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Abstract

The purpose of this paper is to illustrate a general framework for
network location problems, based on column generation and branch-and-
price. In particular we consider capacitated network location problems
with single-source constraints. We consider several different network lo-
cation models, by combining cardinality constraints, fixed set-up costs,
concentrator restrictions and regional constraints. Our general branch-
and-price-based approach can be seen as a natural counterpart of the
branch-and-cut-based commercial ILP solvers, with the advantage of ex-
ploiting the tightness of the lower bound provided by the set partition-
ing reformulation of network location problems. Branch-and-price and
branch-and-cut are compared through an extensive set of experimental
tests.
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1 Introduction

Finding the optimal location for facilities like warehouses or servers in distribu-
tion or telecommunication networks and deciding how to allocate clients to them
is a very complex task, since it requires to solve NP -Hard integer linear pro-
gramming problems. Classical and well-studied examples are the Capacitated
Facility Location Problem and the P-Median Problem [23]. When tackling an
NP -hard integer linear programming problem one has the choice between us-
ing a general-purpose solver and designing an “ad hoc” algorithm. The most
common general-purpose solvers for integer linear programming problems, like
ILOG CPLEX and others, use branch-and-cut methods. They combine power-
ful linear programming solvers with suitable subroutines able to detect violated
inequalities and branching strategies to develop a search tree.

The purpose of this paper is to illustrate a general framework for network lo-
cation problems, which is based on column generation and branch-and-price. In
particular we concentrate on capacitated network location problems with single-
source constraints. We consider several different network location models, by
combining cardinality constraints, fixed set-up costs, concentrator restrictions
and regional constraints and we illustrate how all of them can be solved in
almost the same way by a generalization of a branch-and-price algorithm we
recently designed for the Capacitated P-Median Problem [8].

It is clear that for each particular problem we consider it should be possible to
develop more effective “ad hoc” algorithms, both following the branch-and-cut
approach and the branch-and-price one (and possibly others, such as Lagrangean
relaxation and branch-and-bound): however the accent here is put on generality
and flexibility. Our goal in this study was to develop a kind of branch-and-price
equivalent of the branch-and-cut-based commercial ILP solvers. Apart from
being available for free for research purposes, our branch-and-price framework
has the advantage of exploiting the tightness of the lower bound provided by
the set partitioning reformulation of network location problems.

The outline of the paper is as follows. In Section 2 we report the models
of the single-source capacitated location problems we consider and we review
the relevant literature and the solution methods proposed so far. In Section 3
we describe our branch-and-price framework. In Section 4 we review the main
algorithmic features of a general-purpose ILP solver we used as a benchmark.
In Section 5 we present our experimental results. Conclusions are outlined in
Section 6.

2 Single-source capacitated location problems

In a basic facility location scenario the best trade-off has to be found between the
cost for building facilities at certain sites and the cost to serve customers. Here
we consider min-sum objective functions, where service costs are assumed to be
proportional to the distance between each customer and the facility to which it
is assigned. The cost of building facilities can be taken into account into two
different ways: either with an additional term in the objective function or with a
constraint (or both). In the former case fixed set-up costs are specified for each
candidate site; these costs are to be payed when a facility is set-up in that site. In
the latter case a cardinality constraint is added to the model, so that the number
of available facilities is bounded from above. In this section we briefly review
the mathematical formulations of network facility location problems with fixed
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set-up costs and cardinality constraints. Then we also outline the formulation
of the same problems when regional constraints are added. All problems we
consider have capacitated facilities and single-source constraints, so that it is
not allowed to split customers’ demands on more than one facility.

The following definitions apply to all models considered in the remainder.
We are given a set N of customers and a set M of candidate sites where facilities
can be located. An integer weight wi represents the demand of each customer
i ∈ N . The capacity of a facility built in each site j ∈ M is represented by
an integer Qj . Integer coefficients dij (usually referred to as distances) describe
the cost of allocating customer i ∈ N to a facility located in site j ∈ M. We
make the assumption that dij ≥ 0 ∀i ∈ N , j ∈M.

2.1 Fixed set-up costs

The set-up cost for a facility in each site j ∈ M is represented by an integer
coefficient fj . The problem in which fixed set-up costs are incurred is known
as Capacitated Facility Location Problem with Single Source constraints (SS-
CFLP).

A formulation for the SS-CFLP is the following:

SS − CFLP ) min v =
∑
i∈N

∑
j∈M

dijxij +
∑
j∈M

fjyj (1)

s.t.
∑
j∈M

xij = 1 ∀i ∈ N (2)

∑
i∈N

wixij ≤ Qjyj ∀j ∈M (3)

xij ∈ {0, 1} ∀i ∈ N , ∀j ∈M (4)
yj ∈ {0, 1} ∀j ∈M (5)

Binary variables x are assignment variables: xij = 1 if and only if customer i
is served by a facility located in site j. Binary variables y correspond to location
decisions: yj = 1 if and only if site j is selected to host a facility. The objective
is to minimize the sum of allocation costs depending on x variables and set-up
costs depending on y variables. Set partitioning constraints (2) impose that
each customer is assigned to a facility. Capacity constraints (3) impose that the
sum of the customers’ demands assigned to a same facility does not exceed the
capacity of the facility; these constraints also forbid the assignment of customers
to sites which do not host facilities.

To strengthen the linear relaxation of this formulation, disaggregated in-
equalities

xij ≤ yj , ∀i ∈ N , j ∈M (6)

are introduced. They arise from constraints (3), and the aggregated demand
constraint∑

j∈M
Qjyj ≥

∑
i∈N

wi. (7)

When single-source constraints are relaxed, that is x variables have a con-
tinuous domain in the range [0, 1], the Capacitated Facility Location Problem
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(CFLP) arises. The CFLP has been extensively studied and the literature on
it is quite rich. Erlenkotter [38] proposed an algorithm in which the continuous
relaxation of (1) - (6) is used as a dual bound. Effective optimization algorithms
for the CFLP have been developed through Lagrangean methods [10] and cross
decomposition [39]. These algorithms allow to solve problem instances involving
up to 50 customers and 50 candidate sites. More recent approaches are due to
Aardal [1], who exploits the polyhedral structure of the problem to design an
effective branch-and-cut algorithm, and to Klose et al. [24], who apply Dantzig-
Wolfe decomposition and column generation to obtain better bounds. Aardal
[1] attacked instances with up to 100 customers and 75 facilities, proving the
optimality of the solutions provided; Klose et al. [24] obtained good approxi-
mations on problems with up to 500 customers and 200 candidate facilities, and
solved to optimality problem instances with up to 200 customers embedding
their column generation routine in a branch-and-price algorithm. Daskin [12]
and Drexler [23] give detailed surveys on the CFLP.

The methods proposed in the literature for the single-source constraints
could solve only smaller instances. Also in this case, Lagrangean relaxation
can be used to design branch-and-bound methods. Dualization of the capacity
constraints (3) is discussed in Klincewitz et al. [22], where the authors solve
problem instances with 50 customers in few minutes. Pirkul [36] obtained bet-
ter results by dualizing the partitioning constraints (2): he could solve instances
with 100 customers and 20 candidate facilities. Holmberg et al. [20] proposed
to couple a Lagrangean relaxation of the capacity constraints with a repeated
matching heuristic, to solve problem instances involving up to 200 customers
and 30 candidate facilities in some minutes. A column generation approach for
the SS-CFLP was proposed by Neebe and Rao [34], who solved problem in-
stances with more than 35 customers and 25 facilities. More recently Fernandez
and Diaz [14] implemented a new branch-and-price method, which solved to
optimality instances with up to 90 customers and 30 facilities in few hours.

