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Abstract This paper is concerned with the coordination of inventory control in three-
echelon serial and distribution systems under decentralized control. All installations in these
supply chains track echelon inventories. Under decentralized control the installations will
decide upon base stock levels that minimize their own inventory costs. In general these lev-
els do not coincide with the optimal base stock levels in the global optimum of the chain
under centralized control. Hence, the total cost under decentralized control is larger than
under centralized control.

To remove this cost inefficiency, two simple coordination mechanisms are presented:
one for serial systems and one for distribution systems. Both mechanisms are initiated by
the most downstream installation(s). The upstream installation increases its base stock level
while the downstream installation compensates the upstream one for the increase of costs
and provides it with a part of its gain from coordination. It is shown that both coordination
mechanisms result in the global optimum of the chain being the unique Nash equilibrium of
the corresponding strategic game. Furthermore, all installations agree upon the use of these
mechanisms because they result in lower costs per installation. The practical implementation
of these mechanisms is discussed.

Keywords Supply chain · Inventory control · Strategic game · Nash equilibrium ·
Multi-echelon system · Coordination mechanism

1 Introduction

This paper is concerned with the coordination of inventory control in three-echelon serial
and distribution systems under decentralized control. All installations in these supply chains
track echelon inventories. Under decentralized control an installation will decide upon a
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base stock level that minimizes its individual inventory cost. Hence, the system consists of
selfish installations and it is therefore not surprising that in general their decisions are not
optimal from the perspective of the supply chain as a whole. That is, the total cost of the
system under decentralized control is larger than in the supply chain optimum.

To improve upon this cost inefficiency asks for some coordination between the installa-
tions. While maintaining decentralized decision-making, the goal of a coordination mecha-
nism is to change the structure of the installations’ costs such that the individual decisions of
the installations are optimal for the system as a whole, that is, they coincide with the optimal
decisions under centralized control. In this paper game theory is used to show that our co-
ordination mechanism indeed achieves this goal. Furthermore, the coordination mechanism
should make each installation better off, that is, it should result in lower cost. Applying
such a mechanism results in the total cost of the system being as low as possible. All firms
should agree upon the use of a certain coordination mechanism; this can be achieved by
negotiations between the installations.

The basic systems under consideration, three-echelon serial and distribution systems, are
widely studied in the literature. The concept of echelon stock was introduced in Clark and
Scarf (1960). They showed the value of echelon stock for integrated control of serial systems
compared to local stock, as well as the optimality of inventory control by means of echelon
base stock levels. Langenhoff and Zijm (1990) study multi-echelon production/distribution
systems under centralized control. In case of a distribution system, the depot is allowed
to keep stock. They derive optimal base stock policies for serial and distribution systems.
A distribution system with a stockless depot (supplier) is considered in Eppen and Schrage
(1981). For a review on multi-stage serial systems we refer to Van Houtum et al. (1996).

In case of both serial and distribution systems, the literature recognizes that decentralized
control leads to larger total costs. Several papers study coordination mechanisms, mostly for
distribution systems. A two-echelon serial supply chain is investigated by Cachon and Zip-
kin (1999). In that paper each installation may incur a consumer backorder penalty cost
because the upper stage (supplier) is assumed to dislike backorders of his product at the
retailer. Two noncooperative games are considered, based on whether local or echelon in-
ventory is tracked. These games nearly always have a unique Nash equilibrium which differs
from the global optimum. Under specific conditions the global optimum can be achieved,
if local inventory is tracked, as a (possibly non-unique) Nash equilibrium by using a linear
transfer payment.

Lee and Whang (1999) study a two-echelon serial supply chain under decentralized con-
trol where each party minimizes its discounted costs. They assume that all installations be-
long to a single organization. Under a so-called performance measurement scheme, which is
based on three basic properties, the installations minimize their discounted costs by selecting
the global optimal outcome. Our coordination mechanism, which is described below, also
results in the installations choosing the global optimum but its starting points are different.
First, in our model the installations minimize average costs and second, our mechanism is
built on negotiations between the parties in combination with money transfers to share costs
and gains. Besides, we show that each installation is better off with the mechanism than
without it, which provides a sufficient basis for the mechanism to be accepted by all parties.

A distribution system with one supplier and N retailers is studied in Cachon (2001).
All firms pay inventory and backorder cost; the backorder cost for the supplier reflects the
supplier’s interest in the availability of his product at the retailers, as in Cachon and Zipkin
(1999). A retailer continuously monitors his inventory and uses an (r, q) ordering policy for
replenishment: whenever his inventory position drops to r he places an order for q units.
Demand for the product is Poisson distributed. The supplier serves the retailers on a first-
come-first-serve basis. It is shown that the competitive solution need not coincide with the
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global optimum. Three cooperation strategies are discussed, of which two lead to the global
optimum being a Nash equilibrium.

The model of Cachon and Zipkin (1999) is extended by Wang et al. (2004) to a distribu-
tion system with 1 supplier and n different retailers, each with its own lead time and holding
cost. After studying the system under decentralized control, coordination mechanisms are
examined. In case the firms track echelon inventories, a contract is presented in which the
retailers pay a nonlinear tariff (a nonlinear function of the base stock level) to the supplier.
This contract ensures that the system optimal solution is the unique Nash equilibrium of the
game. Nevertheless, nonlinear tariffs are not easy to implement.

Other models of coordination of inventories in serial or distribution systems include
Axsäter and Zhang (1999), Chen et al. (2001), Gjerdrum et al. (2002), Güllü et al. (2003),
Özer (2003), Taylor (2002), and Viswanathan and Piplani (2001).

In this paper we present simple coordination mechanisms for three-echelon serial and dis-
tribution systems under the (natural) assumption that installations only communicate with
their direct neighbors upstream and downstream in the supply chain. Further, all order de-
cisions are based upon echelon inventory. As argued below, the coordination is such that
the supplier (the installation upstream) increases his base stock level while the retailer (the
installation downstream) compensates the supplier for the increase of costs. Besides, the
retailer transfers a part of his gain from the coordination, his cost savings less the compen-
sation paid, to the supplier. Both the mechanisms for serial and distribution systems result
in the installations choosing the global optimal base stock levels. This choice of base stock
levels is the unique Nash equilibrium of the corresponding strategic game played by the in-
stallations. Further, all agree upon the use of these mechanisms because they result in lower
costs per installation. These results also hold for systems with more than three echelons.

Most authors in the literature study two-echelon systems because their qualitative results
remain valid for multi-echelon systems. One of the exceptions is Giannoccaro and Pontran-
dolfo (2004), who study revenue-sharing contracts for three-echelon serial systems. These
contracts are non-straightforward extensions of the contracts for two-echelon systems since
the contracts have to be extended from a single two-firm contract to two two-firm contracts
whose parameters are mutually dependent. In this paper we study three-echelon systems
under decentralized control since our game-theoretic analysis also does not allow for a
straightforward generalization of the results from two-echelon systems to three-echelon sys-
tems. This is due to the negotiation process in use: for two-echelon systems a single round
of negotiations will do, while for three-echelon systems more rounds of negotiations are
needed. This follows from the natural assumption that installations only communicate with
their direct neighbors in the system and therefore the order of the negotiations matters.

Further, most coordination mechanisms in the literature are such that due to actions taken
by the supplier (the installation upstream) the retailer (the installation downstream) is in-
duced to adopt the globally optimal base stock level. Opposed to this, we show in Sect. 3
that decentralized control is most unfavorable for the retailer with regard to costs. Hence,
using arguments from game theory, the retailer will initiate negotiations with the supplier
with the goal of achieving a reduction in his costs. In the end the negotiations result in each
installation selecting his globally optimal base stock level and in cost savings for all.

