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1 Introduction

In the recent years fluid flow models have been widely used to study complex communication,
computer and flexible manufacturing systems. In particular, fluid queues with Markov modu-
lated input rates play a key role in queueing theory and performance evaluation of networks.
The main feature of these models is to describe systems using discrete and continuous quan-
tities. The use of continuous quantities can significantly reduce the well-known state space
explosion problem. For example, a quantity that can take a very large number of possible
values (like the queue size in a communication network) can be accurately approximated by a
continuous quantity.

The first studies of such queueing systems can be dated back in the early 1980’s. The works
[19] and [5] analyze fluid models in connection with statistical multiplexing of several identical
exponential on-off input sources in a buffer.

The above studies mainly focus on the analysis of the stationary regime and raise a series
of theoretical developments. For instance, [20] and [21] generalize the analysis by considering
multiple types of exponential on-off inputs and outputs. In [28] the authors consider separable
Markov modulated processes and express the equilibrium equations as a sum of Kronecker
product terms. In [16] the authors derive a new approach based on the use of interpolating
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polynomials for the computation of the buffer overflow probability. Using the Wiener-Hopf
factorization of finite Markov chains, [25] shows that the distribution of the buffer level has a
matrix exponential form. Algorithmic issues of that factorization are explored in [26].

The papers [23] and [11], respectively, exhibit and exploit the similarity between stationary
fluid queues in a finite Markovian environment and quasi birth and death processes. In [2] a
direct connection by stochastic coupling is established between fluid queues and quasi birth
and death processes.

The transient analysis of fluid queues with exponential on-off sources is studied in [18, 24] by
using Laplace transform. These studies are extended to the Markov modulated input rate model
in [29]. In [27] the author obtains a transient solution based on simple recurrence relations that
have interesting numerical properties. More recently, in [3] the authors approximate the fluid
model by the amounts of work in a sequence of Markov modulated queues of the quasi birth
and death type.

Second order models (also known as Markov modulated diffusion processes) are introduced
in [17] and [6]. In these works the authors consider a “white noise” factor which represents
the variability of the traffic during the transmission periods. The fluid level is described by a
reflected Brownian motion modulated by a continuous time Markov chain (CTMC). When the
CTMC is in state i, the fluid level is modeled by a reflected Brownian motion with drift r; and
variance parameter o?.

In first order models the fluid level grows linearly with a deterministic rate r; when the
modulating Markov chain is in state i. If 2(¢) denotes the fluid level at time ¢ and #' is a time
instant such that ¢’ > ¢, then:

o(t') = x(t) + (' = t)ri | (1)

provided that the Markov chain remains in state ¢+ and the continuous variable does not reach a
boundary in the (¢,t') interval. Markov modulated diffusion processes instead consider random
fluid changes. In these models, we have that:

x(t')==x(t)+ N ((t' —t)ry, (' — t)aiz) , (2)

that is, the fluid level change in the (¢,t') interval is normally distributed with mean (¢ — t)r;
and variance (t' — t)o?. Note that Equation (2) is valid if the Markov chain remains in state ¢
and the continuous variable does not reach a boundary in the (¢,t') interval.

Second order models have been addressed in several works. The authors of [22] provide
a stability analysis of such models when the modulating process is general stationary ergodic
(not necessarily Markovian).

The differential equations that describe a fluid model are hard to solve. The symbolic
solution of the equations can be obtained only for trivial cases. Different numerical solutions
are available for transient and stationary analysis. In the case of transient analysis the system
has an initial state which can be exploited as considered in [15, 30, 9, 27] to mention a few. In
the case of stationary analysis, the equations that describe a fluid model are ordinary differential
equations (ODEs), and there is no initial condition. Indeed this problem has been solved for first
order models by the analysis of first passage time probabilities, see for instance [23, 11,2, 8, 7, 12]
and the references therein. The key of these solutions lies in the matrix characterization of the
distribution of the phase visited at the end of a busy period of the fluid queue.