2.2 Concentrators

When the set of customers and the set of candidate sites coincide, the resulting
problem is called Capacitated Concentrator Location Problem (CCLP) [17].
This variant has received much attention in telecommunication networks design,
where facilities represent electronic devices and customers represent terminals
on a telecommunication network. In the CCLP each location variable yj can be
replaced by a corresponding assignment variable xjj . Although some authors
[36] used the name “Capacitated Concentrators” to indicate the SS-CFLP, we
follow [27] and [26] and we indicate as “concentrator problems” the models in
which variables xjj replace variables yj to represent location decisions.

The mathematical formulation of the CCLP is as follows:

CCLP ) min v =
∑
i∈N

∑
j∈M

dijxij +
∑
j∈M

fjxjj

s.t. (2), (4)∑
i∈N

wixij ≤ Qjxjj ∀j ∈M (8)

xij ≤ xjj ∀i ∈ N , j ∈M (9)∑
j∈M

cjxjj ≥
∑
i∈N

wi (10)
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The polyhedral structure of these problems has recently been studied in
detail by Labbé and Yaman [27] [26]. Problems on networks with up to 100
terminals can be solved to optimality with a branch-and-cut approach in half
an hour of CPU time.

2.3 Cardinality constraints

When the set-up costs are taken into account through a limit on the number
of facilities that can be built, the resulting problems are usually called “me-
dian problems”. The most basic problem of this type is the p-Median Problem
(PMP), which is the discrete counterpart of the famous multi-source Fermat-
Weber problem [37]. The PMP consists in partitioning the vertices of a given
graph into p subsets and to choose a median vertex in each subset, minimiz-
ing the sum of the distances between each vertex of the graph and the median
of its subset. The PMP arises in many different contexts such as network de-
sign, telecommunications, distributed database design, transportation and dis-
tribution logistics. Kariv and Hakimi [21] proved that the PMP is NP-hard.
Optimization algorithms based on Lagrangean relaxation have been proposed
by Narula et al. [33], Cornuéjols et al. [11], Christofides and Beasley [9] and
Beasley [4]; approaches based on dual formulations are illustrated in Galvao [15]
and Hanjoul and Peeters [18]. Among the most recent contributions we cite the
branch-and-cut-and-price algorithm by Avella et al. [2], the branch-and-price
algorithm by Senne et al. [41] and the semi-Lagrangean relaxation algorithm
by Beltran et al. [5]. The most successful approach is that of Avella et al.: an
instance on a graph with 3795 vertices, in which 150 facilities have to be selected
was solved, even though this optimization took several hours of CPU time. A
survey on the PMP can be found in Labbé et al. [25].

Here we consider the capacitated version of the problem, that is the Capac-
itated PMP (CPMP), that can be formulated as follows.

CPMP ) min v =
∑
i∈N

∑
j∈M

dijxij

s.t. (2), (3), (4), (5), (6)∑
j∈M

yj = p,

Algorithms devised for the uncapacitated PMP cannot be adapted to the
CPMP in a straightforward way: even finding a feasible solution isNP-complete
when capacities are considered. Recent contributions to the literature on the
CPMP include the algorithm of Baldacci et al. [3], which can give “a posteriori”
guarantee on optimality or the approximation achieved and a branch-and-price
algorithm of Ceselli and Righini [8]. The branch-and-price approach solved
problems on graphs with up to 200 vertices and any number of medians in less
than two hours of computation.

Very recently, two heuristic algorithms for the CPMP have been presented:
Lorena and Senne [28] followed a column generation approach, finding good
solutions on real instances with up to 402 vertices, while Diaz and Fernández
[13] attacked an instance with 737 vertices through hybrid scatter search and
path relinking.

Both Baldacci et al. [3] and Lorena and Senne [28] replaced the location
variables yj with the assignment variables xjj , so that each median is forced
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to be coincident with one of the vertices of its cluster. To be consistent with
the terminology explained above, we indicate this problem as the Capacitated
P-Concentrator Location Problem (CPCLP).

CPCLP ) min v =
∑
i∈N

∑
j∈M

dijxij

s.t. (2), (8), (4), (9), (10)∑
j∈M

xjj = p,

As reported by Ceselli [7] this restriction can change the optimal solution or
even inhibit the existence of feasible solutions.

2.4 Regional Constraints

A region is defined as a subset of candidate sites; a regional constraint imposes
an upper or lower bound to the number of facilities that can be built in a
certain region. Regional constraints are usually employed to enforce equity in
the geographical distribution of the facilities. Following Syam [42] and Murray
and Gerrard [32] we formulate the SS-CFLP with regional constraints (RCSS-
CFLP) as follows:

RCSS − CFLP ) min v =
∑
i∈N

∑
j∈M

dijxij +
∑
j∈M

fjyj

s.t. (2), (3), (4), (5), (6), (7)∑
j∈R

yj ≤ uR ∀R ∈ R (11)

∑
j∈R

yj ≥ lR ∀R ∈ R (12)

Each R ∈ R represents a region, that is a subset of the candidate sites.
Constraints (11) and (12) impose respectively an upper and a lower bound on
the number of facilities that can be located in each region. It is worth noting that
in general regions may overlap, while the methods proposed in Syam [42] and
Murray and Gerrard [32] are restricted to the case of non-overlapping regions.

Regional constraints can be also added to all the other location problems
listed above. The CPMP itself can be viewed as a RCSS-CFLP in which there
are no set-up costs (fj = 0 ∀j ∈M) and just one region R with uR = lR = p.

2.5 Set partitioning formulation

All location problems described in the previous section admit the following
alternative formulation.
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MP ) min
∑
j∈M

∑
k∈Zj

(fj +
∑
i∈N

dijx
k
i )zj

k (13)

s.t.
∑
j∈M

∑
k∈Zj

xk
i z

j
k = 1 ∀i ∈ N (14)

−
∑

k∈Zj

zj
k ≥ −1 ∀j ∈M (15)

−
∑
j∈R

∑
k∈Zj

zj
k ≥ −uR ∀R ∈ R (16)

∑
j∈R

∑
k∈Zj

zj
k ≥ lR ∀R ∈ R (17)

zj
k ∈ {0, 1} ∀j ∈M, ∀k ∈ Zj . (18)

In this set partitioning problem each column corresponds to a feasible clus-
ter, that is an assignment of customers to a facility, that satisfies the capacity
constraint. Each cluster k is described by assignment coefficients xk

i equal to 1
if and only if customer i ∈ N belongs to cluster k ∈ Zj of the facility located
in site j ∈M. A binary variable zj

k is associated with each cluster. Constraints
(14) guarantee that each customer is assigned to a facility; constraints (15) im-
pose that no more than one cluster is associated to the same facility site. For
each region R ∈ R, constraints (16) and (17) impose that the number of clusters
with facilities in R is between a lower bound lR and an upper bound uR.

For concentrator-like models, each cluster always contains the corresponding
facility. In this case, constraints (15) are redundant, because they are implied by
constraints (14), and they can be removed. When this condition is not enforced,
partitioning constraints (14) can be replaced by covering constraints:∑

j∈M

∑
k∈Zj

xk
i z

j
k = 1 ∀i ∈ N (19)

because all distances are non-negative and therefore it does always exist an
optimal solution in which no customer is assigned more than once.

The set partitioning reformulation is the starting point for developing column
generation and branch-and-price algorithms. Many authors have followed this
path to develop effective algorithms to solve the SS-CFLP (Diaz and Fernandez
[14]) the PMP (Senne et al. [41]) the CPMP (Baldacci et al. [3], Ceselli and
Righini [8]) or similar problems (Savelsbergh [40]).