The outline of this paper is as follows. In the next section we briefly recall results of serial
systems under centralized control. In Sect. 3 serial systems under decentralized control are
studied. A coordination mechanism for these systems and its practical implementation are
presented in Sect. 4. Distribution systems under decentralized control are analysed in Sect. 5,
and a coordination mechanism for these systems, as well as its implementation, is presented
in Sect. 6. Section 7 concludes.
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2 Three-echelon serial systems under centralized control

We start by studying inventory control for a single good in a three-echelon serial system.
Such a system is a supply chain consisting of three installations in a series. The installa-
tions are numbered from 1, the most downstream installation, to 3. An echelon is a set of
installations, starting from a certain installation and including all installations downstream.
Echelons are numbered according to their most upstream installation. Hence, in the serial
system under consideration, echelon i includes the installations i down to 1.

Demand for the good occurs only at the most downstream installation, installation 1. The
distribution function of the l-period cumulative demand ul is denoted by Fl . If l = 1 we
write F instead of F1. Let μ denote the expected demand per period.

The installations determine the quantity of the orders for replenishment of their stock on
the basis of their echelon inventory position. The echelon stock of an installation consists of
all stock at that installation plus all stock in transit to or on hand at any installation down-
stream minus eventual backlogs at installation 1. The echelon inventory position denotes
the echelon stock plus materials that are already ordered but not yet delivered at the most
upstream installation in the echelon.

All installations place their orders for replenishment of stock at the end of a period.
A material shortage at installation 2 or 3 is possible, leading to incomplete fulfillment of
the orders of installation 1 or 2. Any excess demand is backlogged. The ordered goods
are delivered after a fixed lead time. Namely, it takes l3 periods to transfer materials from
the outside supplier, who can always deliver, to installation 3, and li periods are needed to
transfer materials from installation i + 1 to installation i, i = 1,2.

The holding costs for installation i are hi + · · · + h3 for goods at installation i and, if
i > 1, for goods in transfer to installation i − 1. Installation 1 pays a penalty cost p for
unfilled demand. All these costs are linear in time and quantity and occur at the end of a
period.

In Langenhoff and Zijm (1990) a natural definition for the echelon cost functions of all
installations is developed. We briefly repeat this. Let xi denote the echelon stock associated
with installation i at the beginning of a period before demand occurs. Assign the following
one-period holding and penalty cost to installation 1:

L1(x1) = h1

∫ ∞

0
(x1 − u)dF(u) + (p + h1 + h2 + h3)

∫ ∞

x1

(u − x1)dF(u).

Further, assign

Lj(xj ) = hj

∫ ∞

0
(xj − u)dF(u)

to installation j , j = 2,3.
Let DN(y1, . . . , yN) denote the average total cost of an N-echelon serial system if at

the beginning of every period the echelon inventory position of echelon i is increased by
installation i to yi , where y1 ≤ y2 ≤ · · · ≤ yN . As shown by Langenhoff and Zijm (1990) the
cost DN is composed of N terms

DN(y1, . . . , yN) = C1(y1) + C2(y1, y2) + · · · + CN(y1, . . . , yN)

where

C1(y1) =
∫ ∞

0
L1(y1 − ul1)dFl1(ul1)
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and

Cj(y1, . . . , yj )

=
∫ ∞

0
Lj(yj − ulj )dFlj (ulj )

+
∫ ∞

yj −yj−1

[Cj−1(y1, . . . , yj−2, yj − ulj ) − Cj−1(y1, . . . , yj−2, yj−1)]dFlj (ulj )

for j = 2, . . . ,N . In the expression for Cj the second integral represents a penalty cost for
installation j if it cannot fulfill the order of installation j − 1, that is, if yj − ulj < yj−1. In
the next Lemma we show how the cost Di depends on Di−1.

Lemma 2.1 The average cost of an N -echelon serial system, N = 1,2,3, can be written as

D1(y1) = h1(y1 − (l1 + 1)μ) + (p + h1 + h2 + h3)

∫ ∞

y1

(ul1+1 − y1)dFl1+1(ul1+1),

D2(y1, y2) = D1(y1) + h2(y2 − (l2 + 1)μ) +
∫ ∞

y2−y1

[D1(y2 − ul2) − D1(y1)]dFl2(ul2),

and

D3(y1, y2, y3) = D2(y1, y2) + h3(y3 − (l3 + 1)μ)

+
∫ ∞

y3−y2

[D2(y1, y3 − ul3) − D2(y1, y2)]dFl3(ul3).

All proofs can be found in Sect. 8. This Lemma shows that the cost Di of echelon i > 1
consist of the cost of echelon i − 1 plus additional holding cost and a kind of penalty in case
of a shortage, yi −uli < yi−1. In Langenhoff and Zijm (1990) the minimum of D3(y1, y2, y3)

is found, which is repeated in the Lemma below.

Lemma 2.2 (Langenhoff and Zijm 1990) The cost function D3(y1, y2, y3) is minimized in
(y1, y2, y3) = (S1, S2, S3) where S1 minimizes D1(y1), S2 minimizes D2(S1, y2) and S3 min-
imizes D3(S1, S2, y3).

To implement this optimal solution, centralized control is needed. But in practice, there is no
centralized but decentralized control. Each installation acts on his own and independently
decides about his base stock level yi , which will be used in every period. This decision af-
fects the costs of the other installations. A noncooperative strategic game (see Osborne and
Rubinstein 1994) is a suitable tool for modeling and analysing such a situation since it can
handle the strategic effects of the decisions on the costs of the other firms. In a strategic
game each installation, or player, has to make one decision. These decisions are made inde-
pendently and simultaneously. Further, a strategic game is described by a set of players and
for each player a strategy set and a cost function. Here, the three installations are the players.
The strategy set Yi of player i is defined as the set of all possible echelon base stock levels.
A triple of strategies (y1, y2, y3) is also referred to as a strategy profile. The cost function
Hi of player i is defined on all strategy profiles and will be specified further on. Each player
will choose the base stock level that minimizes his cost.
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Special interest goes to equilibria, or stable outcomes, of the game. Let

r1(y2, y3) = {y1 ∈ Y1|H1(y1, y2, y3) ≤ H1(y
′
1, y2, y3) for all y ′

1 ∈ Y1}
be the set of best base stock levels for installation 1 given the levels y2 and y3 of the other
installations. The function r1 is called a best reply function of installation 1. The best reply
function r2(y1, y3) of installation 2 and r3(y1, y2) of installation 3 are defined similarly. Now
if a strategy profile (ȳ1, ȳ2, ȳ3) satisfies

ȳ1 ∈ r1(ȳ2, ȳ3), ȳ2 ∈ r2(ȳ1, ȳ3), ȳ3 ∈ r3(ȳ1, ȳ2)

then it is a Nash equilibrium.

3 Three-echelon serial systems under decentralized control

In this Section we assume that the three installations act on their own, that is, we are deal-
ing with a three-echelon serial system under decentralized control. If yi denotes the base
stock level of installation i then the real order-up-to level as experienced by installation 3
is also y3, because he will never suffer from deficits. If y2 > y3 − ul3 then installation 2 is
confronted with a shortage at installation 3 and his new base stock level is y3 − ul3 instead
of y2. Therefore he experiences the order-up-to level w2 = min(y3 − ul3 , y2) and similarly
installation 1 experiences w1 = min(w2 − ul2 , y1). These real order-up-to levels are useful
in simplifying the expression for the average cost of the system. For this, let E denote the
expectation with regard to the random demand and let wi indicate that wi is a function of
this random demand.