The problem remains open for modulated diffusion processes, where the solution is obtained
from a set of boundary equations, ODEs and a normalizing condition. For example, in case of
fluid level independent transition and fluid drift, the solution of the ODE is obtained by the
computation of eigenvalues and eigenvectors of a matrix [17]. Usually those approaches are
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Figure 1: The discrete Markov model of the queueing system

very sensitive to the computation of the eigenvalues and may lead to severe numerical errors.
An alternative approach using modal decomposition is proposed in [1].

In this work, we address the problem of performing steady state solution of modulating
diffusion processes using neither discretization nor singular value decomposition. Our approach
is similar to the one used in [14, 13] for first order models. In particular, we focus on the bound-
ary behaviours. Second order models can have two different types of boundaries: absorbing or
reflecting [10]. We are able to consider models where the upper and lower boundary of each
state can be either absorbing or reflecting. To the best of our knowledge second order fluid
models were applied in a wide range of application fields, but always with reflecting boundaries.
A special approximation method is proposed in [4] for approximating the absorbing boundaries
based on the solution of the system with reflecting boundaries.

The paper is structured as follows. First it presents a motivating example in Section 2.
Section 3 introduces the second order fluid models we consider, and it presents their transient
and steady state equations. The analysis technique is considered in Section 4. Section 5 provides
an applicative example and the paper is concluded in Section 6.

2 A Motivating Example

We introduce the simple queueing system, represented in Figure 1, to show the impact of the
boundary behaviour in second order fluid models.

The considered queueing system has a single server and a finite buffer of size B. Customers
arrive to the queue according to an on-off arrival process. Customers arrive only during the on
period according to a Poisson process of rate A\. The length of the on and the off periods are
exponentially distributed with parameters a,, and a,¢s. The server follows an on-off behaviour
as well. During its on period it serves customers at rate p and during its off period it goes
on vacation. Interrupted services are resumed as soon as the server comes back from vacation.
The on and the off period of the server are exponentially distributed with parameters 3., and
Borp- Let N(t) (0 < N(t) < B) be the number of customers in the buffer and J(t) be the
combined state of both the arrival process and the server (1 < J(t) < 4). We define J(t) =1
when both the arrival and the service are on, J(t) = 2 when the arrival is on and the service is
off, J(t) = 3 when the arrival is off and the service is on, and J(t) = 4 when both the arrival
and the service are off.

The Markov chain of the queueing system is depicted in Figure 2. When B is large the
number of customers in the system (NN(t)) can be represented with a continuous variable X ()
commonly referred to as fluid level. The behaviour of the fluid level depends on the state of
both the arrival process and the server, i.e., on J(t). Between the boundaries, we have the
cases reported in Table 1.

Conventional second order fluid model approximations consider only states with reflecting
boundaries. The comparison of the fluid model approximation with the exact solution, as
depicted in Figure 3, shows that the former fails to describe the behaviour at the boundaries.



Figure 2: The discrete Markov model of the queueing system

J(t) 1 2 3 4

arrival-server on-on | on-off | off-on | off-off
limy, L o[E(X(t+h)—X(@)]/h | A—u A — 0
lim,_o[Var(X(t+h)—X@)]/h | X\ +u A 14 0

Table 1: Fluid behaviour versus system state

In particular it does not consider the jumps created by probability masses. This can be a
very critical issue, since many important performance indices rely on the probability at the
boundaries (i.e., utilization and blocking probability).

Previous results prove that the reflecting behaviour is not appropriate in describing the
actual model (in some of its states). To investigate this problem, we analyze the Markov chain
of the queuing system represented in Figure 2. The structure of the Markov chain indicates
that in state J(t) = 1 the fluid level can vary between the barriers independent of the fact
that the buffer gets empty or full. In state J(¢) = 2 the fluid level can leave the lower barrier,
but if it reaches the upper barrier it remains there as long as J(t) = 2. Similar observations
are valid for J(t) = 3 and J(t) = 4. It follows that in state J(t) = 1 both the lower and
the upper boundaries are reflecting, in state J(t) = 2 the lower boundary is reflecting and the
upper boundary is absorbing, in state J(t) = 3 the lower boundary is absorbing and the upper
boundary is reflecting, and finally in state J(¢) = 4 both the lower and the upper boundaries
are absorbing. If we exploit the correct barrier behaviour at both boundaries, we obtain more
accurate results as shown in Figure 3.