Our purpose however is not to develop an algorithm tailored to any of such
problems, but rather to exploit the generality of the approach. This approach
works for all problems outlined above and this the reason for which we found
worth developing and evaluating a general-purpose branch-and-price solver for
network location problems.

3 A branch-and-price algorithm

In this section we present a general branch-and-price framework for single-source
capacitated location problems. This framework derives from the algorithm pro-
posed in [8] for the exact optimization of the CPMP.
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We describe the main components of the algorithm. These include the col-
umn generation subroutine, the branching strategy and the policy for the man-
agement of columns. We also discuss the use of Lagrangean lower bounds and
primal heuristics. In the exposition of this part we refer to formulation (13)
(15) (16) (17) ( 19) (18), including cardinality constraints, fixed set-up costs
and regional constraints. The cardinality constraint has not been taken into
account in an explicit way, since it is a special case of regional constraints.

3.1 Column generation

Each set Zj of feasible clusters served from a facility located in site j contains
an exponential number of elements. Since the linear relaxation of the master
problem MP (indicated hereafter by LMP) cannot be solved directly because
of the exponential number of its columns, column generation is applied (see
Gilmore and Gomory [16]): a restricted linear master problem (RLMP), defined
by a relatively small subset of columns, is considered and solved to optimality;
then, a search is performed for new columns of negative reduced cost and, if
any such column is found, it is inserted into the formulation and the RLMP
is solved again. When no columns of negative reduced cost exist, the optimal
solution of the RLMP is also optimal for the LMP and its value is a valid lower
bound to be used in a branch-and-bound framework.

The main advantage of the branch-and-price approach consists in the tight-
ness of the lower bound. The set partitioning formulation can be obtained from
the compact formulation by applying Dantzig-Wolfe decomposition [31]. As far
as the linear relaxations of the two formulations are concerned, the polyhedra
Ωj described by the capacity constraints in the compact formulation are con-
vexified in the set partitioning formulation. Since each Ωj is the polyhedron of
the linear relaxation of a binary knapsack problem (see [30] for a classical ref-
erence), which is known not to have the integrality property, its extreme points
can have fractional coordinates; therefore the lower bound computed after the
convexification of each set Ωj can be tighter than that provided by the linear
relaxation of the compact formulation. Many experiments [7] [8] show that this
is actually the case (see also Section 5).

The implementation of the column generation algorithm requires the re-
peated solution of a pricing problem. Let λ ∈ RN

+ , µ ∈ RM
+ , γu ∈ R|R|+ and

γl ∈ R|R|+ be the vectors of non-negative dual variables corresponding to con-
straints (14), (15), (16) and (17) respectively; the reduced cost of column k ∈ Zj

is

rk(λ,µ,γu,γl) = fj +
∑
i∈N

dijx
k
i −

∑
i∈N

λix
k
i + µj −

∑
R∈R|j∈R

(γl
R − γu

R)

To find columns with negative reduced cost, one must solve a pricing problem
for each candidate facility j ∈M:

min
∑
i∈N

(dij − λi)xk
i + fj + µj −

∑
R∈R|j∈R

(γl
R − γl

R)

s.t.
∑
i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N
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and this requires the solution of the following binary knapsack problem:

KPj) max τj =
∑
i∈N

(λi − dij)xk
i

s.t.
∑
i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N

When a concentrator-like model is considered, each site selected to host a
facility must belong to its cluster and this can easily be handled by fixing xj = 1
in each KPj .

3.2 Branching scheme

The optimal solution of the RLMP can be fractional; hence the column genera-
tion routine is embedded in a branch-and-bound algorithm. Different branching
rules can be applied [6] [8]. The choice of a suitable branching strategy is def-
initely critical because branching must not destroy the combinatorial structure
of the pricing problem. The branching rule we used works as follows: for each
customer we consider the set of candidate facilities for which there is a frac-
tional assignment in the optimal solution of the RLMP. Then we partition this
set in two subsets: aiming at a balanced partition we sort its elements by non-
increasing value of fractional assignment, and we insert the elements alternately
in the first and in the second subset. Also the set of remaining candidate fa-
cilities is partitioned in two subsets. Measuring the balance of the partition
as the difference between the value of fractional assignment to the facilities in
the first subset and the facilities in the second subset, the customer selected
for branching is the one which produces the most balanced partition. Then we
generate two subproblems and in each of tehm we forbid the assignment of the
branching customer to the facilities of one of the two subsets. The effect of this
branching rule on pricing is simply that of fixing to 0 some of the variables.

3.3 Columns management

The initial RLMP is populated with several columns to allow for a “warm start”
of column generation. For all problems outlined above, owing to the capacity
constraint, even finding a feasible solution can be difficult, since the decision
version of the problems is NP -complete. However the initial columns must
not necessarily form a complete feasible solution: they must only be in some
way “reasonable”, that is they must have a structure similar to those which
are likely to be part of feasible and good solutions. Therefore they can be
generated in some heuristic way, as described in [8], for instance by selecting at
random p candidate sites and then clustering the customers around them. In
our implementation the initialization routine is run 10 times, generating 10 p
columns. Furthermore we add the following dummy columns: first a dummy
column having a 1 corresponding to constraints (19) and 0’s elsewhere; moreover
a set of |M| dummy columns having a 1 corresponding to only one constraint
(15) and 0’s elsewhere. This is done to ensure the existence of a feasible starting
basis for each iteration of column generation. The second set of dummy columns
can be dropped when the concentrator variants of the problems are used.

At each iteration, we insert into the RLMP all the columns with a nega-
tive reduced cost found by the pricing algorithm, if any. When a limit of 3000
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columns in the RLMP is reached, we remove from the RLMP all the columns
with a reduced cost superior to a given threshold, defined as the ratio between
the current primal-dual gap and the number of potential facilities p. The re-
moved columns are kept into a pool. At each column generation iteration we
scan the pool. If any column is found to have negative reduced cost, it is re-
inserted into the RLMP. After three subsequent unsuccessful checks, the column
is deleted also from the pool. As far as there are negative reduced cost columns
in the pool, the pricing algorithm is not invoked.

3.4 Lagrangean bound

The lower bound obtained from the LMP can also be obtained through the
Lagrangean relaxation of semi-assignment constraints (2) of the compact for-
mulation:

LR) min ωLR =
∑
j∈M

fjyj +
∑
i∈N

dijxij+

−
∑
i∈N

λi(
∑
j∈M

xij − 1)+

−
∑
R∈R

γu
R(uR −

∑
j∈R

yj)−
∑
R∈R

γl
R(

∑
j∈R

yj − lR)

s.t.
∑
i∈N

wixij ≤ Qjyj ∀j ∈M (20)

xij ∈ {0, 1} ∀i ∈ N ,∀j ∈M
yj ∈ {0, 1} ∀j ∈M

The Lagrangean multipliers in LR correspond to the dual variables in the LMP
and the Lagrangean subproblem can be decomposed in the sameM binary knap-
sack problems as the pricing subproblem in the column generation approach (for
the equivalence between Dantzig-Wolfe decomposition and Lagrangean relax-
ation the reader is referred to mathematical programming textbooks like [31]).
Therefore column generation can be used as a method alternative to subgradient
optimization to update the Lagrangean multipliers.