Lemma 3.1 The average cost of a three-echelon serial system is equal to

D3(y1, y2, y3) = h3(y3 − (l3 + 1)μ) + ED2(y1,w2),

where

D2(y1,w2) = h2(w2 − (l2 + 1)μ) + ED1(w1)

and

D1(w1) = h1(w1 − (l1 + 1)μ) + (p + h1 + h2 + h3)

∫ ∞

w1

(ul1+1 − w1)dFl1+1(ul1+1).

The above expression for the average cost D3(y1, y2, y3) of the system was obtained from
the assignment of certain one-period costs to the echelons. These costs are not the real one-
period costs of the echelons. The true one-period cost for installation 1 consists of holding
cost h1 + h2 + h3 if there are goods in stock and penalty cost p otherwise,

L̃1(x1) = (h1 + h2 + h3)

∫ x1

0
(x1 − u)dF(u) + p

∫ ∞

x1

(u − x1)dF(u).

This implies the expected true average cost

D̃1(y1) =
∫ ∞

0
L̃1(y1 − ul1)dFl1(ul1) = D1(y1) + (h2 + h3)(y1 − (l1 + 1)μ) (1)
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for the one-echelon system with base stock level y1. Since the real order-up-to level for in-
stallation 1 in a three-echelon system is not y1 but w1, the expected cost for this installation,
H̃1(y1, y2, y3), is H̃1(y1, y2, y3) = ED̃1(w1). The true expected cost H̃2 for installation 2
consists of inventory cost for goods in transit to 1 and inventory cost, if any, for goods that
remain after fulfilling the order of echelon 1,

H̃2(y1, y2, y3) = (h2 + h3)l1μ + (h2 + h3)E

∫ ∞

0
max(w2 − ul2 − y1,0)dFl2(ul2).

The true cost H̃3 for installation 3 are defined similarly as for 2. Let ŵi = Ewi denote
the expected order-up-to level of installation i. Rewriting the cost functions results in the
following expressions.

Lemma 3.2 The expected true costs for the three installations are equal to

H̃1(y1, y2, y3) = ED1(w1) + (h2 + h3)(ŵ1 − (l1 + 1)μ),

H̃2(y1, y2, y3) = (h2 + h3)l1μ + (h2 + h3)(ŵ2 − l2μ − ŵ1),

and

H̃3(y1, y2, y3) = h3l2μ + h3(y3 − l3μ − ŵ2).

These cost functions distribute the total cost D3 of the system among the installations.

Lemma 3.3
∑3

i=1 H̃i(y1, y2, y3) = D3(y1, y2, y3)

In the strategic game with cost functions H̃i each installation will choose a base stock
level that minimizes its cost. Recall that the base stock levels satisfy y3 ≥ y2 ≥ y1 since all

firms track echelon inventories. Therefore, installation 3 minimizes its cost H̃3 in y3 = y2.
Similarly, installation 2 will set y2 = y1. Hence, neither of these installations will keep
any extra stock. Knowing this, installation 1 will minimize its cost H̃1 in y1 = S̃1 where
S̃1 > S1. Therefore, the Nash equilibrium of the game under decentralized control equals
(y1, y2, y3) = (S̃1, S̃1, S̃1). This implies that installation 1 is confronted with large costs be-
cause it is very likely that there are material shortages at either installation 2 or 3. Because
of this most unfavorable outcome installation 1 would like the installations 2 and 3 to set
yj > y1, j = 2,3, such that the probability of a material shortage decreases and conse-
quently the costs of 1 decrease. But yj > y1 increases the inventory cost of installation j .
Thus installation j is only willing to increase yj to a level above y1 if he is compensated
for his extra costs. In the next Section we study a proposal initiated by installation 1 for
compensation of the installations 2 and 3. This proposal coordinates the serial chain.

4 Coordination mechanism for serial systems

In practice it does not seem likely that the installations 1 and 3 communicate directly since
installation 2 is in between. Naturally, the installations only talk with their neighbors in the
serial system. Figure 1 shows this situation, where the arrows indicate the communication
possibilities. Assume that the installations communicate in this way.
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Fig. 1 Serial communication
between the three installations

Under decentralized control the installations in a three-echelon serial system will choose
base stock levels (y1, y2, y3) = (S̃1, S̃1, S̃1), as argued in the previous section. In that situa-
tion installation 1 has a large base stock level and is therefore confronted with large costs.
To be able to lower his base stock level, and consequently his cost, this installation initiates
negotiations with installation 2 with the goal of achieving lower costs by means of coordi-
nation of actions.

4.1 Coordination between the installations 1 and 2

The following coordination mechanism is proposed. Installation 1 asks installation 2 to keep
some stock, that is, to set y2 such that y2 > y1. This increases the cost of installation 2 be-
cause now he also has to pay for the inventory cost of his extra stock. Installation 1 offers
the following compensation. First, installation 2 is fully compensated for his increase in
inventory cost. This implies that installation 2 has no additional cost compared to the situ-
ation before negotiation, but also no additional gain. Second, to persuade installation 2 to
accept this offer, he also receives a part of the so-called surplus of 1, which is its cost sav-
ings less the compensation paid to installation 2. This is the gain of installation 2 from this
negotiation.

If installation 2 sets y2 > y1 then his cost increases by H̃2(y1, y2, y3) − H̃2(S̃1, S̃1, S̃1)

whereas the cost of 1 decreases by H̃1(S̃1, S̃1, S̃1) − H̃1(y1, y2, y3). Installation 1 fully com-
pensates installation 2 for his cost increase. After this, the cost savings of 1 are reduced
to

H̃1(S̃1, S̃1, S̃1) − H̃1(y1, y2, y3) − (H̃2(y1, y2, y3) − H̃2(S̃1, S̃1, S̃1))

= D3(S̃1, S̃1, S̃1) − H̃3(S̃1, S̃1, S̃1) − (D3(y1, y2, y3) − H̃3(y1, y2, y3)),

where the equality follows from Lemma 3.3. Call this value the surplus of installation 1,
or surplus-1 in short. Installation 1 will give installation 2 a fraction α, 0 < α < 1, of this
surplus. Notice that the bounds for α are strict since installation 1 likes to keep a part of
his surplus for himself while installation 2 wants to receive something extra next to being
compensated for his cost increase.

Let H ′
i denote the cost of installation i, i = 1,2, after the compensation. Then

H ′
1(y1, y2, y3)

= H̃1(y1, y2, y3) + (H̃2(y1, y2, y3) − H̃2(S̃1, S̃1, S̃1))

+ α(D3(S̃1, S̃1, S̃1) − H̃3(S̃1, S̃1, S̃1) − (D3(y1, y2, y3) − H̃3(y1, y2, y3)))

= (1 − α)(D3(y1, y2, y3) − H̃3(y1, y2, y3))

+ α(D3(S̃1, S̃1, S̃1) − H̃3(S̃1, S̃1, S̃1)) − H̃2(S̃1, S̃1, S̃1)

and

H ′
2(y1, y2, y3)

= H̃2(y1, y2, y3) − (H̃2(y1, y2, y3) − H̃2(S̃1, S̃1, S̃1))
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− α(D3(S̃1, S̃1, S̃1) − H̃3(S̃1, S̃1, S̃1) − (D3(y1, y2, y3) − H̃3(y1, y2, y3)))

= α(D3(y1, y2, y3) − H̃3(y1, y2, y3))

− α(D3(S̃1, S̃1, S̃1) − H̃3(S̃1, S̃1, S̃1)) + H̃2(S̃1, S̃1, S̃1).

