Skip to main content
Log in

NP-hardness results for the aggregation of linear orders into median orders

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Given a collection Π of individual preferences defined on a same finite set of candidates, we consider the problem of aggregating them into a collective preference minimizing the number of disagreements with respect to Π and verifying some structural properties. We study the complexity of this problem when the individual preferences belong to any set containing linear orders and when the collective preference must verify different properties, for instance transitivity. We show that the considered aggregation problems are NP-hard for different types of collective preferences (including linear orders, acyclic relations, complete preorders, interval orders, semiorders, quasi-orders or weak orders), if the number of individual preferences is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailon, N., Charikar, M., & Newman, A. (2005). Aggregating inconsistent information: ranking and clustering. In Proceedings of the 37th annual ACM symposium on Theory of computing (STOC) (pp. 684–693).

  • Alon, N. (2006). Ranking tournaments. SIAM Journal on Discrete Mathematics, 20(1), 137–142. doi:10.1137/050623905

    Article  Google Scholar 

  • Arditti, D. (1984). Un nouvel algorithme de recherche d’un ordre induit par des comparaisons par paires. In E. Diday et al. (Eds.), Data analysis and informatics III (pp. 323–343). Amsterdam: North-Holland.

    Google Scholar 

  • Barthélemy, J.-P. (1979). Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires. Mathématiques et Sciences Humaines, 67, 85–113.

    Google Scholar 

  • Barthélemy, J.-P., & Leclerc, B. (1995). The median procedure for partitions. In I. J. Cox, P. Hansen, & B. Julesz (Eds.), DIMACS series in discrete mathematics and theoretical computer science : Vol. 19. Partitioning data sets (pp. 3–34). Providence: Am. Math. Soc.

    Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1981). The median procedure in cluster analysis and social choice theory. Mathematical Social Sciences, 1, 235–267.

    Article  Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1988). The median procedure in data analysis: new results and open problems. In H. H. Bock (Ed.), Classification and related methods of data analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Barthélemy, J.-P., Leclerc, B., & Monjardet, B. (1986). On the use of ordered sets in problems of comparison and consensus of classifications. Journal of Classification, 3, 187–224.

    Article  Google Scholar 

  • Barthélemy, J.-P., Flament, C., & Monjardet, B. (1989). Ordered sets and social sciences. In I. Rival (Ed.), Ordered sets (pp. 721–758). Dordrecht: Reidel.

    Google Scholar 

  • Barthélemy, J.-P., Hudry, O., Isaak, G., Roberts, F. S., & Tesman, B. (1995). The reversing number of a digraph. Discrete Applied Mathematics, 60, 39–76.

    Article  Google Scholar 

  • Barthélemy, J.-P., Cohen, G., & Lobstein, A. (1996). Algorithmic complexity and communication problems. London: UCL Press.

    Google Scholar 

  • Bartholdi, III J. J., Tovey, C. A., & Trick, M. A. (1989). Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6, 157–165.

    Article  Google Scholar 

  • Black, D. (1948). On the rationale of group decision-making. Journal of Political Economy, 56, 23–34.

    Article  Google Scholar 

  • Bogart, K. P. (1973). Preference structures I: distance between transitive preference relations. Journal of Mathematical Sociology, 3, 49–67.

    Google Scholar 

  • Bogart, K. P. (1975). Preference structures II: distances between asymmetric relations. SIAM Journal of Applied Mathematics, 29(2), 254–262.

    Article  Google Scholar 

  • Caspard, N., Leclerc, B., & Monjardet, B. (2007). Ensembles ordonnés finis: concepts, résultats et usages. Berlin: Springer.

    Google Scholar 

  • Charbit, P., Thomasse, S., & Yeo, A. (2007). The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16(1), 1–4.

    Article  Google Scholar 

  • Charon, I., & Hudry, O. (2007). A survey on the linear ordering problem for weighted or unweighted tournaments. 4OR, 5(1), 5–60.

    Article  Google Scholar 

  • Conitzer, V. (2006). Computing Slater rankings using similarities among candidates. In Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 613–619), Boston, USA.

  • de Cani, J. S. (1969). Maximum likelihood paired comparison ranking by linear programming. Biometrika, 3, 537–545.