At each iteration of column generation the current values of the dual vari-
ables λ,γu and γl are used as Lagrangean multipliers to obtain a valid lower
bound as follows. First, we solve the allocation subproblem: for each candidate
facility j, let a “penalty” value πj be computed as

πj = −fj + τj −
∑

R∈R|j∈R

(γu
R − γl

R)

where τj is the value of optimal solution of KPj , that has been found solving
the pricing problem. Second, we solve the location subproblem, that consists
in finding the set MLR of location sites which is feasible with respect to the
regional constraints and contains the most profitable facilities (those with the
lowest penalty values).

When regions do not overlap, MLR can be computed as follows. Let MLR
R

be the set of the lR sites with maximum πj values in region R and let M̄LR
R be

the set of the uR sites with maximum πj values in region R. When regions do
not overlap, the best selection of facilities can be computed in two steps. First
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the region lower bound constraints are satisfied by selecting the following set of
facilities:

MLR :=
⋃

R∈R
MLR

R

Second, the unselected facility j∗ ∈
⋃

R∈R(M̄LR
R ∩MLR

R ) with highest πj∗ value
is iteratively chosen, until the πj value of the best facility left out is positive, or
the upper bound constraints on the number of facilities in each region become
tight. It is also easy to handle global upper and lower bounds on the number of
facilities: the second step can be halted whenever one of the following conditions
holds: (a) the global lower bound on the number of open facilities is satisfied
and the πj value of the best facility left out is positive; (b) the upper bound
constraint on the number of facilities in each region becomes tight; (c) the global
upper bound becomes tight.

Instead, when regions may overlap it is not easy to find the best set MLR.
Therefore, we heuristically search for a good set of facilities, considering only
a subset of regions S ⊆ R defined as follows. We start with S = ∅. Then, we
iteratively choose the region R ∈ R \ S with minimum cardinality which has
an empty intersection with each region in S, and we include R in S until no
more such regions can be found. Once S has been found, we solve the location
subproblem as described above, replacing R with S.

Thus, a feasible bound at each iteration t is obtained as

ωt
LR = −

∑
j∈MLR

πj +
∑
i∈N

λi +
∑
R∈R

(γl
RlR − γu

RuR)

where MLR ⊆ M is a set of sites selected to host facilities in the Lagrangean-
relaxed solution.

In this way a sequence of valid lower bounds is computed during column
generation and this allows to fix variables or even to prune the current node of
the search tree before column generation is over.

We further exploit the relationship between column generation and La-
grangean relaxation outlined above to improve the dual variables via subgradi-
ent optimization [19] after each column generation iteration. Starting with the
current optimal values of the dual variables λ, 100 subgradient iterations are
executed. The step parameter is initialized at 2 and it is halved after every 10
iterations in which ωt

LR ≤ ωt−1
LR , that is the current lower bound has not been

improved with respect to the previous iteration.
Column generation is also speeded up by multiple pricing: instead of in-

serting into the RLMP only the optimal column for each candidate facility, if
any is found with negative reduced cost, we add more (suboptimal) columns to
enlarge the search space for the linear programming algorithm. This is partic-
ularly useful at the root node, when the column pool is still empty and the set
of available columns may be small.

To this purpose we exploit the subgradient optimization algorithm and we
insert into the RLMP the set of columns corresponding to each solution of the
LR for which the Lagrangean lower bound improves upon the best incumbent
Lagrangean lower bound.

3.5 Variable fixing

Given a solution of the Lagrangean relaxation LR, let ωLR be its value and let
jWI
R ∈ argminj∈MLR

T
R{πj} be the site in region R with minimum πj value
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that hosts a facility and jBO
R ∈ argmaxj /∈MLR

T
R{πj} be the site in region R

with maximum πj value that does not host a facility (WI stands for “worst in”,
BO for “best out”). Let also v∗ be a primal bound. The idea is to compute
how forbidding the location of a facility in a site j ∈ MLR would affect the
dual bound. If πjBO

R
> 0, or the lower bound constraint on region R is active

(once building a facility in site j is forbidden, it is worth or necessary to open
a facility in site jBO

R ), and dωLR + πj − πjBO
R
e ≥ v∗, then yj can be fixed to

1. In a similar way, if the lower bound constraint is not active, πjBO
R

≤ 0
and dωLR + πje ≥ v∗, then yj can be fixed to 1. Analogously, if πjW I

R
< 0

or the upper bound constraint on region R is active (once building a facility
in j is imposed, it is worth or necessary to close the facility in site jWI

R ) and
dωLR−πj +πjW I

R
e ≥ v∗, then yj can be fixed to 0; in a similar way, if the upper

bound constraint is not active, πjW I
R

≥ 0 and dωLR − πje ≥ v∗, then yj can be
fixed to 0.

Once the πj values have been computed, this variable fixing step takes
O(

∑
R∈R |R|) time and it may reduce the problem size considerably. In our

experiments variable fixing was done at each iteration of the subgradient opti-
mization algorithm at the root node and only at the end of column generation
at the other nodes in the search tree.

3.6 Primal heuristics

In order to find good feasible solutions early in the search tree, we integrated
two primal heuristics in the main algorithm. Both of them are extensions of
heuristics presented in [8] and consist of two phases: the selection of facility
locations and the allocation of customers to the facilities.

The first one is a Lagrangean-based algorithm: let MLR be the set of sites
in which a facility is activated in a Lagrangean-relaxed solution. We fix each
location variable yj to 1 if j ∈ MLR, to 0 otherwise. This selection of facility
sites can violate some regional constraint. In this case the heuristic fails in
identifying a feasible solution. Otherwise, we proceed to the allocation step as in
[8]: when partitioning constraints are not violated, we use the same assignments
which appear in the Lagrangean-relaxed solution, and the allocation of the other
vertices is done as in the MTHG algorithm [29], with desirability coefficients
fij = −dij ; the heuristic could fail during the second step too, since it could be
impossible to find a feasible allocation pattern. However, this heuristic proved
to be sufficiently fast and effective to be run at each evaluation of a Lagrangean
bound, that is, several times for each column generation iteration.

Another primal bound is computed with a rounding technique. In order to
measure the desirability of building a facility in each site we define two sets of
coefficients:

fij =
∑

k∈Zj

xk
i z

j
k ∀i ∈ N ∀j ∈M

and

ψj =
∑
i∈N

fij ∀j ∈M.

Then, the selection of facility locations is done in two steps. In the first step
the facility with highest ψj value is selected, among those which belong to some
region whose lower bound is not satisfied yet, and do not belong to any region
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whose upper bound is tight; this operation is repeated until all region lower
bounds are satisfied, or no such facility can be found. In the second case the
heuristic fails in finding a feasible solution and stops. In the second step, the
facility with highest ψj value is selected, among those which do not belong to
a region whose upper bound is tight; this operation is repeated until no such
facility can be found, or the ψj value of the selected facility is less than 0.5.
For the allocation phase, we follow the three steps of the original MTHG algo-
rithm: first, the customers are assigned to the facilities in decreasing order of
desirability coefficients fij as far as the capacity constraint allows the assign-
ments; if some vertex remains unassigned, local search iterations are performed
to produce a feasible solution; finally, if this step succeeds, a local search tries
to improve the solution. This heuristic is much more time-consuming than the
previous one. Therefore, it is used only in two cases: (a) at the root node,
at each column generation iteration, provided that the value of the fractional
LRMP solution is less than the double of the best known lower bound; (b) at
each node of the search tree, only once the column generation process is over.

4 Branch-and-cut

The structure of a branch-and-cut algorithm is the following. First, the continu-
ous relaxation of a compact formulation is solved. When the optimal solution of
this relaxation is integral, it is also optimal. Otherwise, integrality is enforced in
two ways, that is cutting planes and branching. Cutting planes are inequalities
which are redundant for the original integer program, but are violated in the
relaxed solution. Adding these cuts and re-optimizing the problem may yield
a tighter lower bound. This cut-generation process can be iterated in order to
obtain tighter approximations to the optimal integer solution. Branching is usu-
ally performed by selecting a variable whose value is fractional and considering
two (or more) subproblems in which this variable is fixed to an integer value.