Notice that the new cost functions are a rearrangement of the former ones,

H ′
1(y1, y2, y3) + H ′

2(y1, y2, y3) = H̃1(y1, y2, y3) + H̃2(y1, y2, y3). (2)

During these negotiations the base stock level of installation 3 remains unchanged, namely
y3 = y2. This equality says that installation 3 keeps no stock and only has to pay the inven-
tory cost of goods in transit to installation 2. This cost H̃3(y1, y2, y2) = h3l2μ is independent
from y1 and y2. Therefore, minimizing both H ′

1 and H ′
2 under y3 = y2 is equivalent to mini-

mizing D3(y1, y2, y2). This minimization has a remarkable outcome.

Theorem 4.1 The cost function D3(y1, y2, y2) is minimized in y1 = S1, the optimal base
stock level of installation 1 under centralized control, and y2 = S̃2 > S2.

Hence, installation 1 minimizes his new cost function by setting his base stock level equal to
his optimal level under centralized control. Installation 2 picks a base stock level larger than
his optimal level under centralized control. Both parties will agree on this outcome only if it
results in decreased individual costs.

Theorem 4.2 In the minimum (y1, y2, y3) = (S1, S̃2, S̃2), surplus-1 equals D3(S̃1, S̃1, S̃1) −
D3(S1, S̃2, S̃2) > 0. The installations 1 and 2 are better off under coordination because
H ′

i (S1, S̃2, S̃2) < H̃i(S̃1, S̃1, S̃1), i = 1,2.

Thus, the coordination results in lower costs for the installations 1 and 2. Both are better off
and agree to use this coordination mechanism.

4.2 Coordination between the installations 2 and 3

The negotiation between the installations 1 and 2 ends in the base stock levels (S1, S̃2, S̃2).
The levels of the installations 2 and 3 are equal, because 3 still does not keep stock and
consequently, 2 is confronted with large costs. He would like installation 3 to keep some
stock, that is y3 > y2, so as to decrease his own costs. In exchange, installation 2 offers him
a compensation for his increase in cost plus a part of the so-called surplus-2. All along, the
base stock level of installation 1 remains S1, the result of the previous coordination.

Although installation 2 negotiates with installation 3, the negotiations do not only affect
installation 2 but also installation 1. Any resulting cost savings for installation 2 result in
lower compensations to be paid by installation 1. In other words, the negotiations lead to cost
savings for echelon 2. Knowing this, installation 1 will have no problems with installation 2
negotiating with installation 3 on behalf of echelon 2. And that is exactly what will happen.

One part of the compensation is surplus-2, which is the remainder of the cost savings of
echelon 2 after compensating installation 3 for his increased costs:

Surplus-2 = H ′
1(S1, S̃2, S̃2) + H ′

2(S1, S̃2, S̃2) − (H ′
1(S1, y2, y3) + H ′

2(S1, y2, y3))

− (H̃3(S1, y2, y3) − H̃3(S1, S̃2, S̃2))

= D3(S1, S̃2, S̃2) − D3(S1, y2, y3).
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Installation 3 receives a fraction β , 0 < β < 1, of this surplus. This should persuade him to
accept the deal with installation 2 because it results in costs that are lower than before the
negotiation.

Let Hi denote the cost of installation i after the compensation. Then

(H1 + H2)(S1, y2, y3)

= H ′
1(S1, y2, y3) + H ′

2(S1, y2, y3) + (H̃3(S1, y2, y3) − H̃3(S1, S̃2, S̃2))

+ β(D3(S1, S̃2, S̃2) − D3(S1, y2, y3))

= (1 − β)D3(S1, y2, y3) − H̃3(S1, S̃2, S̃2) + βD3(S1, S̃2, S̃2)

and

H3(S1, y2, y3)

= H̃3(S1, y2, y3) − (H̃3(S1, y2, y3) − H̃3(S1, S̃2, S̃2))

− β(D3(S1, S̃2, S̃2) − D3(S1, y2, y3))

= βD3(S1, y2, y3) + H̃3(S1, S̃2, S̃2) − βD3(S1, S̃2, S̃2).

One sees from these expressions that minimizing both cost functions boils down to mini-
mizing D3(S1, y2, y3).

Theorem 4.3 The cost function D3(S1, y2, y3) is minimized in y2 = S2 and y3 = S3. There-
fore, the base stock levels become (S1, y2, y3) = (S1, S2, S3), the global optimum. In this
minimum, surplus-2 equals D3(S1, S̃2, S̃2) − D3(S1, S2, S3) > 0. The installations 1 and 2
and installation 3 are better off than before coordination because (H1 + H2)(S1, S2, S3) <

(H ′
1 + H ′

2)(S1, S̃2, S̃2) and H3(S1, S2, S3) < H̃3(S1, S̃2, S̃2).

The coordination mechanism proposed in the negotiations result in each installation choos-
ing its optimal base stock level as under centralized control. Hence, this mechanism ensures
that the optimal individual decisions of the selfish installations are also optimal for the entire
serial system.

The cost (H1 + H2)(S1, S2, S3) of echelon 2 has to be divided among the installations
1 and 2. Recall that this cost consists of the individual costs H ′

i (S1, S2, S3) of installation
i = 1,2 and the compensation paid to installation 3, (H̃3(S1, S2, S3) − H̃3(S1, S̃2, S̃2)) +
β(D3(S1, S̃2, S̃2)−D3(S1, S2, S3)). Naturally, each installation pays its own individual cost.
Further, since installation 2 negotiates directly with installation 3 due to serial commu-
nication, he should pay the compensation to 3. This cost division may seem unfavor-
able for installation 2 and resulting in large costs because he has to pay something ex-
tra besides his own cost, but that need not be true. The change in base stock levels from
(S1, S̃2, S̃2) to (S1, S2, S3) results in an increase of surplus-1 of (H ′

1 + H ′
2)(S1, S̃2, S̃2) −

(H ′
1 + H ′

2)(S1, S2, S3). Due to this increase, installation 2 receives an extra amount of
α((H ′

1 + H ′
2)(S1, S̃2, S̃2) − (H ′

1 + H ′
2)(S1, S2, S3)) from installation 1. This covers the com-

pensation installation 2 has to pay to installation 3 if α satisfies

α >
H̃3(S1, S2, S3) − H̃3(S1, S̃2, S̃2) + β(D3(S1, S̃2, S̃2) − D3(S1, S2, S3))

(H ′
1 + H ′

2)(S1, S̃2, S̃2) − (H ′
1 + H ′

2)(S1, S2, S3)
=: α.

The fraction α should be larger than some lower bound α, the compensation paid to instal-
lation 3 divided by the increase of surplus-1. Notice that α < 1.
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Lemma 4.4 The cost division results in a cost reduction for installation 1, H ′
1(S1, S2, S3) <

H ′
1(S1, S̃2, S̃2). Installation 2 saves cost, H ′

2(S1, S2, S3) + compensation to 3 < H ′
2(S1,

S̃2, S̃2), if α > α.

We conclude that both installations save cost if α is large enough. The overall result of the
negotiations is summarized in the Theorem below.

Theorem 4.5 Consider the strategic game played by the installations, where the cost func-
tions of the installations 1, 2 and 3 are H ′

1, H ′
2 and H3 due to the coordination mechanism.

If installation 2 pays the compensation to installation 3 and if α > α then the strategy profile
(y1, y2, y3) = (S1, S2, S3) is the unique Nash equilibrium in this game.

This result shows that under the right incentives the selfish installations take decisions that
are also optimal for the entire serial system. Besides all installations accept the incentives
because it results in cost savings for each of them.

4.3 Implementation in practice

In this subsection we show how the coordination mechanism can be implemented in practice
in a three-echelon serial system. (This practical implementation is not related to the game-
theoretic notion of implementation theory as in Osborne and Rubinstein (1994).)