This example is only to justify the importance of models with mixed (reflecting and absorb-
ing) boundary behaviour. In the following sections we show how such continuous models can
be solved, but this solution is independent of the discrete model presented here.
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Figure 3: Various solution of the queueing system

3 Notation and Preliminaries

3.1 Notation

The transient analysis of Markov modulated diffusion processes with finite buffer is based on
the transition matrix Q, the drift matrix R, the variance matrix S, the buffer size B and
the description of the boundary behaviour. The corresponding stochastic process is defined
by a couple {Z(t), X(t)}. Z(t) is a CTMC with generator matrix Q, and X (t) represents the
fluid level process. During a sojourn in state i, i.e. Z(t) = 4, the fluid level X (¢) follows a
Brownian motion with rate r; and variance s?. R and S are diagonal matrices containing the
state dependent drift and variance parameters (R = diag(r;), S = diag(s?/2)). For each state
j we define

e the fluid distribution: Fj(t,z) = Pr(Z(t) = 5, X(¢) < x),
e the fluid density: f;(t,z) = lim,_o[F; ;(t,x + h) — F; ;(t,z)]/h,
e the mass at the lower boundary: ¢;(t) = Pr(Z(t) = j, X(t) = 0),

e the mass at the upper boundary: u;(t) = Pr(Z(t) = j, X(t) = B).

3.2 State space partitioning and boundary behaviour
We partition the state space into six disjoint subsets S = ST US°US~ USPU S®U S, where:

S*z{i:m>0,si:0}, SOZ{iITz‘:O,Sz‘:O}, S_:{?:ZTZ‘<O,SZ‘:O},
S={i:r;>0,8>0}, S°={i:r,=0,8>0}, S°={i:r; <0,s; >0}.

We refer to the states belonging to ST U S° U S~ as first order states, and to the ones
belonging to S®U S®U 8° as second order states. Furthermore, we introduce

SO =8%2US°U S°.

The cardinality of a subset U of the state space is denoted by #U. The background CTMC
is supposed to be irreducible, hence it stays for a finite amount of time in all non-empty and
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valid subsets of states. The reflecting and absorbing behaviours determine the fluctuation of
the fluid level when it reaches a boundary. Let us focus on the lower boundary. The absorbing
boundary retains the fluid at the border till the background CTMC moves to a new state
where the boundary behaviour is reflecting. This implies that for an absorbing state j we have
l;(t) > 0. Instead, the reflecting boundary immediately reflects the fluid. In this case for a
reflecting state ¢ we have ¢;(t) = 0. Similar considerations are valid for the upper boundary.

It is important to note that in a system where all the states have an absorbing behaviour
the fluid is confined at the boundaries. States with reflecting behaviour allow the fluid to leave
the barriers.

3.3 Transient behaviour

We denote respectively by f(t,z), F(t,z), £(t) and u(t) the row vectors containing the f;(¢, x),
F;(t,x), £;(t) and u;(t). They satisfy the equations [17]:

OF(t,xz) OF(t,x) O?F(t,x)
o T or N o

S = F(t,2)Q, for 0 <x < B,

oft,x)  Of(t,x), O*f(tx),

o + o R_Ws_f(t,x)Q? for 0 <z < B, -
%(tt) + f(t,0)R — f'(t,0)S = ((1)Q, for z =0,
ag(tt) — [(t, B)R+ f'(t, B)S = u()Q, for z =B,

where f’(t,0) (resp. f'(t, B)) is the derivative, with respect to z, of the density density f(¢,x)
taken at point = 0% (resp. # = B7). In order to simplify the notation we write f(¢,0) and
f(t, B) instead of f(¢,0") and f(¢, B~). Boundary equations are defined as follows:

e Lower boundary:
— Li(t)=0for j € ST,
— £;(t) = 0 for j € SO and reflecting lower boundary in j,
— f;(t,0) = 0 for j € SO and absorbing lower boundary in j
e Upper boundary:
—u;(t)=0for j €S,
— u;(t) =0 for j € SO and reflecting upper boundary in j,
— f;(t,B) =0 for j € S© and absorbing upper boundary in j.