To benchmark our branch-and-price approach we chose as a competitor a
general-purpose MIP solver, which uses branch-and-cut, that is ILOG CPLEX
8.1. In this section we review the classes of inequalities that CPLEX automat-
ically generates and that we found to have a greater effect on the solution of
single-source capacitated location problems.

Minimal cover cuts and generalized upper bound cover cuts. Each
capacity constraint (3) is analyzed in order to find a group of variables form-
ing a minimal cover. A minimal cover is a set of variables such that if all of
them were set to 1, the constraint would be violated, but if any of them is set
to 0, the constraint would not be violated. Therefore a valid inequality, called
cover inequality, imposes that the sum of these variables has to be strictly less
than their number. These cover inequalities can be strenghtened in many ways.
In particular CPLEX implements a search for generalized upper bound (GUB)
cover cuts. A GUB cover imposes that at most one element in a subset of vari-
ables can be selected. CPLEX dynamically generates violated minimal cover
cuts and GUB cover cuts, automatically finding how often to start this gener-
ation process and how many cuts to generate. These inequalities proved to be
the most effective cuts for our class of integer programs.

Clique cuts. Clique cuts are added whenever a set of binary variables is
identified such that at most one of the variables can be set to 1. These cuts are
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derived from the examination of the relationship between the variables through
constraint propagation techniques. This is done by CPLEX in a preprocessing
step, before optimization starts.

Gomory fractional cuts. Gomory fractional cuts are an algebraic method
for generating valid inequalities through integer rounding. This is a general
purpose technique, that does not rely on any particular structure of the model.
CPLEX allows the user to decide a number of parameters, including how many
Gomory cuts must be generated and when. We kept the standard settings of
CPLEX in our experiments since we observed they were quite effective.

5 Computational analysis

In this section we present the experimental results of our tests, in which we com-
pared our general branch-and-price algorithm with the branch-and-cut-based
solver implememented in ILOG CPLEX 8.1.

We have divided our experiments into three different parts. The purpose of
the experiments in the first part is to evaluate the effect of fixed costs, capacities
and cardinality constraints on the computing time required to achieve a provably
optimal solution. The second part concerns the effect of the introduction of re-
gional contraints and concentrator models. The third part includes experiments
on large-size instances for which neither approach could reach proven optimal-
ity within a time-out of several hours; the purpose of these last experiments is
to compare branch-and-price with branch-and-cut in terms of approximation,
measured by the primal-dual gap.

The branch-and-price algorithm has been implemented in C++. ILOG
CPLEX 8.1 libraries have been used to solve the LP relaxations. The program
was compiled with GNU C/C++ compiler version 3.2.2 with full optimizations.
All internal parameters of CPLEX have been kept to default values. All tests
have been run on a Pentium IV 1.6GHz machine, running a Linux RedHat 9
operating system. Resource limitations were imposed to both algorithms: com-
putation was halted after one hour of CPU time and the available RAM memory
was limited to 512 MB.

5.1 Cardinality constraints and fixed costs

This first set of experiments is aimed at studying the effect of cardinality con-
straints and fixed costs.

To this purpose we considered two SSCFLP datasets, both taken from the
literature: the first one (indicated as HOLM) consists of 71 instances and it is
described in [20]; the second (indicated as DIAZ) consists of 57 instances and
it is described in [14]. The instances in these datasets have up to 200 users and
30 candidate sites, with non-uniform fixed costs and capacities.

We designed our experiments to investigate to main questions: (Q1) “What
happens when a cardinality constraint is introduced?” (Q2) “How does the com-
puting time change when fixed costs are made more uniform?”

To answer question (Q1) we added a constraint on the maximum number
of facilities, p. The value of p has been defined so that the average demand
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satisfied by each of p facilities would be equal to 0.8:

p = b
∑

i∈N wi

0.8
∑

j∈MQj/|M|
c

To answer question (Q2) we also considered four different scenari: scenario
(a) corresponds to the original HOLM and DIAZ instances with the additional
cardinality constraint; in scenario (b) all fixed costs have been halved; in scenario
(c) all fixed costs have been set to 0; in scenario (d) the fixed cost for each site
has been set equal to the average fixed cost in its instance.

In tables 2 and 3 we report the results obtained for HOLM and DIAZ datasets
respectively.

Table 2 consists of four horizontal blocks. The first one indicates the char-
acteristics of each instance (in turn, problem id, number of users, number of
candidate location sites, range in which the setup costs are generated, range
in which the capacity constraints are generated); each of the three subsequent
blocks refers to one of the scenari (a) - (c) described above. In each of these
blocks we report the value of the solutions found by the branch-and-price and
branch-and-cut algorithms, and the CPU time spent in proving its optimal-
ity. When the test exceeded the resource limitations, the corresponding ‘time’
column is marked with a dash. The last three rows of the table indicate the
average computing times (neglecting the instances in which optimality was not
proved), the number of instances solved to proven optimality and the average
gap between the primal and the dual bounds at the end of computation (for the
instances whose solutions were not proved optimal).

Table 3 has an analogous structure: in the first block we report the size of
the instances. In the other blocks we report the results for scenari (a) to (d).

Question (Q1). In the rightmost columns of each table we mark with a
capital ‘T’ the instances for which the cardinality constraint is tight in an opti-
mal solution. Considering scenario (a), the cardinality constraint is tight only
6 of the 57 DIAZ instances, but has impact on many of the HOLM instances.

Question (Q2). From the analysis of the average results it is easy to
see that non-uniform fixed costs make the instances much harder to solve for
both branch-and-price and branch-and-cut. Computing times in scenario (c),
without fixed costs, are two orders of magnitude lower than those in the other
scenari and scenario (c) is the only one in which all DIAZ instances were solved
within the time limit. In scenario (c) the branch-and-price algorithm could solve
63 HOLM instances out of 71 and CPLEX solved all of them; the increase in
the average computing time of the branch-and-price algorithm with respect to
scenari (a) and (b) is a consequence of the larger number of instances solved,
since the average time is computed only on the solved instances.

Branch-and-price is more effective when fixed costs are absent or uniform: for
instance in dataset DIAZ, scenario (c), it takes less average time than CPLEX
to solve the same number of instances and in scenario (d) it takes about 75% the
average time required by CPLEX and solves approximately the same number of
instances. In dataset HOLM the number of instances closed by branch-and-price
increases when costs become more uniform or vanish, while branch-and-cut is
rather insensitive to this variation. When fixed costs are non-uniform branch-
and-cut performed better than branch-and-price. This outcome was expected
since our branch-and-price algorithm had been originally devised for the CPMP
without fixed costs. When fixed costs are significant, location decisions (that is,
where to open the facilities) are likely to become more critical than allocation
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decisions (that is, to which facility each user must be assigned). Hence in these
cases a two-levels branching policy like that proposed by Pirkul [36] and Diaz
and Fernandez[14] can be more indicated for branch-and-price algorithms.

5.2 Regional constraints and concentrators

The purpose of the second set of experiments is to evaluate the effect of intro-
ducing cardinality constraints and fixed costs in SS-CFLP and CPMP models,
from the viewpoint of the computational resources required to reach provable
optimality and from the viewpoint of the optimal value. Then we also tried
to evaluate the effect of regional constraints and of constraints imposing that
a user hosting a facility must be allocated to it (i.e. the “concentrator” case).
Hence the questions we investigated are the following: (Q3) “What is the effect
of introducing cardinality constraints in SS-CFLP?” (Q4) “What is the effect
of introducing fixed costs in the CPMP?” (Q5) “What is the effect of intro-
ducing regional constraints of different types?” (Q6) “What is the effect of the
constraint yi = xii in these models?”