Installation 1 starts its coordination with installation 2 by asking him to set y2 > y1 in-
stead of y2 = y1 under individual optimization. Suppose installation 2 does so. He announces
the use of base stock level y2 whereas installation 1 announces the use of y1. Let vt1,t2 denote
the realized cumulative demand over the periods t1, t1 + 1, . . . , t2 − 1, t2.

At the beginning of period t + l3 installation 2 places an order to bring his echelon
inventory position to y2. Due to a possible shortage at his supplier, installation 3, his actual
echelon inventory position is min(y3 − vt,t+l3−1, y2). At the beginning of period t + l3 + l2
his echelon stock becomes min(y3 − vt,t+l3−1, y2)− vt+l3,t+l3+l2−1. Now installation 1 wants
to raise his echelon inventory position to y1. This request by installation 1 can only be
fulfilled by installation 2 if the amount requested is smaller than his stock, that is, y1 ≤
min(y3 − vt,t+l3−1, y2) − vt+l3,t+l3+l2−1.

These changes in inventory position influence the costs of both players as follows. First,
due to his larger base stock level y2 installation 2 may be faced with unsold goods for which
he has to pay additional inventory costs at the end of period t + l3 + l2 + l1, namely

(h2 + h3)max(min(y3 − vt,t+l3−1, y2) − vt+l3,t+l3+l2−1 − y1,0).

This extra cost will be refunded by installation 1. Its expected value is H̃2(y1, y2, y3) −
H̃2(S̃1, S̃1, S̃1) and leads to the modified costs H̃1(y1, y2, y3) + (H̃2(y1, y2, y3) −
H̃2(S̃1, S̃1, S̃1)) for installation 1 and H̃2(S̃1, S̃1, S̃1) for installation 2. Notice that instal-
lation 2 is indifferent between being refunded and staying in the initial situation.

The second part of the compensation paid by installation 1 to installation 2 is a fraction
of the actual surplus of installation 1. This actual surplus is the difference between the actual
cost savings of installation 1 and the cost increase compensated to installation 2. Initially,
installation 1 uses base stock level y1 = S̃1. He can calculate this level because it minimizes
his cost function, S̃1 = arg miny1 H̃1(y1, y1, y1). At the end of period t + l3 + l2 + l1 the actual
inventory position of installation 1 is

IP1 = min(min(y3 − vt,t+l3−1, y2) − vt+l3,t+l3+l2−1, y1) − vt+l3+l2,t+l3+l2+l1
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while it would have been S̃1 − vt,t+l3+l2+l1 in the initial situation. Both these inventory posi-
tions can be measured by keeping track of demand in the past l3 + l2 + l1 + 1 periods. The
actual inventory cost of installation 1 at the end of period t + l3 + l2 + l1 is

(h1 + h2 + h3)max(IP1,0) + p max(−IP1,0)

while they are

(h1 + h2 + h3)max(S̃1 − vt,t+l3+l2+l1+1,0) + p max(vt,t+l3+l2+l1+1 − S̃1,0)

in the initial situation.
The transfer paid by installation 1 to installation 2 in this period is a fraction α of the

actual cost savings of installation 1 minus the compensation for installation 2

(h1 + h2 + h3)max(S̃1 − vt,t+l3+l2+l1+1,0) + p max(vt,t+l3+l2+l1+1 − S̃1,0)

− ((h1 + h2 + h3)max(IP1,0) + p max(−IP1,0))

− (h2 + h3)max(min(y3 − vt,t+l3−1, y2) − vt+l3,t+l3+l2−1 − y1,0).

Installation 3’s policy remains y3 = y2 and therefore the expected transfer T (y1, y2, y2) is

T (y1, y2, y2) = α[H̃1(S̃1, S̃1, S̃1) − H̃1(y1, y2, y2) − (H̃2(y1, y2, y2) − H̃2(S̃1, S̃1, S̃1))]
= α[D3(S̃1, S̃1, S̃1) − D3(y1, y2, y2)]

where the last equality follows from Lemma 3.3 and H̃3(y1, y2, y2) = H̃3(S̃1, S̃1, S̃1) =
h3l2μ. The payment changes the cost of installation 1 to

H̃1(y1, y2, y3) + (H̃2(y1, y2, y3) − H̃2(S̃1, S̃1, S̃1)) + T (y1, y2, y2) = H ′
1(y1, y2, y2)

and the cost of installation 2 to

H̃2(S̃1, S̃1, S̃1) − T (y1, y2, y2) = H ′
2(y1, y2, y2).

Hence, the optimal choice of base stock levels is (y1, y2, y2) = (S1, S̃2, S̃2) (see Theorem 4.1)
resulting in costs H ′

i (S1, S̃2, S̃2) for installation i. Therefore, the coordination between the
installations 1 and 2 can be implemented in practice by considering actual costs and keeping
track of demands in the past l3 + l2 + l1 + 1 periods.

Among similar lines the coordination between the installations 2 and 3, as described in
Sect. 4.2, can be implemented.

5 Three-echelon distribution systems under decentralized control

A three-echelon distribution system consists of one supplier delivering goods to two local
retailers. These retailers are denoted by the index n, n = 1,2, and the supplier by index 3.
The leadtime for delivery of goods to the supplier is l2 while the leadtime for all retailers is
l1. The distribution function of the random demand u(n) at retailer n is denoted by F (n). The
cumulative demand per period is denoted by u and its expectation is μ.
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The true one-period cost for retailer n consists of holding and penalty costs. If xn is the
echelon stock of retailer n at the beginning of a period then the true cost at the end of that
period are

L̃n(xn) = (h1 + h2)

∫ xn

0
(xn − u(n))dF (n)(u(n)) + p

∫ ∞

xn

(u(n) − xn)dF (n)(u(n)).

Using Cn(yn) = EL̃n(yn − u
(n)
l1

) − h2(yn − (l1 + 1)μ(n)) as in Langenhoff and Zijm (1990),
the expected average cost for retailer n can be written as

D̃n(yn) =
∫ ∞

0
L̃n(yn − u

(n)
l1

)dF
(n)
l1

(u
(n)
l1

) = Cn(yn) + h2(yn − (l1 + 1)μ(n))

(compare this to (1)).
The retailers place their orders for replenishment of stock at the supplier. Under the

balance assumption in Langenhoff and Zijm (1990), the supplier can distribute his echelon
stock y3 −ul2 among the retailers such that both retailers have an equal probability of stock-
out, a so-called equal fractile position by Eppen and Schrage (1981). Denote by zn[y3 −ul2 ]
the amount allocated to retailer n according to this distribution.

The real order-up-to level wn for retailer n depends on the base stock levels yn, n = 1,2,
and the echelon stock y3 −ul2 of the supplier. If the supplier’s stock is large enough then the
requests of the retailers will be fulfilled. Otherwise, we assume that the supplier distributes
his stock among the retailers according to the allocation functions zn. Thus,

wn =
{

yn, y1 + y2 ≤ y3 − ul2 ,

zn[y3 − ul2 ], y1 + y2 > y3 − ul2

(3)

and w1 + w2 = min(y1 + y2, y3 − ul2). Notice that in (3) the allocation function zn is used
if the supplier has a shortage, y3 − ul2 < y1 + y2. In the next section, where a coordination
mechanism for distribution systems is discussed, the allocation function zn is also used if the
supplier has no shortage, y3 − ul2 ≥ y1 + y2, to determine the compensation of each retailer
to the supplier.

The expected true average cost H̃n per period for retailer n is H̃n(y1, y2, y3) = ED̃n(wn).
The expected cost H̃3 per period for the supplier consist of the inventory cost of goods in
transit to the retailers and on stock:

H̃3(y1, y2, y3) = h2l1μ + h2

∫ ∞

0
max(y3 − ul2 − (y1 + y2),0)dFl2(ul2).