A rigorous proof of these boundary equations is given in [10] (absorbing in Section 5.7[i],
reflecting in Section 5.7[ii]).

3.4 Stationary behaviour

Since the buffer capacity is finite, the stationary distribution exists and is given by the following
limits:



which results in the following equations

e Differential equations:
F'(z)R = F'(2)8 = F(2)Q, (4)

f'(@)R = f"(2)S = f(2)Q, (5)
where f(x), f'(z), f"(z), F(z), F'(x), F"(x), ¢ and u are the row vectors containing the
fi(x), fi(z), fi(x), Fj(x), Fi(x), F}'(x), ¢; and u;. Note also that we have F'(z) = f(z),
F(0)=¢, F(B") =7 —u and F(B) = 7, where 7 is the stationary distribution of the
driving CTMC (Z(t)), i.e., the probability distribution which satisfies 7@ = 0.

e Boundary conditions:
fOR = f(0)S = (Q, (6)
—f(B)R+ f'(B)S = uQ. (7)

e Constraints on lower boundary:

—{;=0forjeST,
— (; =0 for j € SO and reflecting lower boundary in j,
— £;(0) =0 for j € SO and absorbing lower boundary in 7,

e Constraints on upper boundary:
—u;=0forjes,
— u; =0 for j € SO and reflecting upper boundary in 7,
— f;(B) =0 for j € S© and absorbing upper boundary in j.

4 Solution

This section presents the main result of this paper, that is the stationary analysis of second
order fluid models with finite buffer. First we consider the known case in which the system
has only reflecting boundaries. Then we generalize the approach to study state dependent
absorbing or reflecting boundaries.



4.1 Fully second order fluid models with reflecting boundaries

We define fully second order model cases where S = SO (s5; > 0,¥i € S), ST =8~ =8 =),
and S is non-singular. Due to the reflecting behaviour at both boundaries, we have ¢ = u = 0.
We introduce the row vector G(z) = (F(x), F'(x)) and we insert it in equation (4):

¢ %)@ (3 Y) ®)

where the row vector G'(x) is the derivative of G(z) with respect to z, that is G'(x) =
(f(x), f'(x)). Multiplying with the inverse of the matrix on the left hand side, we get

, _S—l _ S—l
¢0)=6)(§ 7)) (1 nen ) =6 (§ mms ) )
The solution to (9) is given, for z € [0, B], by
GOr) = GOM , where M= ( 9 ~95] 10
(I) - ( )6 ) where - I Rs—l . ( )

Differentiating relation (10), we get
G'(z) = (f(x), f'(x)) = G(0)(e™*)" = (¢, £(0)) (™). (11)

Using the sub-matrix decomposition

v ((Ble) )
®3(z) Pu(r) )’
we can compute G'(B) from (11) as
f(B) = (®'\(B) + [(0)®'5(B), (12)
f(B) = (@5(B) + f(0)®'4(B). (13)
Note that the relation (eM®) = MeM® = M@ M leads to
@ll(I) = —QS_I‘I)g(I) = (I)Q(l‘)
®'y(z) = —QS'®y(x) = —P1(2)QS™! + &y(z)RS™!
®'3(r) = @y(z)+RS'®3(x) = By(n) (14)

O (1) = By(x) +RS'Py(2) = —P3(2)QS™ + By(z)RS™.
Since F(0) = ¢ =0 and u = 0, we have

f(B) = f(0)®'5(B) = f(0)®4(B), (15)
F/(B) = f(0)®'4(B) = f(0) (®2(B) + RS~ ®4(B)) , (16)

and the boundary condition (7) can be expressed as
f'(B) = f(B)RS™. (17)

Combining (15), (16) and (17) we have

o) oy (PP SIS

The normalizing condition of (18) can be obtained from (10) since for x = B we have
™= F(B) = [(0)®s(B),
and multiplying it with 1, the column vector of ones, we get
f(0)®3(B)1 = 1.



