Skip to main content

Advertisement

Log in

A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The hypercube is a well-known descriptive model for planning server-to-customer systems. In the present study we adapt this model to analyze Emergency Medical Systems on highways involving partial backup and multiple dispatching of ambulances. The modified model is then embedded into a genetic algorithm to optimize the configuration and operation of the system. By embedding the hypercube into a genetic algorithm, we can support decisions, such as, determining the optimal districts for the system in order to optimize the mean performance measures. Computational results are analyzed applying the approach to the case study of an EMS operating on Brazilian highways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo, J. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling. European Journal of Operational Research, 167, 717–738.

    Article  Google Scholar 

  • Atkinson, J. B., Kovalenko, I. N., Kuznetsov, N., & Mykhalevych, K. V. (2005, to appear). Heuristic solution methods for a hypercube queueing model of the deployment of emergency systems. Cybernetics and Systems Analysis.

  • Banks, J. (1998). Handbook of simulation (pp. 3–389). Atlanta: Wiley.

    Google Scholar 

  • Batta, R., Dolan, J. M., & Krishnamurthy, N. N. (1989). The maximal expected covering location problem: revisited. Transportation Science, 23, 277–287.

    Google Scholar 

  • Beasley, J. E. (2002). Population heuristics. In P. M. Pardalos & M. G. C. Resende (Eds.), Handbook of applied optimization (pp. 138–157). Oxford: University Press.

    Google Scholar 

  • Brandeau, M., & Larson, R. C. (1986). Extending and applying the hypercube queueing model to deploy ambulances in Boston. In A. J. Swersey & E. J. Ingnall (Eds.), TIMS studies in the management science : Vol. 22. Delivery of urban services (pp. 121–153). Amsterdam: Elsevier.

    Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational research, 147, 451–463.

    Article  Google Scholar 

  • Burwell, T. H., Jarvis, J. P., & Mcknew, M. A. (1993). Modeling co-located servers and dispatch ties in the hypercube model. Computers & Operations Research, 20(2), 113–119.

    Article  Google Scholar 

  • Chelst, K., & Barlach, Z. (1981). Multiple unit dispatches in emergency services: models to estimate system performance. Management Science, 27(12), 1390–1409.

    Google Scholar 

  • Chiyoshi, F., Galvão, R. D., & Morabito, R. (2003). A note on solutions to the maximal expected covering location problem. Computers & Operations Research, 30(1), 87–96.

    Article  Google Scholar 

  • Eaton, D. J., Daskin, M. S., Simmons, D., Bulloch, B., & Jansma, G. (1985). Determining emergency medical service vehicle deployment in Austin, Texas. Interfaces, 15, 96–108.

    Google Scholar 

  • Fujiwara, O., Makjamroen, T., & Gupta, K. K. (1987). Ambulance deployment analysis: a case study of Bangkok. European Journal of Operational Research, 31, 9–18.

    Article  Google Scholar 

  • Galvão, R. D., Chiyoshi, F., & Morabito, R. (2005). Towards unified formulations and extensions of two classical probabilistic location models. Computers & Operations Research, 32, 15–33.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. New York: Addison–Wesley.

    Google Scholar 

  • Goldberg, J., & Paz, L. (1991). Location of emergency vehicle bases when service times depends on call location. Transportation Science, 25, 264–280.

    Google Scholar 

  • Harewood, S. I. (2002). Emergency ambulance deployment in Barbados: a multi-objective approach. Journal of the Operational Research Society, 53, 185–192.

    Article  Google Scholar 

  • Hertz, A., & Kobler, D. (2000). A framework for the description of evolutionary algorithms. European Journal of Operational Research, 126, 1–12.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Cambridge: MIT Press.

    Google Scholar 

  • Iannoni, A., & Morabito, R. (2006). A discrete simulation analysis of a logistics supply system. Transportation Research Part E, 42, 191–210.

    Article  Google Scholar 

  • Iannoni, A. P., & Morabito, R. (2007) A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Transportation Research E, doi:10.1016/j.tre.2006.05.005

  • Jarvis, J. P. (1985). Approximating the equilibrium behavior of multi-server loss systems. Management Science, 31, 235–239.

    Article  Google Scholar 

  • Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial optimization. European Journal of Operational Research, 137, 50–71.

    Article  Google Scholar 

  • Kelton, W. D., Sadowski, R. P., & Sadowski, D. (2002). A simulation with arena (2nd ed.) New York: McGraw–Hill.

    Google Scholar 

  • Larson, R. C. (1974). Hypercube queueing model for facility location and redistricting in urban emergency services. Computers & Operations Research, 1, 67–95.

    Article  Google Scholar 

  • Larson, R. C. (1975). Approximating the performance of urban emergency service systems. Operations Research, 23, 845–868.

    Google Scholar 

  • Larson, R. C. (2004). OR models for homeland security. OR/MS Today, 31, 22–29.

    Google Scholar 

  • Larson, R. C., & Odoni, A. R. (1981). Urban operations research. New Jersey: Prentice Hall.

    Google Scholar 

  • Mendonça, F. C., & Morabito, R. (2001). Analyzing emergency service ambulance deployment on a Brazilian highway using the hypercube model. Journal of the Operation Research Society, 52, 261–268.

    Article  Google Scholar 

  • Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd ed.) Berlin: Springer.

    Google Scholar 

  • Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: a review. European Journal of Operational Research, 111, 423–447.

    Article  Google Scholar 

  • Pegden, C. D., Shannon, R. E., & Sadowski, R. P. (1995). Introduction to simulation using SIMAN (2nd ed.) New York: McGraw–Hill.

    Google Scholar 

  • Rajagopalan, H. K., Saydam, C., & Xiao, J. (2006, to appear) A multiperiod set covering location model for a dynamic redeployment of ambulances. Computers & Operations Research.

  • Sacks, S. R., & Grief, S. (1994) Orlando Police Department uses OR/MS methodology, new software to design patrol districts. OR/MS Today, Baltimore, 30–32.

  • Saydam, C., & Aytug, H. (2003). Accurate estimation of expected coverage: revisited. Socio-Economic Planning Sciences, 37, 69–80.

    Article  Google Scholar 

  • Swersey, A. J. (1994). Handbooks in OR/MS (Vol. 6, pp. 151–200). Amsterdam: Elsevier.

    Google Scholar 

  • Takeda, R. A., Widmer, J. A., & Morabito, R. (2007). Analysis of ambulance decentralization in an urban medical emergency service using the hypercube queueing model. Computers & Operations Research, 34(3), 727–741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Morabito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iannoni, A.P., Morabito, R. & Saydam, C. A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways. Ann Oper Res 157, 207–224 (2008). https://doi.org/10.1007/s10479-007-0195-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-007-0195-z

Keywords

Navigation