The cost functions H̃i divide the total cost D(3)(y1, y2, y3) of the distribution system among

the installations,
∑3

i=1 H̃i(y1, y2, y3) = D(3)(y1, y2, y3). This total cost D(3)(y1, y2, y3)

is minimized in the optimum under centralized control (the so-called global optimum)
(y1, y2, y3) = (S1, S2, S3), as shown in Langenhoff and Zijm (1990). For retailer n the value
Sn also minimizes Cn(yn).

Under decentralized control the supplier will keep its echelon base stock level y3 as low
as possible, namely y3 = y1 + y2. This way, its costs are only H̃3(y1, y2, y1 + y2) = h2l1μ.
This low base stock level implies wn = zn[y1 + y2 − ul2 ] < yn; the retailers always receive
less than they ordered. Their costs are

H̃n(y1, y2, y1 + y2) = ECn(zn[y1 + y2 − ul2 ]) + h2(Ezn[y1 + y2 − ul2 ] − (l1 + 1)μ(n)).



174 Ann Oper Res (2008) 158: 161–182

Minimizing this cost results in yn = S̃n �= Sn. The outcome of the game under decentralized

control is (y1, y2, y3) = (S̃1, S̃2, S̃1 + S̃2), which is unequal to the global optimum.

6 Coordination mechanism for distribution systems

Both retailers are not happy with the outcome under decentralized control, in which the
supplier keeps a minimal base stock level y3 = y1 + y2. The following coordination mech-
anism is proposed. Both retailers ask the supplier to increase his base stock level such that
y3 > y1 + y2. This implies a cost increase for the supplier of size

H̃3(y1, y2, y3) − H̃3(S̃1, S̃2, S̃1 + S̃2) = h2

∫ ∞

0
(y3 − ul2 − (w1 + w2))dFl2(ul2).

This extra cost will be compensated by the retailers. Retailer n will pay the part

h2

∫ ∞

0
(zn[y3 − ul2 ] − wn)dFl2(ul2) = h2E(zn[y3 − ul2 ] − wn).

This is the expected holding cost of the extra amount received by retailer n if the supplier
would always distribute the quantity y3 − ul2 according to the allocation function zn instead
of supplying wn. Due to this compensation the supplier is indifferent between cooperating
with the retailers and working on his own because both result in equal costs.

The surplus of retailer n, his cost savings minus the compensation to the supplier, equals

H̃n(S̃1, S̃2, S̃1 + S̃2) − H̃n(y1, y2, y3) − h2E(zn[y3 − ul2 ] − wn).

To provide the supplier with an incentive to cooperate with the retailers, he receives a frac-
tion γ , 0 < γ < 1, of the surplus of the retailers. Retailer n now faces his own cost, the
compensation to the supplier for the cost increase and the payment of a fraction γ of his
surplus,

Hn(y1, y2, y3)

= H̃n(y1, y2, y3) + h2E(zn[y3 − ul2 ] − wn)

+ γ (H̃n(S̃1, S̃2, S̃1 + S̃2) − H̃n(y1, y2, y3) − h2E(zn[y3 − ul2 ] − wn))

= (1 − γ )(H̃n(y1, y2, y3) + h2E(zn[y3 − ul2 ] − wn)) + γ H̃n(S̃1, S̃2, S̃1 + S̃2).

These costs are minimized if the retailer sets his base stock level equal to his optimal level
under centralized control.

Lemma 6.1 Retailer n minimizes his cost Hn(y1, y2, y3) in yn = Sn.

The cost of the supplier after being compensated by the retailers is

H3(y1, y2, y3)

= H̃3(y1, y2, y3) −
2∑

n=1

h2E(zn[y3 − ul2 ] − wn)
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−
2∑

n=1

γ (H̃n(S̃1, S̃2, S̃1 + S̃2) − H̃n(y1, y2, y3) − h2E(zn[y3 − ul2 ] − wn))

= γD(3)(y1, y2, y3) + H̃3(S̃1, S̃2, S̃1 + S̃2) − γD(3)(S̃1, S̃2, S̃1 + S̃2).

Obviously, if the retailers set yn = Sn then y3 = S3 minimizes the cost of the supplier. This
immediately implies the following result, which is presented without proof.

Theorem 6.2 Consider the strategic game played by the supplier and the retailers, where
firm i, i = 1,2,3, has cost function Hi due to the coordination mechanism. The strategy
profile (y1, y2, y3) = (S1, S2, S3) is the unique Nash equilibrium in this game.

The coordination mechanism results in each firm choosing its global optimal base stock
level. The incentive to use this mechanism is also present, as shown in the Theorem hereafter.

Theorem 6.3 All firms have a lower cost in the Nash equilibrium than in the initial situation,
Hi(S1, S2, S3) < H̃i(S̃1, S̃2, S̃1 + S̃2), i = 1,2,3.

Therefore, also for distribution systems there exists a coordination mechanism that aligns
the incentives of the installations with those of the supply chain. Further, each installation
accepts the use of the coordination mechanism since it results in cost savings.

6.1 Implementation in practice

The practical implementation of the coordination mechanism for a three-echelon distribution
system with a supplier and two retailer goes along the same lines as the one for serial systems
in Sect. 4.3, but there are some differences. These differences are indicated below.

Let v
(n)
t1,t2

denote the realized cumulative demand over the periods t1, . . . , t2 at retailer n

and let vt1,t2 be the total demand at both retailers. The retailers 1 and 2 start their coordination
with the supplier by asking him to set y3 > y1 + y2 instead of y3 = y1 + y2 under individual
optimization. Suppose that at the beginning of period t the supplier decides to return his
echelon inventory position to y3 and at the beginning of period t + l2 retailer n, n = 1,2,

wants to raise his echelon inventory position to yn. Due to the increased base stock level y3

the supplier may be faced with unsold goods for which he has to pay (additional) inventory
costs at the end of period t + l2 + l1, namely h2 max(y3 − vt,t+l2−1 − (y1 +y2),0). This extra
cost will be refunded by the retailers: h2 max(zn[y3 − vt,t+l2−1]− yn,0) is paid by retailer n.

The second part of the compensation paid by the retailers to the supplier is a fraction γ

of the actual surplus of the retailers. This actual surplus is the difference between the actual
cost savings of the retailer and the cost refunded to the supplier:

(h1 + h2)max(S̃n − v
(n)
t,t+l2+l1

,0) + p max(v
(n)
t,t+l2+l1

− S̃n,0)

− ((h1 + h2)max(IPn,0) + p max(−IPn,0))

− h2 max(zn[y3 − vt,t+l2−1] − yn,0),

where

IPn =
{

yn − v
(n)
t+l2,t+l2+l1

, y3 − vt,t+l2−1 ≥ y1 + y2,

zn[y3 − vt,t+l2−1] − v
(n)
t+l2,t+l2+l1

, y3 − vt,t+l2−1 < y1 + y2
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is the actual inventory position of retailer n at the end of period t + l2 + l1. Now the expected
transfer Tn(y1, y2, y3) is

Tn(y1, y2, y3) = γ [H̃n(S̃1, S̃2, S̃1 + S̃2) − H̃n(y1, y2, y3) − h2E(zn[y3 − ul2 ] − wn)],

which changes the costs of the retailers and the suppliers such that firm i ends up with cost
function Hi . Hence, we conclude from Theorem 6.2 that the optimal base stock levels are
yn = Sn and y3 = S3. Therefore, also here the coordination of installations in a distribution
system can be implemented in practice by considering actual costs and keeping track of
demands in the past l2 + l1 + 1 periods at both retailers.