4.2 Fully second order fluid models with state dependent absorbing
and reflecting boundaries
In this section we consider the fully second order fluid models, where in each state both the

upper and the lower boundaries may have either an absorbing or reflecting barrier. We partition
the state space SO in four subsets

SO =8, US4 US, US,,, (19)

where the first subscript refers to the lower boundary and the second one to the upper boundary.
In both cases a stands for absorbing and r for reflecting.
The boundary conditions (6) and (7) can be expressed as

f'(0) = fF(ORS™ —£QS™, (20)
f'(B) = f(B)RS™' +uQS™". (21)
Using (14), relations (12) and (13) can be rewritten as
f(B) = {@2(B) + f(0)®4(B), (22)
f'(B) = —(QS™'®4(B) + f(0)(®2(B) + RS™'®4(B)). (23)

The constraints on lower and upper boundaries given at the end of Section 3.4 can be written
using the decomposition of the state space in (19):

f(0) = (0,0, fr4(0), f,+(0))
¢ = (gaaa gara 07 0)

fB) = (0, fur(B),0, frr(B)) (24)
u = (Uga,0,Upa,0)

Note that each element of the vectors on the r.h.s. of (24) represents a boundary combination.
Let us define the vectors v and w as

v o= FO)+ L = (Laa,lar, [ra(0), frr(0)) (25)
w = f(B)+u = (Uaa, far(B), tra, frr(B)). (26)

Using vector v relations (22) and (23) can be rewritten as
f(B) =v(®5(B)* + ®4(B)™), (27)

f1(B) = v ([-Q8™'®4(B)]" + [®2(B) + RS™'®4(B)]"), (28)

where, for any matrix H of dimension #S, we denote by H® (resp. H"®) the matrix obtained
from H by setting to zero the rows not corresponding to states of Sy U Sar (resp. Spa U Spr).
In the same way, we denote by H** (resp. H*") the matrix obtained from H by setting to zero
the rows not corresponding to states of Sy, U S, (resp. Sgr U S,r).

Using vector w, relation (21) can be written as

f'(B)=w (RS +[QS™]*). (29)

Combining (24) and (26), we have
f(B) =wI* . (30)
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Putting together relations (27), (28), (29) and (30), we obtain the following system of dimension
2#S

(v,w)U=0 where U= ( _‘?.T —®C ) : (31)

and

A = (1)2(3)110_{_@4(3)7""
© = [-QS!'®,(B)]™ + [®2(B) + RS™'®,(B)",
C = RST"+[Qs7]".

The normalizing condition is given by writing G(B~) = G(0)eM?P. Since F(B~) = m — u, it
corresponds to

m—u = (®(B)+ f(0)®s(B),
FI(B7)=f(B") = f(B) = (®(B)+ [(0)®4(B).

This leads, using equations (25) and (26), to

u = m—v(®(B)*+ 23(B)"),
f(B)=w—u = v(®(B)* + ®4(B)").

If we compute the sum of these two relations, we get
wW=TmT-+7v (@2(3)(1. — (I)l(B)a. + (194(B)T. — (I)g(B)T.) s

that is
wl 4+ v (®1(B)* — ®o(B)* + P3(B)" — ®y(B)*) 1 = 1.