    Article  Google Scholar 

  • Debord, B. (1987). Caractérisation des matrices de préférences nettes et méthodes d’agrégation associées. Mathématiques et Sciences Humaines, 97, 5–17.

    Google Scholar 

  • Diestel, R. (2005). Graph theory (3rd edn.). Berlin: Springer.

    Google Scholar 

  • Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the Web. Proceedings of the 10th international conference on World Wide Web (WWW10) (pp. 613–622).

  • Fishburn, P. C. (1985). Interval orders and interval graphs, a study of partially ordered sets. New York: Wiley.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1977). The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics, 32, 826–834.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability, a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  • Guénoche, A., Vandeputte-Riboud, B., & Denis, J.-B. (1994). Selecting varieties using a series of trials and a combinatorial ordering method. Agronomie, 14, 363–375.

    Article  Google Scholar 

  • Hubert, L. (1976). Seriation using asymmetric proximity measures. British Journal of Mathematical & Statistical Psychology, 29, 32–52.

    Google Scholar 

  • Hudry, O. (1989). Recherche d’ordres médians: complexité, algorithmique et problèmes combinatoires. Thèse de l’ENST, Paris.

  • Hudry, O. (2004). Computation of median orders: complexity results. In Annales du LAMSADE: Vol. 3. Proceedings of the workshop on computer science and decision theory (pp. 179–214), DIMACS.

  • Hudry, O. (2008, to appear). Complexity of voting procedures. In R. Meyers (Ed.), Encyclopedia of complexity and systems science. Berlin: Springer.

    Google Scholar 

  • Hudry, O., Leclerc, B., Monjardet, B., & Barthélemy, J.-P. (2006). Médianes métriques et laticielles. In D. Dubois, M. Pirlot, & D. Bouyssou (Eds.), Concepts et méthodes pour l’aide à la décision (pp. 271–316). Paris: Hermès (translation to appear).

    Google Scholar 

  • Jünger, M. (1985). Polyhedral combinatorics and the acyclic subdigraph problem. Berlin: Heldermann.

    Google Scholar 

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Tatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum.

    Google Scholar 

  • Krivanek, M., & Moravek, J. (1986). NP-hard problems in hierarchical-tree clustering. Acta Informatica, 23, 311–323.

    Article  Google Scholar 

  • Monjardet, B. (1973). Tournois et ordres médians pour une opinion. Mathématiques et Sciences Humaines, 43, 55–73.

    Google Scholar 

  • Monjardet, B. (1978). Axiomatiques et propriétés des quasi-ordres. Mathématiques et Sciences Humaines, 63, 51–82.

    Google Scholar 

  • Monjardet, B. (1979). Relations à éloignement minimum de relations binaires, note bibliographique. Mathématiques et Sciences Humaines, 67, 115–122.

    Google Scholar 

  • Monjardet, B. (1990). Sur diverses formes de la “règle de Condorcet” d’agrégation des préférences. Mathématiques, Informatique et Sciences Humaines, 111, 61–71.

    Google Scholar 

  • Orlin, J. B. (1981). Unpublished manuscript.

  • Reinelt, G. (1985). The linear ordering problem: algorithms and applications. Research and exposition in mathematics, Vol. 8. Berlin: Heldermann.

    Google Scholar 

  • Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika, 48, 303–312.

    Google Scholar 

  • Tucker, A. W. (1960). On directed graphs and integer programs. In 1960 symposium on combinatorial problems, Princeton University, USA.

  • Wakabayashi, Y. (1986). Aggregation of binary relations: algorithmic and polyhedral investigations. PhD thesis, Augsbourg.

  • Wakabayashi, Y. (1998). The complexity of computing medians of relations. Resenhas, 3(3), 323–349.

    Google Scholar 

  • Younger, D. H. (1963). Minimum feedback arc sets for a directed graph. IEEE Transactions of the Group in Circuit Theory, 10(2), 238–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hudry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudry, O. NP-hardness results for the aggregation of linear orders into median orders. Ann Oper Res 163, 63–88 (2008). https://doi.org/10.1007/s10479-008-0353-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0353-y

Keywords

Navigation