7 Conclusions

In this paper coordination mechanisms for three-echelon serial and distribution systems un-
der decentralized control are studied. Attention is paid to three-echelon systems since our
game-theoretic negotiation process does not allow for an easy generalization from two-
echelon to three-echelon systems. All our results remain valid for N -echelon serial and
distribution systems, where N > 3.

The decentralized control implies that the echelon base stock levels set by the installa-
tions need not be optimal from the perspective of the supply chain as a whole. The selfish
installations act in their own self interest, which conflicts with global interests. Coordina-
tion mechanisms, one for serial and one for distribution systems, are introduced to align the
interests and incentives of the installations. Both mechanisms start from the equilibrium out-
come under decentralized control, which needs improvement since it is not globally optimal.
In this outcome the most downstream firms incur the largest costs and therefore these will
initiate negotiations with their upstream neighbor in the system with the goal of decreasing
their costs.

During the negotiations a coordination mechanism is employed that is based upon two
ideas: first, upstream installations should be fully compensated for cost increases due to
larger base stock levels, and second, they should also receive a part of the surplus of the
downstream installations. The coordination mechanism alters the costs in such a way that
the global optimum is the unique Nash equilibrium of the corresponding strategic game
(under a very mild condition for serial systems). This result is due to the money transfers in
the mechanism, which not only reduce the cost of the upstream installations but also result
in lower costs for all installations. This is an important condition for the acceptance of the
mechanism by all installations.

The coordination mechanism has several nice characteristics. First, the mechanism in-
duces the upstream installation to carry inventory since the extra costs of this inventory will
be reimbursed. Second, the money transfers redistribute the costs among the installations, so
the cost of the system is conservated. Finally, the mechanism is designed for implementation
in systems with multiple independent firms, which are more complex than systems in which
all firms belong to a single organization.

Directions for future research include the extension of these results to distribution sys-
tems with unequal lead time and holding costs for the retailers, and to asymmetric informa-
tion availability in serial and distribution systems.
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8 Proofs

Proof of Lemma 2.1 According to the definition of DN we derive subsequently

D1(y1) =
∫ ∞

0
L1(y1 − ul1)dFl1(ul1)

= h1(y1 − (l1 + 1)μ) + (p + h1 + h2 + h3)

∫ ∞

y1

(ul1+1 − y1)dFl1+1(ul1+1)

for a one-echelon system,

D2(y1, y2) = D1(y1) +
∫ ∞

0
L2(y2 − ul2)dFl2(ul2)

+
∫ ∞

y2−y1

[D1(y2 − ul2) − D1(y1)]dFl2(ul2)

= D1(y1) + h2(y2 − (l2 + 1)μ) +
∫ ∞

y2−y1

[D1(y2 − ul2) − D1(y1)]dFl2(ul2)

for a two-echelon serial system. Finally, notice that for j ≥ 2

Cj−1(y1, . . . , yj−2, yj − ulj ) − Cj−1(y1, . . . , yj−2, yj−1)

= Dj−1(y1, . . . , yj−2, yj − ulj ) − Dj−1(y1, . . . , yj−2, yj−1).

Using this identity, we obtain

D3(y1, y2, y3)

= D2(y1, y2) +
∫ ∞

0
L3(y3 − ul3)dFl3(ul3)

+
∫ ∞

y3−y2

[D2(y1, y3 − ul3) − D2(y1, y2)]dFl3(ul3)

= D2(y1, y2) + h3(y3 − (l3 + 1)μ) +
∫ ∞

y3−y2

[D2(y1, y3 − ul3) − D2(y1, y2)]dFl3(ul3)

for a three-echelon serial system. �

Proof of Lemma 3.1 Start with D3(y1, y2, y3) as formulated in Lemma 2.1:

D3(y1, y2, y3)

= D2(y1, y2) + h3(y3 − (l3 + 1)μ) +
∫ ∞

y3−y2

[D2(y1, y3 − ul3) − D2(y1, y2)]dFl3(ul3)

= h3(y3 − (l3 + 1)μ) +
∫ y3−y2

0
D2(y1, y2)dFl3(ul3) +

∫ ∞

y3−y2

D2(y1, y3 − ul3)dFl3(ul3)

= h3(y3 − (l3 + 1)μ) +
∫ ∞

0
D2(y1,min(y3 − ul3 , y2))dFl3(ul3)

= h3(y3 − (l3 + 1)μ) + ED2(y1,w2).
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Among similar lines we obtain

D2(y1,w2) = D1(y1) + h2(w2 − (l2 + 1)μ) +
∫ ∞

w2−y1

[D1(w2 − ul2) − D1(y1)]dFl2(ul2)

= h2(w2 − (l2 + 1)μ) + ED1(w1),

and D1(w1) follows directly from Lemma 2.1. �

Proof of Lemma 3.2 The true cost for installation 1 is

H̃1(y1, y2, y3) = ED̃1(w1)

= E(D1(w1) + (h2 + h3)(w1 − (l1 + 1)μ))

= ED1(w1) + (h2 + h3)(ŵ1 − (l1 + 1)μ)

where the second equality is due to (1) and ŵ1 = Ew1. The true expected cost for installation
2 is

H̃2(y1, y2, y3)

= (h2 + h3)l1μ + (h2 + h3)E

∫ ∞

0
max(w2 − ul2 − y1,0)dFl2(ul2)

= (h2 + h3)l1μ + (h2 + h3)E

∫ ∞

0
(w2 − ul2 − y1 − min(w2 − ul2 − y1,0))dFl2(ul2)

= (h2 + h3)l1μ + (h2 + h3)E

(
w2 − l2μ − y1 −

∫ ∞

0
(w1 − y1)dFl2(ul2)

)

= (h2 + h3)l1μ + (h2 + h3)(ŵ2 − l2μ − ŵ1),

where the third equality uses min(w2 − ul2 − y1,0) = w1 − y1 which follows directly from
the definition of w1. Similarly one obtains H̃3(y1, y2, y3) = h3l2μ + h3(y3 − l3μ − ŵ2), �

Proof of Lemma 3.3 Adding H̃1 and H̃2 gives

(H̃1 + H̃2)(y1, y2, y3)

= ED1(w1) + (h2 + h3)(ŵ1 − (l1 + 1)μ) + (h2 + h3)l1μ + (h2 + h3)(ŵ2 − l2μ − ŵ1)

= ED1(w1) + (h2 + h3)(ŵ2 − (l2 + 1)μ)

= ED2(y1,w2) + h3(ŵ2 − (l2 + 1)μ). (4)

The first equality is due to Lemma 3.2 and the last one follows from Lemma 3.1. Adding H̃3

results in

(H̃1 + H̃2 + H̃3)(y1, y2, y3)

= ED2(y1,w2) + h3(ŵ2 − (l2 + 1)μ) + h3l2μ + h3(y3 − l3μ − ŵ2)

= ED2(y1,w2) + h3(y3 − (l3 + 1)μ)

= D3(y1, y2, y3).
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Again, Lemma 3.2 and Lemma 3.1 are used. �

Proof of Theorem 4.1 Under y3 = y2 the real order-up-to-level w2 for installation 2 becomes
w′

2 = min(y2 − ul3 , y2) = y2 − ul3 . This level has an expected value of ŵ′
2 = y2 − l3μ.