For this second set of experiments we used the dataset based on 20 CPMP
instances taken from the OR Library web site. and already used in several
papers [3] [35]. This dataset is more significant for these experiments for the
following reasons: (1) they are Euclidean, in that distances between users and
facilities are computed according to the Euclidean metric in two dimensions;
therefore their distance matrices are more realistic than random matrices; (2)
in the literature regional constraints have been so far considered in addition to
models as CPMP [32] and SS-CFLP with cardinality constraints [42] and the
instances considered in these papers are similar to ours; (3) the set of sites which
can host facilities coincides with the set of the users; this restriction contributes
to make these instances more realistic. Moreover it allows to evaluate the effect
of the constraint yi = xii.

The original istances have a cardinality constraint with p = N/10 and no
fixed costs. We considered three variants: CPMP with cardinality constraint
and no fixed costs, SS-CFLP with fixed costs and no cardinality constraint, and
CARD+FIX with cardinality constraint and fixed costs. Fixed costs have been
randomly generated from a uniform distribution in the range [Qj/2, . . . , 3Qj/2].

We generated seven types of regional constraints, indicated by capital letters
from A to G. Regions in types A to E correspond to partitions of the instance
graph, while regions in type F and G instances may overlap. In table 1 we
describe in details how these instances were generated. We report the regions
type (first column) the number of regions (second column), the ranges in which
the lower and the upper bounds of each region are chosen (third and forth
column) and the average overlapping of the regions (fifth column).

Let r be the number of regions in which a graph with N vertices has to be
partitioned. Consider as “covered” a vertex belonging to a region: so each of
the vertices in the original CPMP instances is initially “uncovered”. In each
instance regions are created as follows: first, the vertex with minimum average
distance between the other vertices is selected. This is the “seed” of the new
region. Second, the uncovered vertex with minimum distance between one of
the vertices in the new region is iteratively included in the region, until the
number of vertices in the region is N/r. This process is repeated, partitioning
in r − 1 regions the graph of the uncovered nodes.

Regions overlapping is allowed by iteratively selecting the pair of vertices
with minimum discance, which belong to different regions, and imposing that
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Constraint Type Number of regions Lower bound Upper bound Overlap percentage

A 1 0 p 0%
B 2 2 3 0%
C d 1

2
pe [0, 1] [1 . . . 3] 0%

D d 2
3
pe [0, 1] [1 . . . 2] 0%

E p 1 1 0%
F d 3

2
pe [0, 1] [1 . . . 3] 50%

G 9
5
p [0, 1] [1 . . . 3] 80%

Table 1: Generation of regional constraints

each of these vertices belongs to both regions, until a predefined overlapping
ratio is reached.

The outcome of the experiments is reported in Tables 4 and 5. Each Table
is divided in seven vertical blocks and four horizontal blocks. Each vertical
block corresponds to a region type (whose ID is reported in the first cell of
each block). The first horizontal block includes the instance parameters (region
type and instance ID). The second, third and forth horizontal blocks refer to
the CPMP, SSCFLP and CARD+FIX variants of the problem respectively. In
each of these blocks we indicate, for each instance, the value of the optimal
solution, the maximum distance between a facility and one of its assigned users
and the maximum load of a facility (computed as the ratio between the sum of
the demands of users assigned to the facility and the capacity of the facility).
For each of these values, the percentage increase (or decrease) with respect to
the value in the optimal solution of the problem without regional constraints is
indicated. Finally, the time (in seconds) required to prove optimality by both
branch-and-price and branch-and-cut is reported. In the last row of each vertical
block we indicate the average results for each region type.

Question (Q3). Comparing the results reported in block SSCFLP with
those in block CARD+FIX in Tables 4 and 5 it can be seen that the cardinality
constraint has little effect on the computing time for both methods. Against
the intuition, the introduction of this constraint does not contribute to reduce
the search space and thus the difficulty of the problem: in some cases the
opposite effect is observed. We remark that these experiments have been made
only with the given value of the ratio p/N = 1/10. Also the effect on the
value of the optimal solution was almost negligible: for 50 users istances we
observed a 2.25% increase in the minimum cost, while for 100 users instances
the observed increase was about 0.65%. Furthermore, this increase vanishes as
tightest regional constraints are introduced.

Question (Q4). On the opposite, comparing the results in block CPMP
with those in block CARD+FIX in Tables 4 and 5 it is clear that removing
the fixed costs really changes the structure of the problem. For the branch-
and-cut, the CPMP is more difficult than the CARD+FIX variant: computing
the optimal solution of the CPMP instances requires about a double CPU time
with respect to the variant with fixed costs. Branch-and-price does not have a
regular behaviour: on some instances (e.g. 8 and 18) the optimization of the
CPMP version is more difficult than that of the CARD+FIX version, while on
other instances the opposite trend is observed.

If CPMP is interpreted ad a CARD+FIX problem in which obtaining the
best average service for the users (minimum allocation costs) is much more
relevant than searching for the best trade-off between fixed costs and allocation
costs, then it makes sense to compare the optimal CPMP solution value with the
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contribution of the allocation costs to the optimal CARD+FIX solution value.
When the CPMP model is used, a reduction of about 6% and 9.5% in the
allocation costs is obtained for the N = 50 and N = 100 instances respectively,
while the corresponding increase on the overall solution value is about 9.5% and
15.5% respectively.

Question (Q5). A comparison of the values reported on the last row of
each block in Tables 4 5 (the “avg” row), it is possible to evaluate the effect
of the different regional constraints on the computing time and the optimal
value. From the viewpoint of computational resources no relevant differences
are observed: the computing time required by branch-and-price and branch-
and-cut remains of the same order of magnitude.

In CPMP instances, with no fixed costs, when the number of regions in-
creases (from A instances to E instances) the computing time decreases and
this holds for both approaches. On the contrary in SSCFLP instances, with-
out cardinality constraints, the computing time increases when the number of
regions increases. The computing time with overlapping regional constraints
(types F and G) are not very different from those without regional constraints.

The value of the optimal solution is strongly affected by regional constraints:
for instance the average optimal value of all the instances in class E is about
25% worse than that for class A. When regions are large and overlap (types F
and G) the effect on the optimal value is small.

Instances with fixed costs, that is those in classes SSCFLP and CARD+FIX,
are more affected by regional constraints. This was expected because contraints
on location variables have impact both on assignment costs and on location
costs: in the former case, because it can be necessary to locate facilities in sites
farther away from users; in the second case, because it can be necessary to use
sites with higher fixed costs.

Since regional constraints are usually considered as an option ot enforce some
kind of “equity” in the geographical distribution of the facilities, we analyzed
how the worst-case service varies when the regional constraints are introduced.
In particular we observed the maximum user-facility distance and the maximum
load assigned to a facility. Neither of these parameters significantly decreases
when the numer of regions increases. This puts some doubt on the actual
effectiveness of regional constraints to achieve fairness among the users and
equitable distribution of the workload among the facilities. It seems to us that
equity can be better pursued by suitable models in which min-max objective
functions are explicitely considered and optimized.

Question (Q6). All tests described in the previous paragraph have been
repeated for the concentrator variant, in which user imust be assigned to facility
j whenever the facility is located in the same site of the user. Results are
reported in Tables 6 and 7.