5 Application Example

In this section we apply the proposed technique to model the receiving buffer of the video
streaming application depicted in Figure 4. The model takes into account videos encoded with
variable bit rate (VBR), and it is divided into two components: the network and the video
player application. Fluid is used to model the receiving buffer. The streaming application
cycles among three states: buffering, playing, and finishing. In state buffering, the application
receives data from the network without playing it. In state playing, the application decodes
the data stored in the buffer. In this state the application continues to receive data from the
network. State finishing models the completion of the transmission while the player decodes
the last part of the stream. The network can be in two states: mormal and congested. In
state congested, data arrive at a lower speed. The discrete part of the model is composed by
five states as depicted in Figure 5. Each state represents a combination of the status of the
two components. Note that when the application does not receive data (in state finishing) the
status of the network can be neglected. Parameters 1/8g, 1/8p and 1/F represent the mean
sojourn time spent by the application in state buffering, playing, and finishing. Parameters agy,
and ayy describe the rate at which the network switches from the normal (H) to congested (L)

states and vice versa. The infinitesimal generator ) of the underlying Markov chain is given
by:

11
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Video streaming packets are decoded at rate p with variance o. The variance is due to
the variable bit rate encoding. Data streaming arrives at rate A; with variance v, in state
congested and at rate Ay with variance vy in state normal. This allows us to compute matrix
R and matrix S as follows:

AL %VL
AL — 1 (v +o0)

g — 3y +0)
i 1y

We suppose that the streaming application exchanges chunks of 128 kb. The buffer size is
1 Mb (i.e. 8 chunks/s). The mean arrival rate is 256 kbps (i.e. 2 chunks/s) in state congested
and 640 kbps (i.e. 5 chunks/s) in state normal. The video is encoded at a mean rate of 512
kbps (i.e. 4 chunks/s). We set the variance equal to the corresponding rate. The mean time
spent by the application in state buffering and finishing is approximately 10 sec. Parameters
can be summarized as follows: \j, = v, = 0.25, Ay = vg = 0.625, u = 0.5, B = 0.1, B = 0.1.
According to the discussion of Section 2, we have an absorbing behaviour at the lower boundary
in state finishing and at the upper boundary in state buffering. All the other boundaries are
reflecting.

First, we study the behaviour of the buffer occupancy distribution as function of the com-
pression rate variance. We vary o from 0.1 to 5. Other parameters are configured as follows:
B = 1Mb,Bp = 0.03,ary = agr = 1/60. Results are reported in Figure 6. The buffer occu-
pancy distribution tends to become uniform as the variance increases. Table 2 shows that the
empty and full buffer probabilities are only slightly affected by the variance.

Then we observe the buffer occupancy distribution as function of the network behaviour.
In particular, we vary the mean duration of state normal and congested. We fix ary = agyy,
such that the mean sojourn time in both states ranges from 0.6 to 600 sec. Results are reported
in Figure 7. When the network status changes more rapidly the distribution is more uniform,
otherwise when changes are less frequent the distribution is more skewed.

12
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Figure 6: Buffer occupancy (measured in 128 kb chunks)

distribution versus the compression rate variance

o 0.1 0.5 1.0 2 5
Empty buffer probability | 0.02628 | 0.02624 | 0.02620 | 0.02614 | 0.02608
Full buffer probability 0.02257 | 0.02258 | 0.02259 | 0.0226 | 0.02263

Table 2: Empty and full buffer probability
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Figure 7: Buffer occupancy (measured in 128 kb chunks)
distribution versus the network behaviour

6 Conclusion

This paper considers the stationary solution of second order bounded fluid models. In particular
it focuses on the boundary equations for the absorbing and reflecting cases. The set of second
order equations is reduced to a set of first order equations by adding extra variables. The
resulting equations are expressed in matrix form in a way that can be easily implemented into
an algorithm.

The equations for the general case where the model can have states belonging to all the
possible subsets are not presented for space constraint. However, they can be derived from the
equations provided in Section 4.

We implemented the numerical analysis in Mathematica, and used it to compute the so-
lutions for the example presented in Section 5. We are currently working on a more efficient
implementation of the algorithm in C. Further improvements can be achieved by developing
a matrix exponentiation algorithm that exploits the particular block structure of the matrix
defining the second order fluid model.
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