Substituting this in (4) results in

(H̃1 + H̃2)(y1, y2, y2) = ED2(y1, y2 − ul3) + h3(y2 − (l3 + l2 + 1)μ)

= (h2 + h3)(y2 − (l3 + l2 + 1)μ) + ED1(w1)

where the second equality follows from Lemma 3.1. From the same Lemma, one can see
that this expression for (H̃1 + H̃2)(y1, y2, y2) is equal to the total cost D2(y1, y2) of a two-
echelon serial system in case installation 2 has holding cost h2 + h3 and lead time l2 + l3
(instead of h2 and l2 respectively). Therefore, by Lemma 2.2, the cost (H̃1 + H̃2)(y1, y2, y2)

is minimized in y1 = S1 and y2 = S̃2 > S2. The larger lead time leads to a higher base stock
level for installation 2. �

Proof of Theorem 4.2 In the optimum (S1, S̃2, S̃2), surplus-1 is positive because

D3(S1, S̃2, S̃2) = min
y1,y2

D3(y1, y2, y2) < min
y1

D3(y1, y1, y1) = D3(S̃1, S̃1, S̃1).

Furthermore,

H ′
1(S1, S̃2, S̃2) − H̃1(S̃1, S̃1, S̃1)

= (1 − α)D3(S1, S̃2, S̃2) + αD3(S̃1, S̃1, S̃1) − h3l2μ − H̃2(S̃1, S̃1, S̃1) − H̃1(S̃1, S̃1, S̃1)

= (1 − α)D3(S1, S̃2, S̃2) + αD3(S̃1, S̃1, S̃1) − (H̃1 + H̃2 + H̃3)(S̃1, S̃1, S̃1)

= (1 − α)D3(S1, S̃2, S̃2) − (1 − α)D3(S̃1, S̃1, S̃1)

< 0.

After compensating installation 2, installation 1 is better off than before the coordination
(due to the positive surplus). For installation 2 we derive

H ′
2(S1, S̃2, S̃2) − H̃2(S̃1, S̃1, S̃1) = αD3(S1, S̃2, S̃2) − αD3(S̃1, S̃1, S̃1) < 0.

The compensation leads to lower costs for installation 2. We conclude that both installations
gain from the coordination. �

Proof of Theorem 4.3 According to Lemma 2.2 D3(S1, y2, y3) is minimized in (S1, y2, y3) =
(S1, S2, S3). In this minimum, surplus-2 is equal to D3(S1, S̃2, S̃2) − D3(S1, S2, S3). This
surplus is positive because

D3(S1, S2, S3) = min
y1,y2,y3

D3(y1, y2, y3) < min
y1,y2

D3(y1, y2, y2) = D3(S1, S̃2, S̃2).

where the first equality is due to Lemma 2.2. Using this we obtain

(H1 + H2)(S1, S2, S3)

= (1 − β)D3(S1, S2, S3) − H̃3(S1, S̃2, S̃2) + βD3(S1, S̃2, S̃2)
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= (1 − β)D3(S1, S2, S3) − (1 − β)D3(S1, S̃2, S̃2) + D3(S1, S̃2, S̃2) − H̃3(S1, S̃2, S̃2)

< D3(S1, S̃2, S̃2) − H̃3(S1, S̃2, S̃2)

= (H ′
1 + H ′

2)(S1, S̃2, S̃2)

for the installations 1 and 2 and

H3(S1, S2, S3) = βD3(S1, S2, S3) + H̃3(S1, S̃2, S̃2) − βD3(S1, S̃2, S̃2)

< H̃3(S1, S̃2, S̃2)

for installation 3. Both inequalities follow from surplus-2 being positive in the minimum
(S1, S2, S3). �

Proof of Lemma 4.4 The cost distribution results in a cost saving for installation 1 because

H ′
1(S1, S2, S3)

= (1 − α)(D3 − H̃3)(S1, S2, S3) + α(D3 − H̃3)(S̃1, S̃1, S̃1) − H̃2(S̃1, S̃1, S̃1)

< (1 − α)(D3 − H̃3)(S1, S̃2, S̃2) + α(D3 − H̃3)(S̃1, S̃1, S̃1) − H̃2(S̃1, S̃1, S̃1)

= H ′
1(S1, S̃2, S̃2),

where D3(S1, S2, S3) < D3(S1, S̃2, S̃2) and H̃3(S1, S2, S3) > H̃3(S1, S̃2, S̃2) are used. Instal-
lation 2 saves cost if

H ′
2(S1, S2, S3) + compensation to 3 < H ′

2(S1, S̃2, S̃2),

or if the compensation to 3 is smaller than H ′
2(S1, S̃2, S̃2) − H ′

2(S1, S2, S3). Concentrate on
this latter difference:

H ′
2(S1, S̃2, S̃2) − H ′

2(S1, S2, S3)

= α(D3 − H̃3)(S1, S̃2, S̃2) − α(D3 − H̃3)(S1, S2, S3)

= α((H ′
1 + H ′

2)(S1, S̃2, S̃2) − (H ′
1 + H ′

2)(S1, S2, S3)),

which is larger than the compensation paid to 3 if α > α. Equation (2) is used in the final
equality. �

Proof of Theorem 4.5 The coordination mechanism leads to the unique choice (S1, S2, S3)

of base stock levels. Furthermore, in this optimum all players have lower cost than on their
own and the players 1 and 2 also have lower cost compared to the first round of negotiation
if α > α. We conclude that (S1, S2, S3) is the unique Nash equilibrium of the corresponding
strategic game. �

Proof of Lemma 6.1 Minimizing Hn(y1, y2, y3) with respect to yn is equivalent to minimiz-
ing

H̃n(y1, y2, y3) + h2E(zn[y3 − ul2 ] − wn)

because the other terms in Hn(y1, y2, y3) are constants. If we recall the definition of
H̃n(y1, y2, y3), this expression can be rewritten to

ECn(wn) + h2E(zn[y3 − ul2 ] − u
(n)

l1+1).
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The second term is independent of yn. Therefore minimizing Hn(y1, y2, y3) boils down to
minimizing ECn(wn) with respect to yn, where

ECn(wn) = Cn(yn)Fl2(y3 − (y1 + y2)) +
∫ ∞

y3−(y1+y2)

Cn(zn[y3 − ul2 ])dFl2(ul2).

The first order condition for a minimum of ECn(wn) is

C ′
n(yn)Fl2(y3 − (y1 + y2)) − (Cn(yn) − Cn(zn[y1 + y2]))fl2(y3 − (y1 + y2)) = 0.

Due to zn[y1 + y2] = yn this first order condition reduces to

C ′
n(yn)Fl2(y3 − (y1 + y2)) = 0.

This equality holds if yn = Sn because Sn minimizes Cn. The second order condition for a
minimum is also satisfied. �

Proof of Theorem 6.3 First, consider the retailers. Denote wn by wn(y1, y2, y3) to explicitly
show the dependence on (y1, y2, y3). Due to Lemma 6.1

Hn(S1, S2, S3)

< Hn(S̃1, S̃2, S̃1 + S̃2)

= (1 − γ )(H̃n(S̃1, S̃2, S̃1 + S̃2) + h2E(zn[S̃1 + S̃2 − ul2 ] − wn(S̃1, S̃2, S̃1 + S̃2)))

+ γ H̃n(S̃1, S̃2, S̃1 + S̃2)

= H̃n(S̃1, S̃2, S̃1 + S̃2).

The last equality results from wn(S̃1, S̃2, S̃1 + S̃2) = zn[S̃1 + S̃2 − ul2 ].
Second, consider the supplier.

H3(S1, S2, S3) = γD(3)(S1, S2, S3) + H̃2(S̃1, S̃2, S̃1 + S̃2) − γD(3)(S̃1, S̃2, S̃1 + S̃2)

< H̃3(S̃1, S̃2, S̃1 + S̃2)

where the inequality follows from D(3)(S1, S2, S3) < D(3)(S̃1, S̃2, S̃1 + S̃2). �
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