We can observe that the average computing time of branch-and-cut is im-
proved; this was also expected since branch-and-cut takes advantage of a reduced
number of variables. On the contrary the computing time of branch-and-price
is worse, even if the N constraints (15) can be removed from formulation (13)
– (18).

The value of the optimal solution is not affected: it did not change in any
of our tests.
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5.3 Lower bounds and gaps

We compared the lower bounds achieved by branch-and-cut and branch-and-
price at the root node and we observed that the lower bound provided by branch-
and-price is consistently tighter: branch-and-cut could never reduce the duality
gap with respect to the best known feasible solution below 1.2%; on the contrary
branch-and-price achieved duality gaps ranging from the 0.5 to the 0.8 as much.

We also compared the best solution found and the primal-dual gaps obtained
by branch-and-price and branch-and-cut when solving large scale instances (900
customers). In this case the superiority of branch-and-price is overwhelming:
CPLEX experienced memory overflow problems and could neither solve the
linear relaxation at the root node nor find any feasible solution. On the contrary
branch-and-price yielded feasible solution with an approximation guarantee of
about 4% in average. Moreover, we observed that on large-scale instances,
when the concentrator restriction is introduced, the computing time required
by branch-and-price is reduced to approximately one half.

6 Conclusions

From the average results reported in the last rows of the tables above the fol-
lowing observations can be done. Both branch-and-cut and branch-and-price
could solve all instances with 50 users: branch-and-cut was in average faster;
branch-and-price worked better when both cardinality constraints and fixed
costs were present (class CARD+FIX). For instances with 100 users branch-
and-cut was clearly superior to branch-and-price, mainly in terms of instances
solved to proven optimality within the time limit. Looking at the detailed re-
sults reported in the tables however one can see that there are several instances
in which branch-and-price wins. Therefore the superiority of branch-and-cut
holds in average, on a sufficiently large number of instances, but there is no
guarantee that it will be the best approach on any given single instance.

A very important remark concerns the trade-off between the width of ap-
plicability and the effectiveness of the algorithms examined here. As stated
in the introduction, our goal was not to compare two specific algorithms but
rather two approaches, designed to be widely applicable to all location problems
considered here. This strive for generality is obviously paid in terms of effec-
tiveness. Therefore for each single location problem considered here it may be
possible ot obtain better results than those presented above, by incorporating
specialized cutting, branching and heuristic procedures. Examples of specialized
cutting planes devised for particular network location problems are those of [2]
and [1]; specialized branching procedures are illustrated for instance in [14] and
[36]; specialized heuristic procedures can be found in [20] and [13]. The per-
formances of both branch-and-cut and branch-and-price genaral solvers can be
strongly affected by such tailored additions. Branch-and-price exploits a tight
lower bound, provided by the set partitioning reformulation of the problems.
This gives advantage on large scale instances compared with branch-and-cut
algorithms.

Last but not least, the branch-and-cut code we have used as a benchmark
for our branch-and-price framework is a commercial solver not available for free,
while our code is freely available upon request for scientific purposes. It needs
a linear programming subroutine to solve the linear relaxation of the restricted
master problem: the results presented above have been obtained with the ILOG
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CPLEX simplex algorithm but any linear programming solver can be used in-
stead.
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�� ��� �� ?��������A ?��������A ����� � ����� ����� ���� ������ ���� ���� ���� ����� ���� ���� 8
�� ��� ����� � ����� ����� ���� ����� ���� ���� ���� ����� ���� ���� 8
�� ��� ����� � ����� ����� ����� ������� ����� ���� ���� ����� ���� ���� 8
�� ��� ����� � ����� ����� ����� � ����� ���� ���� ����� ���� ����
�� ?��������A ��� ����� � ����� ������ ����� � ����� ������ ���� ������� ���� ����
�� ��� ����� � ����� ������ ���� � ���� ����� ���� ������� ���� ����
�� ��� ����� � ����� ������ ����� � ����� ������ ���� ������� ���� ����
�� ��� ����� � ����� ������� ����� � ����� ������ ���� ������� ���� ����
�� ?��������A ��� ����� ������ ����� ���� ���� ������ ���� ���� ���� ����� ���� ����
�� ��� ����� ����� ����� ���� ���� ������ ���� ���� ���� ����� ���� ���� 8
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ���� ����� ���� ����
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ���� ����� ���� ����
�� ?��������A ��� ����� ����� ����� ���� ����� ����� ����� ���� ���� ����� ���� ���� 8 8
�� ��� ����� ����� ����� ���� ���� ����� ���� ���� ���� ����� ���� ���� 8 8
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ���� ����� ���� ���� 8 8
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ���� ����� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ����� ���� ����� ���� ����� ���� ���� ���� ����� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ������ ���� ���� ���� ����� ���� ���� ���� ����� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ������� ���� ���� ���� ����� ���� ���� ���� ����� ���� ���� 8 8
�� �� �� ?��������A ?��������A ���� ����� ���� ���� ���� ����� ���� ���� ���� ����� ���� ����� 8 8
�� �� �� ?��������A ?��������A ���� ����� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� 8 8
�� ��� �� ?��������A ?��������A ���� � ���� ���� ���� � ���� ���� ���� � ���� ����� 8 8
�� �� ?��������A ?��������A ���� � ���� ����� ���� � ���� ���� ���� ������� ���� ����� 8 8
�� �� ?��������A ?��������A ���� ����� ���� ���� ���� ����� ���� ���� ���� ����� ���� ���� 8 8
�� �� ?��������A ?��������A ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ���� ���� 8 8
�� �� ?��������A ?��������A ���� ���� ���� ���� ���� ����� ���� ���� ���� ����� ���� ����
�� �� ?��������A ?��������A ���� ������ ���� ���� ���� ����� ���� ���� ���� ����� ���� ���� 8
�� ��� �� ?��������A ?��������A ����� � ����� ������ ����� � ����� ������ ����� � ����� ������ 8 8
�� ��� ����� � ����� ������ ����� � ����� ������ ����� � ����� ������ 8
�� ��� ����� � ����� ������ ����� � ����� ������ ����� � ����� ������
�� ��� ����� � ����� ������ ����� ������� ����� ����� ����� � ����� ������
�� ?��������A ��� ����� ����� ����� ���� ����� ����� ����� ���� ����� ������ ����� ���� 8 8
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ����� ������ ����� ���� 8 8
�� ��� ����� � ����� ������ ����� ����� ����� ���� ����� ������ ����� ���� 8
�� ��� ����� ������ ����� ���� ����� ����� ����� ���� ����� ������ ����� ���� 8 8
�� ?��������A ��� ����� � ����� ����� ����� ������� ����� ����� ����� � ����� ����� 8 8
�� ��� ����� ������� ����� ����� ����� ������� ����� ����� ����� � ����� ����� 8 8
�� ��� ����� � ����� ������ ����� � ����� ����� ����� � ����� ����� 8 8
�� ��� ����� ������ ����� ����� ����� ����� ����� ���� ����� ����� ����� ���� 8
�� ?��������A ��� ����� ����� ����� ���� ����� ����� ����� ���� ����� ����� ����� ���� 8 8
�� ��� ����� ����� ����� ���� ����� ����� ����� ���� ����� ����� ����� ���� 8 8
�� ��� ����� � ����� ������ ����� ����� ����� ���� ����� ����� ����� ���� 8
�� ��� ����� � ����� � ����� � ����� ������ ����� ����� ����� ���� 8 8
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Table 2: HOLM instances
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4VSFPIQ 7IXYT������ PSEH�JEGXSV�!���� 7IXYT������ PSEH�JEGXSV�!���� 7IXYT������ PSEH�JEGXSV�!���� %:+*-< 7����� 7�����
-H 2 1 &
4�:EPYI &
4�XMQI '4<�:EPYI '4<�XMQI &
4�:EPYI &
4�XMQI '4<�:EPYI '4<�XMQI &
4�:EPYI &
4�XMQI '4<�:EPYI '4<�XMQI &
4�:EPYI &
4�XMQI '4<�:EPYI '4<�XMQI

� �� �� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ���� 8
� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
� ���� � ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ���� 8
� ���� � ���� ����� ���� ������ ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
� ���� � ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
� �� �� ���� ������� ���� ���� ���� ����� ���� ����� ��� ���� ��� ���� ���� ���� ���� ����
� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
� ���� ���� ���� ����� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� �����

�� ����� ������� ����� ���� ����� ���� ����� ����� ��� ���� ��� ���� ����� ���� ����� �����
�� ���� ���� ���� ����� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ������
�� ���� ������ ���� ����� ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� ����
�� ���� ������ ���� ������ ���� ���� ���� ���� ��� ���� ��� ���� ���� ���� ���� �����
�� ���� � ���� ���� ���� �������� ���� ������ ��� ���� ��� ���� ���� ���� ���� ���� 8 8
�� ���� ����� ���� ����� ���� ���� ���� ����� ��� ���� ��� ���� ���� ���� ���� ����
�� ����� � ����� ����� ���� ���� ���� ����� ��� ���� ��� ���� ����� ���� ����� ����
�� ���� �������� ���� ����� ���� � ���� ����� ��� ���� ��� ���� ���� ���� ���� ����
�� �� �� ����� � ����� ����� ���� ������ ���� ����� ��� ���� ��� ���� ����� ���� ����� ������
�� ����� �������� ����� ������� ���� � ���� ���� ��� ���� ��� ���� ����� ���� ����� �����
�� ����� � ����� � ����� � ����� ������� ��� ���� ��� ���� ����� ���� ����� ������
�� ���� � ���� � ���� ����� ���� ������ ��� ���� ��� ���� ���� ���� ���� �����
�� ���� � ���� ������ ���� ���� ���� ����� ��� ���� ��� ���� ���� ����� ���� ���� 8 8
�� ���� ������ ���� ����� ���� ���� ���� ����� ��� ���� ��� ���� ���� ���� ���� ���� 8 8
�� ���� �������� ���� ����� ���� � ���� ����� ��� ���� ��� ���� ���� ������ ���� ���� 8 8
�� ���� � ���� ����� ���� � ���� ���� ��� ���� ��� ���� ����� ����� ����� ����
�� �� �� ���� ���� ���� ������ ���� ����� ���� ������ ��� ���� ��� ���� ���� ���� ���� �����
�� ����� � ����� � ���� � ���� � ��� ���� ��� ���� ����� ����� ����� ���� 8 8
�� ����� � ����� ����� ���� � ���� ������ ��� ���� ��� ���� ����� ������ ����� ����� 8 8
�� ���� � ���� ������ ���� � ���� ������ ��� ���� ��� ���� ���� ������ ���� �����
�� ����� � ����� � ���� ������� ���� � ��� ���� ��� ���� ���� ���� ���� ����
�� ���� �������� ���� ������� ���� ����� ���� ����� ��� ���� ��� ���� ���� ����� ���� �����
�� ����� �������� ���� ����� ���� � ���� ������ ��� ���� ��� ���� ���� ����� ���� ���� 8
�� ����� � ����� � ����� ������� ����� � ��� ���� ��� ���� ����� ���� ����� ������
�� �� �� ���� � ���� � ���� � ���� ������ ��� ���� ��� ���� ���� ������� ���� ������
�� ���� � ���� ����� ���� ����� ���� ����� ��� ���� ��� ���� ���� ����� ���� ������
�� ����� � ����� ������� ���� � ���� ������� ��� ���� ��� ���� ����� ���� ����� �����
�� ����� � ����� � ���� ������� ���� � ��� ���� ��� ���� ����� ���� ����� �����
�� ����� � ����� ������ ����� � ����� � ��� ���� ��� ���� ����� ���� ����� ������
�� ����� � ����� ������ ����� � ����� ������� ��� ���� ��� ���� ����� ���� ����� ������
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� ���� ����� ������
�� ����� ������ ����� ����� ����� ������ ���� ����� ��� ���� ��� ����� ����� � ����� �����
�� �� �� ���� � ���� ������ ���� � ���� � ��� ���� ��� ���� ����� ������ ����� ������
�� ���� ���� ���� ������ ���� � ���� ����� ��� ���� ��� ����� ����� ���� ����� �����
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� ���� ����� ������
�� ����� � ����� ����� ���� � ���� ������ ��� ���� ��� ���� ����� ����� ����� ������
�� ����� � ����� � ����� � ����� ������� ��� ���� ��� ���� ����� ����� ����� ������
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� ���� ����� ������
�� ����� � ����� ������ ����� � ����� ������ ��� ���� ��� ���� ����� ������� ����� �������
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� ����� ����� �������
�� �� �� ���� � ���� ������ ���� � ���� ������ ��� ����� ��� ����� ����� � ����� �����
�� ���� ������� ���� � ���� � ���� � ��� ���� ��� ���� ����� ������ ����� ������
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� ����� ����� ������
�� ����� � ����� ������ ����� � ����� ������ ��� ���� ��� ���� ����� ���� ����� �������
�� ����� � ����� ����� ����� � ����� ����� ��� ����� ��� ����� ����� ����� ����� �����
�� ����� � ����� � ����� � ����� � ��� ���� ��� ���� ����� � ����� �
�� ����� � ����� ������ ����� � ����� ������ ��� ���� ��� ���� ������ ������� ������ �����
�� ����� ������� ����� ���� ����� ������� ����� ���� ��� ���� ��� ����� ������ � ������ ������

%ZK�GSQTYXMRK�XMQI ������ ������ ������ ������ ���� ���� ������ ������
7SPZIH�MRWXERGIW ����� ����� ����� ����� ����� ����� ����� �����
%ZK���4&���(&
���(&�KET ����	 ����	 ����	 ����	

Table 3: DIAZ instances
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6��8]TI -RWX� %ZK GSWX�MRGVIEWI &
4�8MQI '4<�8MQI %ZK GSWX�MRGVIEWI &
4�8MQI '4<�8MQI %ZK GSWX�MRGVIEWI &
4�8MQI '4<�8MQI

% � ��� ����	 ���� ���� ���� ����	 ���� ���� ���� ����	 ���� ����

� ��� ����	 ���� ���� ���� ����	 ���� ���� ���� ����	 ���� ����
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�� ��� ����	 ����� ���� ���� ����	 ���� ���� ���� ����	 ����� �����

% %ZK ����	 ������ ����� ����	 ���� ���� ����	 ���� ����
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Table 4: SSCFLP instances, N = 50
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Table 5: SSCFLP instances, N = 100
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Table 6: CCLP instances, N = 50
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Table 7: CCLP instances, N = 100
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[20] K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the ca-
pacitated facility location problems with single sourcing. European Journal
of Operational Research, 113:544–559, 1999.

[21] O. Kariv and S.L. Hakimi. Reducibility among combinatorial problems.
SIAM Journal of Applied Mathematics, 37:539–560, 1979.

[22] J.G. Klincewicz and H. Luss. A lagrangean relaxation heuristic for ca-
pacitated facility location with single-source constraints. Journal of the
Operational Research Society, 37(5):495–500, 1986.

[23] A. Klose and A. Drexl. Facility location models for distribution system
design. European Journal of Operational Research, 2004.
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