall complexity is then O(nα(2n, n)) [14]. 	


It is important to observe that the total number of elements, given by the sum
∑�

i=1 |Qi|,
remains unaffected after the execution of merge cliques: when a list Qj is concatenated into Qi

no element is lost and Qj becomes empty.



After the execution of merge cliques, the non-empty lists in the array Q have repeated
elements and a packing step is required:

procedure pack lists;
begin

for i← 1, 2, . . . , n do Ai ← 0;
for i← 1, 2, . . . , � do
begin

Q← [ ];
forall v ∈ Qi do

if Av �= i then
Q← Q || [v], Av ← i;

Qi ← Q
end

end;

Lemma 8. Pack lists performs in time O(n + m1).

Proof. Because all lists are traversed, the complexity is O(
∑�

i=1 |Qi|). Since the total number of
elements, calculated in Lemma 5, is not affected by merge cliques, the result holds. 	


Computing the overall complexity of the generation so far, we obtain O(n+m1 +nα(2n, n)).
However, the desired chordal graph is represented through its clique-tree, instead of the usual
adjacency lists. In the next subsection, a linear-time conversion phase is examined.

4.3 Constructing the Graph from the Clique Tree

Phase 2 is a conversion phase: the desired connected chodal graph must be obtained from the so
far generated clique-tree. Since the maximal cliques may have edges in common, the main concern
here is to avoid the generation of the same edge more than once. Procedure make graph from free
accomplishes this task.

procedure make graph from tree;
begin

for i← 1, 2, . . . , n do Ai ← 0;
for i← 1, 2, . . . , � do
begin

if Si �= 0 do
begin
O ← [v ∈ Qi|Av = 1];
N ← [v ∈ Qi|Av = 0];
make clique (N );
forall v ∈ N do
begin

Av ← 1;
forall w ∈ O do

make edge (v, w)
end

end
end

end;

At the i-th iteration of make graph from tree, the vertices of Qi are partitioned into two
sublists: O stores the vertices that have already appeared in a clique at a previous iteration; N
holds the new vertices, which have never appeared before in a clique. The array A helps keeping
track of which vertices have already been processed.



The call on make clique is supposed to produce a clique with all vertices belonging to N ,
issuing all needed edges among them; however, the vertices belonging to O need only be linked
to the vertices in N . The reason is explained in the following propositions.

Let Q1 be chosen as root of the clique-tree. Examining the structure of the triples added to L
in expand cliques and how the UNIONs are performed in merge cliques, we can conclude that, if
Qj is an ancestor ofQi, then j ≤ i. So, when a node is being processed in make graph from tree,
all its ancestors have already been handled, since i← 1, 2, . . . , �.

Let lca(Q′,Q′′) denote the least common ancestor of nodes Q′ and Q′′ in the clique-tree.

Lemma 9. At iteration i of make graph from tree, if v,w ∈ O ⊂ Qi, v �= w, then there exists
an ancestor Qj of Qi, such that v,w ∈ Qj .

Proof. If v,w ∈ O, both vertices have already appeared in previously processed nodes. Thus
there must exist Qa and Qb such that v ∈ Qa, w ∈ Qb and 1 ≤ a, b < i.

By the intersection property of clique-trees, since v ∈ Qi ∩Qa, v must belong to every node
on the path between Qi and Qa; in particular, v ∈ lca(Qi,Qa). Similarly, w ∈ lca(Qi,Qb). As
lca(Qi,Qa) and lca(Qi,Qb) are both ancestors of Qi, one of the following conditions must hold:
• either lca(Qi,Qa) is an ancestor of lca(Qi,Qb)

in this case, lca(Qi,Qb) lies on the path between Qi and lca(Qi,Qa), so v also belongs to
lca(Qi,Qb) = Qj ;

• or lca(Qi,Qb) is an ancestor of lca(Qi,Qa)
likewise w also belongs to lca(Qi,Qa) = Qj .

In both cases, an ancestor Qj of Qi was found, to which v and w belongs. 	

Lemma 10. At the end of each iteration, the edges belonging to the maximal cliques processed
so far have all been issued only once.

Proof. By induction on i, the number of the iteration:
• For i = 1, the result holds, since Q1 = N .
• Suppose this is valid for i < k.
• Consider the k-th iteration and the partition Qk = N ∪O. Let v,w ∈ Qk, v �= w:
• if v,w ∈ N , the edge (v,w) is issued by the call to make clique;
• if v ∈ N and w ∈ O (or w ∈ N and v ∈ O), the edge (v,w) is issued by a call to

make edge;
• if v,w ∈ O, by Lemma 9, v,w also belong to an ancestor of Qk. Since ancestors are

always processed before their descendants, by the inductive hypothesis, the edge (v,w)
has already been issued. The algorithm takes no action.

In all cases, for each vertex v ∈ N , Av ← 1, so that v will belong to O in all subsequent
iterations. 	

Thus make graph from tree issues only once each edge belonging to the graph and Lemma

11 shows its time complexity.

Lemma 11. Make graph from tree performs in time O(m), where m is the number of edges
of the generated chordal graph.

Proof. The total number of steps performed by all executions of make clique and make edge is
O(m), since these procedures issue exactly once each edge of the chordal graph. The complexity
is then

O(n +
�∑

i=1

Si + m) = O(m),

since
∑�

i=1 Si ≤ n + m1 ≤ n + m. 	




Including the conversion phase, the overall complexity of the second generation method is:

O(n + m1 + nα(2n, n) + m) = O(m + nα(2n, n)).

5 Conclusions

We have presented two methods for the generation of connected chordal graphs. The first one
adds successively new edges to an existent chordal graph, starting at a tree to ensure conectivity.
Thus pairs of vertices are randomly selected and the insertion of the corresponding edges is
attempted, preserving chordality. As the graph grows denser, the probability of choosing a
pair of vertices which already corresponds to an existent edge increases, so that most of the
execution time is wasted on discarding repeated edges. Therefore, this first method is suitable
for generating sparse graphs and has the main advantage that the final number of edges can be
precisely established a priori.

The second method uses the clique-tree as an intermediate representation of the chordal
graph. Maximal cliques are expanded and contracted, yielding a final clique-tree, that must be
converted to the adjacency list graph format. Although the final number of edges cannot be
set in advance, an upper limit is given as input and experimental results show that the average
number of edges obtained is close enough of the desired bound. This second method turns out
to be more adequate to the generation of dense graphs.
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